首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoprobe 3'(2')-O-(4-benzoyl)benzoyladenosine 5'-triphosphate (Bz2ATP) was used to characterize the nucleotide-binding site of myosin subfragment 1 (SF1). Improved synthesis and purification of Bz2ATP are reported. 1H NMR and ultraviolet spectroscopy show that Bz2ATP is a 60:40 mixture of the 3'(2')-ribose isomers and that the epsilon M261 is 41,000 M-1 cm-1. Bz2ATP is hydrolyzed by SF1 comparably to ATP in the presence of actin or K+, NH4+, or Mg2+ ions; and the product, Bz2ADP, has a single binding site on SF1 (K'a = 3.0 X 10(5) M-1). [3H]Bz2ATP was photoincorporated into SF1 with concomitant loss of K+-EDTA-ATPase activity. Analysis of photolabeled SF1 showed that the three major tryptic peptides (23, 50, and 20 kDa) of the heavy chain fragment and the alkali light chains were labeled. The presence of ATP during irradiation protected only the 50-kDa peptide, indicating that the other peptides were nonspecifically labeled. If Bz2ATP was first trapped on SF1 by cross-linking the reactive thiols, SH1 and SH2, with p-phenylenedimaleimide, only the 50-kDa tryptic peptide was labeled. These results confirm and extend previous observations that [3H]Bz2ATP trapped on SF1 by cobalt(III) phenanthroline photolabeled the same 50-kDa peptide (Mahmood, R., and Yount, R.G. (1984) J. Biol. Chem. 259, 12956-12959). Thus, the 50-kDa peptide is labeled with or without thiol cross-linking, indicating that the relative position of SH1 and SH2 does not affect the labeling pattern.  相似文献   

2.
3'-O-(4-Benzoyl)benzoyl-ATP (Bz2ATP), an analog of ATP containing a photoreactive benzophenone moiety, was used as a probe of the ATP binding site of myosin subfragment 1 (SF1). The inactivation of SF1 NH+4-EDTA ATPase by the bifunctional thiol crosslinking system cobalt(II)/cobalt(III) phenanthroline complexes was enhanced by Bz2ATP to the same degree as by ATP. This treatment resulted in the stable trapping of Bz2ATP at the active site in nearly stoichiometric amounts in a manner exactly analogous to ATP (Wells, J.A., and Yount, R.G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966-4970). Irradiation of SF1 containing trapped [3H]Bz2ATP gave approximately 50% covalent incorporation of the trapped nucleotide into the enzyme. Analysis of photolabeled SF1 by gel electrophoresis showed that all of the [3H]Bz2ATP was attached to the 95-kDa heavy chain fragment. No label was found in the light chains. Similar analysis of the same protein after limited trypsin treatment demonstrated that approximately 75% of the [3H]Bz2ATP was bound to the central 50-kDa peptide and its 75-kDa precursor from the heavy chain. The N-terminal 25-kDa tryptic peptide, shown to be photolabeled by other ATP analogs (Szilagyi, L., Balint, M., Sreter, F.A., and Gergely, J. (1979) Biochem. Biophys. Res. Commun. 87, 936-945; Okamoto, Y., and Yount, R.G. (1983) Biophys. J. 41, 298a), was not labeled (less than 1%) by Bz2ATP. These results demonstrate that portions of the 50 kDa-peptide of the heavy chain are within 6-7 A of the ATP binding site on SF1 and possibly contribute to nucleotide binding.  相似文献   

3.
C R Cremo  R G Yount 《Biochemistry》1987,26(23):7524-7534
Two new fluorescent nucleotide photoaffinity labels, 3'(2')-O-(4-benzoylbenzoyl)-1,N6-ethenoadenosine 5'-diphosphate (Bz2 epsilon ADP) and 2'-deoxy-3'-O-(4-benzoylbenzoyl)-1,N6-ethenoadenosine 5'-diphosphate [3'(Bz2)2'd epsilon ADP], have been synthesized and used as probes of the ATP binding site of myosin subfragment 1 (SF1). These analogues are stably trapped by the bifunctional thiol cross-linker N,N'-p-phenylenedimaleimide (pPDM) at the active site in a manner similar to that of ATP [Wells, J.A., & Yount, R.G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966-4970], and nonspecific photolabeling can be minimized by removing free probe by gel filtration prior to irradiation. Both probes covalently photoincorporate with high efficiency (40-50%) into the central 50-kDa heavy chain tryptic peptide, as found previously for the nonfluorescent parent compound 3'(2')-O-(4-benzoylbenzoyl)adenosine diphosphate [Mahmood, R., & Yount, R.G. (1984) J. Biol. Chem. 259, 12956-12959]. The solution conformations of Bz2 epsilon ADP and 3'(Bz2)-2'd epsilon ADP were analyzed by steady-state and time-resolved fluorescence spectroscopy. These data indicated that the benzoylbenzoyl rings in both analogues were stacked over the epsilon-adenine ring. The degree of stacking was greater with the 2' isomer than with the 3' isomer. Fluorescence quantum yields and lifetimes were measured for Bz2 epsilon ADP and 3'(Bz2)2'd epsilon ADP reversibly bound, stably trapped, and covalently photoincorporated at the active site of SF1. These values were compared with those for 3'(2')-O-[[(phenylhydroxymethyl)phenyl]carbonyl]-1,N6-ethenoadenos ine diphosphate (CBH epsilon ADP) and 2'-deoxy-3'-O-[[(phenylhydroxymethyl)phenyl]carbonyl]-1,N6- ethenoadenosine diphosphate [3'(CBH)2'd epsilon ADP]. These derivatives were synthesized as fluorescent analogues of the expected product of the photochemical reactions of Bz2 epsilon ADP and 3'(Bz2)2'd epsilon ADP, respectively, with the active site of SF1. The fluorescence properties of the carboxybenzhydrol derivatives trapped at the active site by pPDM were compared with those of the Bz2 nucleotide-SF1 complexes. These properties were consistent with a photoincorporation mechanism in which the carbonyl of benzophenone was converted to a tertiary alcohol attached covalently to the protein. The specific, highly efficient photoincorporation of Bz2 epsilon ADP at the active site will allow it to be used as a donor in distance measurements by fluorescence resonance energy transfer to acceptor sites on actin.  相似文献   

4.
R Mahmood  M Elzinga  R G Yount 《Biochemistry》1989,28(9):3989-3995
A portion of the active site of rabbit skeletal myosin near the ribose ring of ATP can be labeled by the photoaffinity analogue 3'(2')-O-(4-benzoylbenzoyl)adenosine triphosphate (Bz2ATP). The specificity of the photolabeling was assured by first trapping [14C]Bz2ATP at the active site by use of thiol cross-linking agents [Mahmood, R., Cremo, C., Nakamaye, K., & Yount, R. (1987) J. Biol. Chem. 262, 14479-14486]. Five radioactive peptides were isolated by high-performance liquid chromatography after extensive trypsin and subtilisin digestion of photolabeled myosin subfragment 1. Four of these peptides were sequenced by Edman techniques, and all originated from a region with the sequence Gly-Glu-Ile-Thr-Val-Pro-Ser-Ile-Asp-Asp-Gln, which corresponds to rabbit myosin heavy chain residues 318-328. The fifth labeled peptide had an amino acid composition appropriate for residues 312-328. Amino acid composition, radiochemical analysis, and sequence data indicate that Ser-324 is the major amino acid residue photolabeled by Bz2ATP. Spectrophotometric evidence indicates that the benzophenone carbonyl group has inserted into a C-H bond from either the alpha- or beta-carbon of serine. These results place Ser-324 at a distance of 6-7 A from the 3'(2') ribose oxygens of ATP bound at the active site of myosin.  相似文献   

5.
The active site of chicken gizzard myosin was labeled by direct photoaffinity labeling with [3H]UDP. [3H] UDP was stably trapped at the active site by addition of vanadate (Vi) and Co2+. The extraordinary stability of the myosin.Co2+.[3H]UDP.Vi complex (t1/2 greater than 5 days at 0 degrees C) allowed it to be purified free of extraneous [3H]UDP before irradiation began. Upon UV irradiation, greater than 60% of the trapped [3H]UDP was photoincorporated into the active site. Only the 200-kDa heavy chain was labeled, confirming earlier results (Maruta, H., and Korn, E. (1981) J. Biol. Chem. 256, 499-502) using [3H]UTP. Extensive tryptic digestion of photolabeled myosin subfragment 1 followed by high performance liquid chromatography separations and removal of nucleotide phosphates by treatment with alkaline phosphatase allowed two labeled peptides to be isolated. Sequencing of the labeled peptides and radioactive counting showed that Glu185 was the residue labeled. Since UDP is a "zero-length" cross-linker, Glu185 is located at the purine-binding pocket of the active site of smooth myosin and adjacent to the glycine-rich loop which binds the polyphosphate portion of ATP. This Glu residue is conserved in smooth and nonmuscle myosins and is the same residue identified previously by [3H]UTP photolabeling in Acanthamoeba myosin II (Atkinson, M. A., Robinson, E. A., Appella, E., and Korn, E. D. (1986) J. Biol. Chem. 261, 1844-1848).  相似文献   

6.
D G Cole  R G Yount 《Biochemistry》1992,31(27):6186-6192
The properties of divalent metal.ADP.vanadate (V(i)) complexes of the 6S extended and 10S folded conformations of gizzard myosin before and after UV irradiation have been studied. The half-lives of both 6S and 10S myosin.MgADP.V(i) complexes in the dark at 0 degrees C are on the order of 2 weeks. Brief irradiation with UV light, however, photomodified the enzyme as suggested by changes in the NH(4+)-, K(+)-, and Ca(2+)-ATPase activities, and destabilized the complexes. The 6S complex, when irradiated, released ADP and V(i) rapidly (t1/2 less than or equal to 1 min) as has been observed in comparable experiments with skeletal myosin subfragment 1 (S1) [Grammer et al. (1988) Biochemistry 27, 8408-8415]. The irradiated 10S complex released approximately 20% of the ADP and V(i) rapidly (t1/2 less than or equal to 1 min), but the remainder stayed trapped, possibly as the vanadyl (VO2+).ADP complex, for much longer times (t1/2 approximately 8 h). The site of photomodification was sought by reducing both photomodified 6S and 10S myosin with NaB3H4. Amino acid composition analyses identified [3H]serine as the only labeled residue(s), suggesting that the hydroxymethyl group of serine had been oxidized to an aldehyde as shown previously for photomodified skeletal myosin S1 [Cremo et al. (1989) J. Biol. Chem. 264, 6608-6611]. The 29-kDa NH2-terminal tryptic peptide from the heavy chain was found to contain essentially all of the [3H]serine. Preparations of 6S and 10S [3H]myosin were digested exhaustively with trypsin. An identical [3H]peptide was purified from each preparation and its sequence determined to be Glu169-Asp-Gln-Ser-Ile-Leu-(Cys)-Thr-Gly-[3H]Ser-Gly-Ala-Gly-Ly s183.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The reaction of a photoaffinity analog, 3'-O-(4-benzoyl)-benzoic-adenosine 5'-triphosphate (BZ2ATP) with gizzard myosin is described. The incorporation of BZ2ATP into myosin is both specific and stoichiometric. About 2.2 mol BZ2ATP are incorporated/mol myosin resulting in the significant loss of EDTA(K+) ATPase activity. The Mg2+ and actin-activated ATPase activities are slightly inhibited. Addition of ATP (millimolar) during the photolysis reaction significantly inhibits incorporation of BZ2ATP into myosin. Our data show that the label is mainly incorporated into the heavy chain of myosin with some label in the 20-kDa light chain. Limited proteolysis of radioactively labeled myosin subfragment 1 with trypsin reveals the presence of radioactivity mainly in the 50-kDa fragment and some in the 29-kDa and 25-kDa fragments. However, our data on the ATP-sensitive incorporation of BZ2ATP into the tryptic fragments suggest that the 50-kDa peptide, not the 29-kDa peptide, may be located at or around the active site.  相似文献   

8.
T E Garabedian  R G Yount 《Biochemistry》1991,30(42):10126-10132
The active-site topology of smooth muscle myosin has been investigated by direct photoaffinity-labeling studies with [3H]ADP. Addition of vanadate (Vi) and Co2+ enabled [3H]ADP to be stably trapped at the active site (t1/2 greater than 5 days at 0 degrees C). The extraordinary stability of the myosin.Co2+.[3H]ADP.Vi complex allowed it to be purified free of excess [3H]ADP before irradiation began and ensured that only active-site residues became labeled. Following UV irradiation, approximately 10% of the trapped [3H]ADP became covalently attached at the active site. All of the [3H]ADP incorporated into the 200-kDa heavy chain, confirming earlier results using untrapped [alpha-32P]ATP [Maruta, H., & Korn, E. (1981) J. Biol. Chem. 256, 499-502]. After extensive trypsin digestion of labeled subfragment 1, HPLC separation methods combined with alkaline phosphatase treatment allowed two labeled peptides to be isolated. Sequence analysis of both labeled peptides indicated that Glu-185 was the labeled residue. Since Glu-185 has been previously identified as a residue at the active site of smooth myosin using [3H]UDP as a photolabel [Garabedian, T. E., & Yount, R. G. (1990) J. Biol. Chem. 265, 22547-22553], these results provide further evidence that Glu-185, located immediately adjacent to the glycine-rich loop, is located in the purine binding pocket of the active site of smooth muscle myosin.  相似文献   

9.
The ADP photoaffinity analogue 2-[(4-azido-2-nitrophenyl)amino]ethyl diphosphate (NANDP) was used to photolabel the ATP binding site of scallop myosin. Approximately 1 mol of NANDP per mol of myosin was trapped at the active site by complexation with vanadate and manganese. ADP, but not AMP, inhibited trapping of NANDP. The trapped NANDP photolabeled up to 37% of the myosin upon UV irradiation. Papain subfragment-1 prepared from the photolabeled myosin was digested with trypsin, and the major photolabeled tryptic peptides were isolated by reversed-phase HPLC. The amino acid sequence of the major labeled peptide was X-Leu-Pro-Ile-Tyr-Thr-Asp-Ser-Val-Ile-Ala-Lys, where X represents the photolabeled amino acid Arg128. Previously, Trp130 of rabbit skeletal muscle myosin has been shown to be photolabeled by NANDP [Okamoto, Y., and Yount, R. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1575-1580]. Scallop and rabbit skeletal muscle myosin display a high degree of sequence similarity in this region with Arg128 in an equivalent position as Trp130. These results suggest that the composition of the purine binding site is analogous in both myosins and that Arg and Trp play a similar role in binding ATP, despite the marked differences of their side chains.  相似文献   

10.
The Mg2+-dependent ATPase (adenosine 5'-triphosphatase) mechanism of myosin and subfragment 1 prepared from frog leg muscle was investigated by transient kinetic technique. The results show that in general terms the mechanism is similar to that of the rabbit skeletal-muscle myosin ATPase. During subfragment-1 ATPase activity at 0-5 degrees C pH 7.0 and I0.15, the predominant component of the steady-state intermediate is a subfragment-1-products complex (E.ADP.Pi). Binary subfragment-1-ATP (E.ATP) and subfragment-1-ADP (E.ADP) complexes are the other main components of the steady-state intermediate, the relative concentrations of the three components E.ATP, E.ADP.Pi and E.ADP being 5.5:92.5:2.0 respectively. The frog myosin ATPase mechanism is distinguished from that of the rabbit at 0-5 degrees C by the low steady-state concentrations of E.ATP and E.ADP relative to that of E.ADP.Pi and can be described by: E + ATP k' + 1 in equilibrium k' - 1 E.ATP k' + 2 in equilibrium k' - 2 E.ADP.Pi k' + 3 in equilibrium k' - 3 E.ADP + Pi k' + 4 in equilibrium k' - 4 E + ADP. In the above conditions successive forward rate constants have values: k' + 1, 1.1 X 10(5)M-1.S-1; k' + 2 greater than 5s-1; k' + 3, 0.011 s-1; k' + 4, 0.5 s-1; k'-1 is probably less than 0.006s-1. The observed second-order rate constants of the association of actin to subfragment 1 and of ATP-induced dissociation of the actin-subfragment-1 complex are 5.5 X 10(4) M-1.S-1 and 7.4 X 10(5) M-1.S-1 respectively at 2-5 degrees C and pH 7.0. The physiological implications of these results are discussed.  相似文献   

11.
The binding of ADP to subfragment-1 was investigated by the gel filtration method. The amount of bound ADP was determined as a function of free ADP concentration. Linear Scatchard plots were obtained. The maximum binding number, 0.55 mole of ADP per 10(5) g of protein, and the dissociation constant, 1.6 x 10(-6) M, were obtained, using subfragment-1 prepared by tryptic digestion, in the presence of 0.083 M KCl-10 mM MgCl2-0.02 M Tris-HCl (pH 8), at 25 degrees. Similar maximum numbers, about 0.5 mole per 10(5) g of protein, were obtained with subfragment-1 prepared by chymotryptic digestion of myosin or papain digestion of myofibrils. The maximum number did not depend on the KCl concentration or the temperature, while the dissociation constant decreased on decreasing either the KCl concentration or the temperature. Adenylyl imidodiphosphate binding to subfragment-1 prepared by chymotryptic digestion was also measured by the gel filtration method. The maximum binding number, 0.41 mole per 10(5) g of subfragment-1, and the dissociation constant, less than 10(-7) M, were obtained in the presence of 0.7 M KCl-10 mM MgCl2-0.02 M Tris-HCl (pH 8), at 8 degrees. The difference absorbance at 288 nm of the difference absorption spectrum induced by ADP of subfragment-1 prepared by tryptic digestion was proportional to the amount of bound ADP. The steady-state ATPase rate of subfragment-1 prepared by tryptic digestion was inhibited competitively by ADP in the presence of MgCl2. The extent of the initial burst of ATPase [EC 3.6.1.3] decreased from 0.46 +/- 0.06 to 0.30 +/- 0.09 mole of Pi per 10(5) g of subfragment-1 on adding ADP to a level of 0.6 mM. Subfragment-1 prepared by tryptic digestion bound F-actin with a mole ratio of 1/0.96 of actin monomer. The binding was depressed by the addition of ADP. On the basis of these results, subfragment-1 preparations were assumed to be a half-and-half mixture of two kinds of protein, and properties of each protein are discussed.  相似文献   

12.
Summary The synthesis of [2-3H]ATP with specific activity high enough to use for 3H NMR spectroscopy at micromolar concentrations was accomplished by tritiodehalogenation of 2-Br-ATP. ATP with greater than 80% substitution at the 2-position and negligible tritium levels at other positions had a single 3H NMR peak at 8.20 ppm in 1D spectra obtained at 533 MHz. This result enables the application of tritium NMR spectroscopy to ATP utilizing enzymes.The proteolytic fragment of skeletal muscle myosin, called S1, consists of a heavy chain (95 kDa) and one alkali light chain (16 or 21 kDa) complex that retains myosin ATPase activity. In the presence of Mg2+, S1 converts [2-3H]ATP to [2-3H]ADP and the complex S1.Mg[2-3H]ADP has ADP bound in the active site. At 0°C, 1D 3H NMR spectra of S1.Mg[2-3H]ADP have two broadened peaks shifted 0.55 and 0.90 ppm upfield from the peak due to free [2-3H]ADP. Spectra with good signal-to-noise for 0.10 mM S1.Mg[2-3H]ADP were obtained in 180 min. The magnitude of the chemical shift caused by binding is consistent with the presence of an aromatic side chain being in the active site. Spectra were the same for S1 with either of the alkali light chains present, suggesting that the alkali light chains do not interact differently with the active site. The two broad peaks appear to be due to the two conformations of S1 that have been observed previously by other techniques. Raising the temperature to 20 °C causes small changes in the chemical shifts, narrows the peak widths from 150 to 80 Hz, and increases the relative area under the more upfield peak. Addition of orthovanadate (Vi) to produce S1.Mg[2-3H]ADP.Vi shifts both peaks slightly more upfield without chaning their widths or relative areas.  相似文献   

13.
The kinetic mechanism of turkey gizzard smooth muscle myosin-light-chain kinase was investigated using the isolated 20-kDa light chain of myosin as substrate. The kinetic and product inhibition patterns of the forward reaction indicated an ordered sequential mechanism in which MgATP bound first, ADP was released last. The order of substrate binding and product release was confirmed independently by competitive, dead-end inhibition patterns obtained using the non-hydrolizable ATP analog adenosine 5'-[beta,gamma-imido]triphosphate. The mechanism was also characterized by a relatively strong product inhibition by ADP and a weak one by phosphorylated 20-kDa light-chain myosin, in addition to a significant inhibition by the latter product via a formation of a dead-end complex. [gamma-32P]ATP in equilibrium with [32P]phosphorylated light chain isotope-exchange data were consistent with the deduced mechanism and with the presence of the latter dead-end complex.  相似文献   

14.
Tryptic digestion patterns reveal a close similarity of the substructure of frog subfragment-1 (S1) to that established for rabbit S1. The 97-kDa heavy chain of chymotryptic S1 of frog myosin is preferentially cleaved into three fragments with apparent molecular masses of 29 kDa, 49 kDa and 20 kDa. These fragments correspond to the 27-kDa, 50-kDa and 20-kDa fragments of rabbit S1, respectively; this is indicated by the sequence of their appearance during digestion, by the suppression by actin of the generation of the 49-kDa and 20-kDa peptides, and by a nucleotide-promoted cleavage of the 29-kDa peptide to a 24-kDa fragment and the 49-kDa peptide to a 44-kDa fragment, analogous to the nucleotide-promoted cleavage of the 27-kDa and 50-kDa fragments of rabbit S1 to the 22-kDa and 45-kDa peptides. The same changes in the digestion patterns as those produced by the presence of nucleotide (ATP or its beta,gamma-imido analog AdoP P[NH]P) at 25 degrees C were observed when the digestion was carried out at 0 degrees C in the absence of nucleotide. The low-temperature-induced changes were particularly well seen in the preparations from frog myosin. The presence of ATP or AdoP P[NH]P at 0 degrees C enhanced, whereas the complex formation with actin prevented, the low-temperature-induced changes. The results are consistent with there being two fundamental conformational states of the myosin head in an equilibrium that is dependent on the temperature, the nucleotide bound at the active site, and the presence or absence of actin.  相似文献   

15.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

16.
Conformational changes of the beta chain of the outer-arm dynein from sea urchin sperm flagella in relation to ATP hydrolysis was examined by tryptic digestion. Tryptic digestion of the beta chain in the presence of 2 mM ATP (ADP) and 100 microM vanadate (Vi) or in the presence of 4 mM ATP gamma S produced different polypeptides from in the case of no addition. The difference was similar to the result previously reported for 21S outer-arm dynein heavy chains [Inaba, K. & Mohri, H. (1989) J. Biol. Chem. 264, 8384-8388]. Unlike the tryptic digestion pattern of 21S dynein heavy chains, however, the 135-kDa polypeptide was consistently produced from the beta chain, even in the presence of ATP (ADP) and Vi. The tryptic digestion pattern of the 21S particle reconstituted from the separated a chain, the beta/IC1 complex and the IC2/IC3 complex [Tang, W.-J.Y., Bell, C.W., Sale, W.S., & Gibbons, I.R. (1982) J. Biol. Chem. 257, 508-515] was similar to that of intact 21S dynein; the 135-kDa polypeptide was only slightly produced in the presence of ATP and Vi. The digestion rate constant of the 135-kDa polypeptide from the beta chain in the presence of ATP and Vi was significantly decreased as compared with in the case of 21S dynein or that of the reconstituted 21S particle. These results suggest that the trypsin sensitivity of the 135-kDa region of the beta chain changes with the association of the beta/ICI complex with the alpha chain and the IC2/IC3 complex in the presence of ATP and Vi.  相似文献   

17.
We present a new method to specifically and stably label proteins by attaching extrinsic probes to amino acids that are thiophosphorylated by protein kinases and ATP gamma S. The method was demonstrated for labeling of a thiophosphorylatable serine of the isolated regulatory light chain of smooth muscle myosin. We stoichiometrically blocked the single thiol (Cys-108) either by forming a reversible intermolecular disulfide bond or by reacting with iodoacetic acid. The protein was stoichiometrically thiophosphorylated at Ser-19 by myosin light chain kinase and ATP gamma S. The nucleophilic sulfur of the protein phosphorothioate was coupled at pH 7.9 and 25 degrees C to the fluorescent haloacetate [3H]-5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1- sulfonic acid ([3H]IAEDANS) by displacement of the iodide. Typical labeling efficiencies were 70-100%. The labeling was specific for the thiophosphorylated Ser-19, as determined from the sequences of two labeled peptides isolated from a tryptic digest of the labeled protein. [3H]IAEDANS attached to the thiophosphorylated Ser-19 was stable at pH 3-10 at 25 degrees C, and to boiling in high concentrations of reductant. The labeled light chains were efficiently exchanged for unlabeled regulatory light chains of the whole myosin molecule. The resulting labeled myosin had normal ATPase activities in the absence of actin, indicating that the modification of Ser-19 and the exchange of the labeled light chain into myosin did not significantly disrupt the protein. The labeled myosin partially retained the elevated actin-activated Mg(2+)-ATPase activity which is characteristic of thiophosphorylated myosin. This indicates that labeling of the thiophosphate group with [3H]IAEDANS did not completely disrupt the functional properties of the thiophosphorylated protein in the presence of actin.  相似文献   

18.
Multidrug resistance protein 4 (MRP4/ABCC4), transports cyclic nucleoside monophosphates, nucleoside analog drugs, chemotherapeutic agents, and prostaglandins. In this study we characterize ATP hydrolysis by human MRP4 expressed in insect cells. MRP4 hydrolyzes ATP (Km, 0.62 mm), which is inhibited by orthovanadate and beryllium fluoride. However, unlike ATPase activity of P-glycoprotein, which is equally sensitive to both inhibitors, MRP4-ATPase is more sensitive to beryllium fluoride than to orthovanadate. 8-Azido[alpha-32P]ATP binds to MRP4 (concentration for half-maximal binding approximately 3 microm) and is displaced by ATP or by its non-hydrolyzable analog AMPPNP (concentrations for half-maximal inhibition of 13.3 and 308 microm). MRP4 substrates, the prostaglandins E1 and E2, stimulate ATP hydrolysis 2- to 3-fold but do not affect the Km for ATP. Several other substrates, azidothymidine, 9-(2-phosphonylmethoxyethyl)adenine, and methotrexate do not stimulate ATP hydrolysis but inhibit prostaglandin E2-stimulated ATP hydrolysis. Although both post-hydrolysis transition states MRP4.8-azido[alpha-32P]ADP.Vi and MRP4.8-azido[alpha-32P]ADP.beryllium fluoride can be generated, nucleotide trapping is approximately 4-fold higher with beryllium fluoride. The divalent cations Mg2+ and Mn2+ support comparable levels of nucleotide binding, hydrolysis, and trapping. However, Co2+ increases 8-azido[alpha-32P]ATP binding and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping but does not support steady-state ATP hydrolysis. ADP inhibits basal and prostaglandin E2-stimulated ATP hydrolysis (concentrations for half-maximal inhibition 0.19 and 0.25 mm, respectively) and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping, whereas Pi has no effect up to 20 mm. In aggregate, our results demonstrate that MRP4 exhibits substrate-stimulated ATP hydrolysis, and we propose a kinetic scheme suggesting that ADP release from the post-hydrolysis transition state may be the rate-limiting step during the catalytic cycle.  相似文献   

19.
A fluorescent photoreactive ATP derivative, 2'(3')-O-(4-benzoylbenzoyl)-1,N(6)-etheno-ATP (Bz(2)-epsilonATP), was synthesized and reacted with the rice kinesin K16 motor domain (K16MD). In the presence of ADP or ATP, UV irradiation of the K16MD solution containing Bz(2)-epsilonATP resulted in a new 100 kDa band, which was an intermolecular cross-linked product of motor domains. In contrast, no cross-linking was observed in the absence of nucleotides. For the motor domain of mouse brain kinesin and skeletal muscle myosin subfragment-1, no such intermolecular photo cross-linking by Bz(2)-epsilonATP was observed. Our results indicate that Bz(2)-epsilonATP acts unusually as a photoreactive crosslinker to detect conformational changes in K16MD induced by nucleotide binding resulting in the formation of dimers.  相似文献   

20.
The limited chymotryptic digestion of unphosphorylated gizzard myosin in 0.15 M NaCl converted a papain-insensitive myosin in ATP to a papain-sensitive one. This conversion without phosphorylation of its 20-kDa light chain was accompanied with truncation of a 200-kDa heavy chain to a 195-kDa fragment and with the degradation of a 20-kDa light chain. Papain also yielded the 195-kDa fragment from the heavy chain, irrespective of the presence or absence of ATP. However, the ATP-induced protection of unphosphorylated myosin from the papain-digestion disappeared concurrently with degradation of the 20-kDa light chain by papain rather than the truncation of heavy chain. Papers from two laboratories [Onishi, H. & Watanabe, S. (1984) J. Biochem. (Tokyo) 95, 903-905; Kumon, A., Yasuda, S., Murakami, N., and Matsumura, S. (1984) Eur. J. Biochem. 140, 265-271] have reported that the ATP-protection of unphosphorylated myosin against papain is not observed after the 20-kDa light chain has been phosphorylated. The present results might indicate that the ATP-induced protection is also abolished through the chymotryptic degradation of the 20-kDa light chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号