首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using Ca2+-selective microelectrodes, the concentration of free calcium ([Ca2+]) in the cytosol has been measured in root hair cells of Medicago sativa L. in the presence of nodulation (Nod) factors. Growing root hairs of M. sativa displayed a steep apical [Ca2+] gradient, i.e. 604–967 nM in the tip compared with 95–235 nM in the basal region. When tested within the first 5 to 10 μm of the tip, addition of NodRm-IV(C16:2,S) decreased the cytosolic [Ca2+], whereas an increase was observed when tested behind the tip. Overall, this led to a partial dissipation of the [Ca2+] gradient. The Ca2+ response was specific: it was equally well observed in the presence of NodRm-IV(Ac,C16:2,S), reduced with NodRm-IV(C16:0,S), but not with chitotetraose, the nonactive glucosamine backbone. In contrast to growing root hairs, non-growing root hairs without a tip-to-base cytosolic [Ca2+] gradient responded to NodRm-IV(C16:2,S) with an increase in cytosolic [Ca2+] at the tip as well as at the root hair base. We suggest that the response to Nod factors depends on the stage of development of the root hairs, and that changes in cytosolic [Ca2+] may play different roles in Nod-factor signaling: changes of cytosolic [Ca2+] in the apical part of the root hair may be related to root hair deformation, while the increase in [Ca2+] behind the tip may be essential for the amplification of the Nod signal, for its propagation and transduction to trigger downstream events. Received: 5 January 1999 / Accepted: 14 April 1999  相似文献   

2.
The role of ion fluxes in Nod factor signalling in Medicago sativa   总被引:4,自引:3,他引:1  
Using ion-selective microelectrodes, the basis of Nod factor-induced changes in the plasma membrane potential was analysed by measuring the extracellular free concentrations of Ca2+, K+, H+ and Cl in the root hair zone of alfalfa. After addition of the Rhizobium meliloti Nod factor NodRm-IV(C16:2,S) at a concentration of 0.1 μM, a decrease in [Ca2+] was observed first, which was followed after a few seconds by an increase of [Cl], by an alkalinization, and then by a delayed increase of [K+], all of which were transient changes. Simultaneously with the appearance of Cl ions in the root hair zone, a decrease in cytosolic [Cl] was measured. It was concluded that the depolarization was caused by temporary short-circuiting of the proton pump through the rapid release of Cl ions along their steep electrochemical gradient. Since under resting conditions the driving force for K+ ions was inwardly directed, their release was delayed until their driving force was inverted. This indicates that K+ serves as a charge balance that eventually stops depolarization and initiates repolarization. Since the decrease in [Ca2+] was observed seconds before the increase in [Cl] and the depolarization, it is argued that Ca2+ entering into the cell does not cause the depolarization directly, but might initiate it by triggering the activation of an anion channel that then releases the chloride ions. The observations that the Ca2+ ionophore A23187 mimicks the Nod factor response, and that the Ca2+ channel antagonist nifedipine inhibits this response, support the idea that Ca2+ plays a primary role in the transduction of the Nod signal in alfalfa.  相似文献   

3.
In this study, confocal ratio analysis was used to image the relationship between cytoplasmic free calcium concentration ([Ca2+]c) and the development of root hairs of Arabidopsis thaliana. Although a localized change in [Ca2+]c that preceded or predicted the site of root hair initiation could not be detected, once initiated the majority of emerging root hairs showed an elevated [Ca2+]c (>1 μM) in their apical cytoplasm, compared with 100– 200 nM in the rest of the cell. These emerging root hairs then moved into a 3–5 h phase of sustained elongation during which they showed variable growth rates. Root hairs that were rapidly elongating exhibited a highly localized, elevated [Ca2+]c at the tip. Non-growing root hairs did not exhibit the [Ca2+]c gradient. The rhd-2 mutant, which is defective in sustained root hair growth, showed an altered [Ca2+]c distribution compared with wild-type. These results implicate [Ca2+]c in regulating the tip growth process. Treatment of elongating wild-type root hairs with the Ca2+ channel blocker verapamil (50 μM) caused dissipation of the elevated [Ca2+]c at the tip and cessation of growth, suggesting a requirement for Ca2+ channel activity at the root hair tip to maintain growth. Manganese treatment also preferentially quenched Indo-1 fluorescence in the apical cytoplasm of the root hair. As manganese is thought to enter cells through Ca2+-permeable channels, this result also suggests increased Ca2+ channel activity at the tip of the growing hair. Taken together, these data suggest that although Ca2+ does not trigger the initiation of root hairs, Ca2+ influx at the tip of the root hair leads to an elevated [Ca2+]c that may be required to sustain root hair elongation.  相似文献   

4.
In many common legumes, when host-specific nodule bacteria meettheir legume root they attach to it and enter through root hairs.The bacteria can intrude these cells because they instigatein the hairs the formation of an inward growing tube, the infectionthread, which consists of wall material. Prior to infectionthread formation, the bacteria exploit the cell machinery forwall deposition by inducing the hairs to form a curl, in whichthe dividing bacteria become entrapped. In most species, Nodfactor alone (a lipochito-oligosaccharide excreted by bacteria)induces root hair deformation, though without curling, thusmost aspects of the initial effects of Nod factor can be elucidatedby studying root hair deformation. In this review we discussthe cellular events that host-specific Nod factors induce intheir host legume root hairs. The first event, detectable onlya few seconds after Nod factor application, is a Ca2+influxat the root hair tip, followed by a transient depolarizationof the plasma membrane potential, causing an increase in cytosolic[Ca2+] at the root hair tip. Also within minutes, Nod factorschange the cell organization by acting on the actin cytoskeleton,enhancing tip cell wall deposition so that root hairs becomelonger than normal for their species. Since the remodellingof the actin cytoskeleton precedes the second calcium event,Ca2+spiking, which is observed in the perinuclear area, we proposethat the initial cytoskeleton events taking place at the hairtip are related to Ca2+influx in the hair tip and that Ca2+spikingserves later events involving gene expression. Copyright 2001Annals of Botany Company Review, Nod factor, tip growth, root hair, Rhizobium, legume, cytoskeleton, calcium, symbiosis  相似文献   

5.
The magnitude and spatial localization of Ca2+, K+ and H+ fluxes in growing and non-growing Limnobium stoloniferum root hairs was determined using non-invasive, ion-selective vibrating microelectrodes. Both the spatial pattern and magnitude of the ionic flux was dependent on the particular ion in question. Both H+ and Ca2+ influx was localized almost exclusively to the tips of growing root hairs, suggesting that these fluxes may be involved in directing growth. Influx of K+ showed no distinct localization and uptake appeared uniform along the length of the root hair. Competitive inhibition of Ca2+ influx using a range of Mg+ concentrations indicated that the magnitude of the Ca2+ flux entering the root hair tip did not determine growth rate; however, the presence of Ca2+ on the external face of the membrane was implicit for root hair integrity. Aluminum proved to be a potent inhibitor of root hair growth. At an exogenous Al concentration of 20 M a complete blockage of Ca2+ influx into root hair tips was observed, suggesting that Al blockage of Ca2+ influx could be involved in Al toxicity. However, at a lower Al concentration (2 M), Ca2+ fluxes were unaffected while inhibition of growth was still observed along with a distinct swelling of the root hair tip. The swelling at the root hair tips was identical in appearance to that seen in the presence of microtubule inhibitors, suggesting that Al could influence a number of different sites at the plasma-membrane surface and within the cell. The possible role(s) of Ca2+ and H+ fluxes in directing tip growth are discussed.  相似文献   

6.
Orexins, novel excitatory neuropeptides from the lateral hypothalamus, have been strongly implicated in the regulation of sleep and wakefulness. In this study, we explored the effects and mechanisms of orexin A on intracellular free Ca2+ concentration ([Ca2+]i) of freshly dissociated neurons from layers V and VI in prefrontal cortex (PFC). Changes in [Ca2+]i were measured with fluo-4/AM using confocal laser scanning microscopy. The results revealed that application of orexin A (0.1 ≈1 μM) induced increase of [Ca2+]i in a dose-dependent manner. This elevation of [Ca2+]i was completely blocked by pretreatment with selective orexin receptor 1 antagonist SB 334867. While depletion of intracellular Ca2+ stores by the endoplasmic reticulum inhibitor thapsigargin (2 μM), [Ca2+]i in PFC neurons showed no increase in response to orexin A. Under extracellular Ca2+-free condition, orexin A failed to induce any changes of Ca2+ fluorescence intensity in these acutely dissociated cells. Our data further demonstrated that the orexin A-induced increase of [Ca2+]i was completely abolished by the inhibition of intracellular protein kinase C or phospholipase C activities using specific inhibitors, BIS II (1 μM) and D609 (10 μM), respectively. Selective blockade of L-type Ca2+ channels by nifedipine (5 μM) significantly suppressed the elevation of [Ca2+]i induced by orexin A. Therefore, these findings suggest that exposure to orexin A could induce increase of [Ca2+]i in neurons from deep layers of PFC, which depends on extracellular Ca2+ influx via L-type Ca2+ channels through activation of intracellular PLC-PKC signaling pathway by binding orexin receptor 1.  相似文献   

7.
The endothelin (ET) isoforms ET-1, ET-2 and ET-3 applied at 100 nM triggered a transient increase in [Ca2+]i in Bergmann glial cells in cerebellar slices acutely isolated from 20–25 day-old mice. The intracellular calcium concentration ([Ca2+]i) was monitored using Fura-2-based ([Ca2+]i) microfluorimetry. The ET-triggered ([Ca2+]i) transients were mimicked by ET, receptor agonist BO-3020 and were inhibited by ETB receptor antagonist BQ-788. ET elevated [Ca2+]i in Ca2+-free extracellular solution and the ET-triggered [Ca2+]i elevation was blocked by 500 nM thapsigargin indicating that the [Ca2+]i was released from InsP3 sensitive intracellular pools. The ET-triggered [Ca2+]i increase in Ca2+-free solution was shorter in duration. Restoration of normal extracellular [Ca2+] briefly after the ET application induced a second [Ca2+]i increase indicating the presence of a secondary Ca2+ influx which prolongs the Ca2+ signal. Pre-application of 100 μM ATP or 10 μM noradrenaline blocked the ET response suggesting the involvement of a common Ca2+ depot. The expression of ETB receptor mRNAs in Bergmann glial cells was revealed by single-cell RT-PCR. The mRNA was also found in Purkinje neurones, but no Ca2+ signalling was triggered by ET. We conclude that Bergmann glial cells are endowed with functional ETB receptors which induce the generation of intracellular [Ca2+]i signals by activation of Ca2+ release from InsP3-sensitive intracellular stores followed by a secondary Ca2+ influx.  相似文献   

8.
The role of calcium in salt toxicity   总被引:29,自引:11,他引:18  
Salt toxicity comprises osmotic and ionic components both of which can severely affect root and shoot growth. Uptake of Na+ across the plasma membrane is very fast resulting in physiological effects on extracellular as well as intracellular sites. Sodium reduces binding of Ca2+ to the plasma membrane, inhibits influx while increasing efflux of Ca2+, and depletes the internal stores of Ca2+ from endomembranes. These changes in the cell Ca2+ homeostasis are suggested here to be the primary responses to salt stress that are perceived by root cells. Salt would almost instantly reduce the amount of Ca2+ being transferred to the leaf cells, with Ca2+ activity dropping and Na+ activity rising in the apoplasm of leaf cells. This Ca2+ signal would be transported to leaves together with, if not preceding, the signal of limited water supply. Hormonal signals are likely to be secondary in nature and caused by the Na+-related disturbance of the root cell Ca2+ homeostasis. Ameliorative effects of supplemental Ca2+ on salt stress are exerted through preventing Na+-related changes in the cell Ca2+ homeostasis.  相似文献   

9.
Hydrogen peroxide is the most stable of the reactive oxygen species (ROS) and is a regulator of development, immunity and adaptation to stress. It frequently acts by elevating cytosolic free Ca2+ ([Ca2+]cyt) as a second messenger, with activation of plasma membrane Ca2+‐permeable influx channels as a fundamental part of this process. At the genetic level, to date only the Ca2+‐permeable Stelar K+ Outward Rectifier (SKOR) channel has been identified as being responsive to hydrogen peroxide. We show here that the ROS‐regulated Ca2+ transport protein Annexin 1 in Arabidopsis thaliana (AtANN1) is involved in regulating the root epidermal [Ca2+]cyt response to stress levels of extracellular hydrogen peroxide. Peroxide‐stimulated [Ca2+]cyt elevation (determined using aequorin luminometry) was aberrant in roots and root epidermal protoplasts of the Atann1 knockout mutant. Similarly, peroxide‐stimulated net Ca2+ influx and K+ efflux were aberrant in Atann1 root mature epidermis, determined using extracellular vibrating ion‐selective microelectrodes. Peroxide induction of GSTU1 (Glutathione‐S‐Transferase1 Tau 1), which is known to be [Ca2+]cyt‐dependent was impaired in mutant roots, consistent with a lesion in signalling. Expression of AtANN1 in roots was suppressed by peroxide, consistent with the need to restrict further Ca2+ influx. Differential regulation of annexin expression was evident, with AtANN2 down‐regulation but up‐regulation of AtANN3 and AtANN4. Overall the results point to involvement of AtANN1 in shaping the root peroxide‐induced [Ca2+]cyt signature and downstream signalling.  相似文献   

10.
Abstract: Rilmenidine, a ligand for imidazoline and α2-adrenergic receptors, is neuroprotective following focal cerebral ischemia. We investigated the effects of rilmenidine on cytosolic free Ca2+ concentration ([Ca2+]i) in rat astrocytes. Rilmenidine caused concentration-dependent elevation of [Ca2+]i, consisting of a transient increase (1–100 µM rilmenidine) or a transient increase followed by sustained elevation above basal levels (1–10 mM rilmenidine). A similar elevation in [Ca2+]i was induced by the imidazoline ligand cirazoline. The transient response to rilmenidine was observed in Ca2+-free medium, indicating that rilmenidine evokes release of Ca2+ from intracellular stores. However, the sustained elevation of Ca2+ was completely dependent on extracellular Ca2+, consistent with rilmenidine activating Ca2+ influx.Pretreatment with thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, abolished the response to rilmenidine, confirming the involvement of intracellular stores and suggesting that rilmenidine and thapsigargin activate a common Ca2+ influx pathway. The α2-adrenergic antagonist rauwolscine attenuated the increase in [Ca2+]i induced by clonidine (a selective α2 agonist), but not the response to rilmenidine. These results indicate that rilmenidine stimulates both Ca2+ release from intracellular stores and Ca2+ influx by a mechanism independent of α2-adrenergic receptors. In vivo, rilmenidine may enhance uptake of Ca2+ from the extracellular fluid by astrocytes, a process that may contribute to the neuroprotective effects of this agent.  相似文献   

11.
The role of Ca2+ in the human sperm acrosome reaction was investigated using the fluorescent calcium indicator fura-2. Previous experiments have shown that a Sephadex G-75 column fraction of human follicular fluid can stimulate the human sperm acrosome reaction [Suarez SS, Wolf DP, Meizel S (1986): Gamete Res 14:107–121]. Using fura-2, we demonstrated that this Sephadex G-75 fraction also stimulates a rapid, transient increase in intracellular free Ca2+. This Ca2+ transient is blocked either by chelation of extracellular calcium or by addition of the Ca2+ antagonist La3+. We have also been able to stimulate the acrosome reaction in human sperm without significant loss of motility, using the divalent cation ionophore ionomycin. Acrosome reactions stimulated by whole follicular fluid, the G-75 fraction, or ionomycin are all blocked by removal of extracellular Ca2+. These results strongly suggest that an influx of extracellular Ca2+ is responsible for intiating the acrosome reaction in human sperm treated with human follicular fluid. This is the first demonstration in mammalian sperm that a potentially physiological stimulus can cause an increase in intracellular Ca2+ concomitant with the acrosome reaction.  相似文献   

12.
There is evidence to suggest that cell injury induced in alveolar macrophages (AM) following phagocytic activation by silica particles may be mediated through changes in intracellular free calcium [Ca2+]i. However, the mechanism of silica- induced cytotoxicity relative to [Ca2+]i overloading is not yet clear. To provide a better insight into this mechanism, isolated rat AMs were exposed to varying concentrations of crystalline silica (particle size < 5 μm in diameter) and the fluctuation in their [Ca2+]i and cell integrity were quantitatively monitored with the fluorescent calcium probe, Fura-2 AM, and the membrane integrity indicator, propidium iodide (PI). Results from this study indicate that silica can rapidly increase [Ca2+]i in a dose-dependent manner with a characteristic transient calcium rise at low doses (<0.1 mg/ml) and an elevated and sustained rise at high doses (>0.1 mg/ml). Depletion of extracellular calcium [Ca2+]o markedly inhibited the [Ca2+]i rise (≈90%), suggesting that Ca2+ influx from extracellular source is a major mechanism for silica-induced [Ca2+]i rise. When used at low doses but sufficient to cause a transient [Ca2+]i rise, silica did not cause significant increase in cellular PI uptake during the time of study, suggesting the presevation of membrane integrity of AMs under these conditions. At high doses of silica, however, a marked increase in PI nuclear fluorescence was observed. Depletion of [Ca2+]o greatly inhibited cellular PI uptake, induced by 0.1 mg/ml or higher doses of silica. This suggests that Ca2+ influx, as a result of silica activation, is associated with cell injury. Indeed, our results further demonstrated that the low dose effect of silica on Ca2+ influx is inhibited by the Ca2+ channel blocker nifedipine. At high doses of silica (>0.1 mg/ml), cell injury was not prevented by nifedipine or extracellular Ca2+ depletion, suggesting that other cytotoxic mechanisms, i.e., nonspecific membrane damage due to lipid peroxidation, are also responsible for the silica-induced cell injury. Silica had no significant effect on cellular ATP content during the time course of the study, indicating that the observed silica-induced [Ca2+]i rise was not due to the impairment of Ca2+-pumps, which restricts Ca2+ efflux. Pretreatment of the cells with cytochalasin B to block phagocytosis failed to prevent the effect of silica on [Ca2+]i rise. Taken together, these results suggest that the elevation of [Ca2+]i caused by silica is due mainly to Ca2+ influx through plasma membrane Ca2+ channels and nonspecific membrane damage (at high doses). Neither ATP depletion nor Ca2+ leakage during phagocytosis was attributed to the silica-induced [Ca2+]i rise. © 1993 Wiley-Liss, Inc.  相似文献   

13.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 μM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+ fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hype rpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca2+-ATPase of endoplasmic reticulum and by affecting Ca2+-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-resol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin.  相似文献   

14.
The correlation between an increased production of reactive oxygen species (ROS) and an enhanced calcium entry in primed neutrophils stimulated with fMLP suggests that endogenous ROS could serve as an agonist to reinforce calcium signaling by positive feedback. This work shows that exogenous H2O2 produced a rapid influx of Mn2+ and an increase of intracellular calcium. The H2O2 was insufficient to produce significant changes in the absence of extracellular calcium but addition of Ca2+ to H2O2-treated cells suspended in a free Ca2+/EGTA buffer resulted in a great increase in [Ca2+]i reflecting influx of Ca2+ across the cell membrane. The increase of intracellular calcium was inhibited by Ni2+, La3+, and hyperosmotic solutions of mannitol and other osmolytes. This raises the possibility that the secretion of H2O2 by activated neutrophils could act as an autocrine regulator of neutrophil function through the activation of calcium entry.  相似文献   

15.
This study describes the mechanisms involved in the IGF-1 and IGF-2-induced increases in intracellular calcium concentration [Ca2+]i in cultured chondrocytes and the involvement of type 1 IGF receptors. It shows that IGF-1, IGF-2, and insulin increased the cytosolic free calcium concentration [Ca2+]i in a dose-dependent manner, with a plateau from 25 to 100 ng/ml for both IGF-1 and IGF-2 and from 1 to 2 μg/ml for insulin. The effect of IGF-1 was twice as great as the one of IGF-2, and the effect of insulin was 40% lower than IGF-1 effect. Two different mechanisms are involved in the intracellular [Ca2+]i increase. 1) IGF-1 and insulin but not IGF-2 involved a Ca2+ influx through voltage-gated calcium channels: pretreatment of the cells by EGTA and verapamil diminished the IGF-1 or insulin-induced[Ca2+]i but did not block the effect of IGF-2.2)IGF-1, IGF-2, and insulin also induced a Ca2+ mobilization from the endoplasmic reticulum: phospholipase C (PLC) inhihitors, neomycin, or U-73122 partially blocked the intracellular [Ca2+]i increase induced by IGF-1 and insulin and totally inhibited the effect of IGF-2. This Ca2+ mobilization was pertussis toxin (PTX) dependent, suggesting an activation of a PLC coupled to a PTX-sensitive G-protein. Lastly, preincubation of the cells with IGF1 receptor antibodies diminished the IGF-1-induced Ca2+ spike and totally abolished the Ca2+ influx, but did not modify the effect of IGF-2. These results suggest that IGF-1 action on Ca2+ influx involves the IGF1 receptor, while part of IGF-1 and all of IGF-2 Ca2+ mobilization do not implicate this receptor. J. Cell. Biochem. 64:414–422. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Caffeine increases intracellular Ca2+ concentrations ([Ca2+]i) in a variety of cell types by triggering the mobilization of Ca2+ from intracellular Ca2+ stores. Caffeine also can change [Ca2+]i by affecting Ca2+ influx through voltage-operated Ca2+ channels (VOCCs). In the present study, we investigated the effects of caffeine on Ca2+ entry in GH4C1 pituitary cells. Pretreatment of the cells with caffeine attenuated the high K+-evoked influx of 45Ca2+ in a dose-dependent manner. This inhibition was not secondary to the caffeine-evoked elevation of [Ca2+]i because caffeine was able to inhibit VOCCs also in the presence of the intracellular Ca2+ chelator BAPTA. However, the inhibitory effect of caffeine on 45Ca2+ entry appeared to be dependent on the degree of depolarization of the plasma membrane. Only in cells depolarized with relatively high concentrations of K+ (20, 35, and 50 mM) was the caffeine-induced inhibition observed. A similar inhibitory effect of caffeine on the high K+-evoked calcium and barium entry was observed in experiments using Fura 2. Neither IBMX, forskolin nor dibutyryl cAMP reduced the enhanced [Ca2+]i induced by 50 mM K+, suggesting that the effect of caffeine was not due to increased intracellular cAMP. Furthermore, high doses of caffeine inhibited the plateau level of the TRH-induced increase in [Ca2+]i, which is caused partly by influx of Ca2+ through VOCCs. The inhibitory effect of caffeine was, in part, due to an hyperpolarization of the plasma membrane observed at high doses of caffeine. On the other hand, low doses of caffeine enhanced depolarization-evoked Ba2+ entry as well as the TRH-evoked plateau level of [Ca2+]i. We conclude that caffeine has a dual effect on Ca2+ entry through activated VOCCs in GH4C1 cells: at low concentrations caffeine enhances Ca2+ entry, whereas high concentrations of caffeine block Ca2+ entry. J. Cell. Physiol. 171:52–60, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Although pulsed electromagnetic field (PEMF) exposure has been reported to promote neuronal differentiation, the mechanism is still unclear. Here, we aimed to examine the effects of PEMF exposure on brain-derived neurotrophic factor (Bdnf) mRNA expression and the correlation between the intracellular free calcium concentration ([Ca2+]i) and Bdnf mRNA expression in cultured dorsal root ganglion neurons (DRGNs). Exposure to 50 Hz and 1 mT PEMF for 2 h increased the level of [Ca2+]i and Bdnf mRNA expression, which was found to be mediated by increased [Ca2+]i from Ca2+ influx through L-type voltage-gated calcium channels (VGCCs). However, calcium mobilization was not involved in the increased [Ca2+]i and BDNF expression, indicating that calcium influx was one of the key factors responding to PEMF exposure. Moreover, PD098059, an extracellular signal-regulated kinase (Erk) inhibitor, strongly inhibited PEMF-dependant Erk1/2 activation and BDNF expression, indicating that Erk activation is required for PEMF-induced upregulation of BDNF expression. These findings indicated that PEMF exposure increased BDNF expression in DRGNs by activating Ca2+- and Erk-dependent signaling pathways.  相似文献   

18.
Rat submandibular glands were digested with crude collagenase, and the intracellular calcium concentration of the cellular suspension was measured using fura-2. In the absence of extracellular magnesium and calcium ([Ca2+]o), ATP had no effect; the response to ATP peaked at 1–2.5 mM [Ca2+]o and was inhibited at 5 mM. One millimolar (mM) extracellular ATP did not increase the leak of LDH or fura-2; 10 m?M Coomassie brilliant blue G specifically inhibited the effect of ATP on [Ca2+]in. Depleting intracellular calcium pools with thapsigargin did not affect the response to ATP. Using a Ca2+-free/Ca2+ reintroduction protocol, it was shown that ATP and thapsigargin increase the uptake of extracellular calcium. The effect of the two agonists was synergistic. Removal of extracellular sodium inhibited the effect of carbachol on [Ca2+]in and the calcium uptake but potentiated the response to ATP. These results suggest that, after binding to purinergic receptors, extracellular ATP4- increases [Ca2+]in. ATP4- does not mobilize thapsigargin-sensitive intracellular calcium pools (among which is the IP3-sensitive calcium pool) but stimulates the uptake of extracellular calcium by a mechanism inhibited by extracellular sodium, probably by opening a nonselective cation channel. © 1994 Wiley-Liss, Inc.  相似文献   

19.
K. R. Robinson 《Planta》1977,136(2):153-158
The effect of external calcium and sodium ion concentrations on the calcium fluxes on the Pelvetia fastigiata De Toni egg was measured. Decreasing external [Ca2+] greatly increased the permeability of the eggs to Ca2+; at 1 mM external Ca2+ this permeability was 60 times as great as it was at the normal [Ca2+] of 10 mM. Lowering the external [Na+] also increased Ca2+ influx; at 2 mM Na+, the Ca2+ influx was 2–3 times as great as it was at the normal [Na+] if choline was used as a Na+ substitute. Lithium was less effective as a Na+ substitute in increasing Ca2+ influx. The extra Ca2+ influx in low [Na+] seemed to be dependent on internal [Na+]. The Ca2+ efflux increased transiently and then declined in low Na+ media.  相似文献   

20.
Plant cell growth and stress signaling require Ca2+ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH. In root cells, extracellular OH activates a plasma membrane Ca2+-permeable conductance that permits Ca2+ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca2+-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH-activated Ca2+- and K+-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca2+ in response to OH. An OH-activated Ca2+ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca2+-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca2+ in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号