首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Reperfusion of ischemic tissues results in development of a proinflammatory, prothrombogenic phenotype, culminating in the recruitment of leukocytes and platelets within postcapillary venules. Recent studies have indicated an interdependence of platelet and leukocyte adhesion, suggesting that heterotypic blood cell interactions may account for postischemic platelet recruitment. The objectives of this study were to 1) determine whether ischemia-reperfusion (I/R)-induced platelet recruitment is leukocyte dependent and 2) quantify the contributions of leukocytes and endothelial cells in this platelet recruitment. Intravital microscopy was used to monitor the recruitment of fluorescently labeled platelets in postcapillary venules of the small intestine after 45-min ischemia and 4-h reperfusion. To assess the leukocyte dependence of platelet adhesion, platelets from wild-type mice were infused into mice deficient in neutrophils and/or lymphocytes and mice deficient in key leukocyte adhesion molecules (CD18 and ICAM-1). These antileukocyte strategies resulted in significantly reduced platelet recruitment. Simultaneous visualization of platelets and leukocytes enabled quantification of leukocyte-dependent and endothelium-dependent platelet adhesion. It was observed that in wild-type animals 74% of I/R-induced platelet adhesion was a result of platelet-leukocyte interactions. Although the majority of adherent platelets were associated with leukocytes, <50% of adherent leukocytes were platelet bearing, suggesting that not all adherent leukocytes support platelet adhesion. These results are consistent with leukocytes playing a major role in supporting I/R-induced platelet adhesion.  相似文献   

2.
Role of CD44 and hyaluronan in neutrophil recruitment   总被引:7,自引:0,他引:7  
Lymphocyte CD44 interactions with hyaluronan localized on the endothelium have been demonstrated to mediate rolling and regulate lymphocyte entry into sites of chronic inflammation. Because neutrophils also express CD44, we investigated the role of CD44 and hyaluronan in the multistep process of neutrophil recruitment. CD44(-/-) and wild-type control mice were intrascrotally injected with the neutrophil-activating chemokine, MIP-2, and leukocyte kinetics in the cremasteric microcirculation were investigated 4 h subsequently using intravital microscopy. Neither the rolling flux nor the rolling velocities were decreased in CD44(-/-) mice relative to wild-type mice. In vitro, neutrophils did not roll on the CD44 ligand hyaluronan, consistent with the in vivo data that CD44/hyaluronan did not mediate rolling. However, the number of adherent leukocytes in the venule was decreased by 65% in CD44(-/-) mice compared with wild-type mice. Leukocyte emigration was also greatly decreased in the CD44(-/-) mice. The same decrease in adhesion and emigration was observed in the wild-type mice given hyaluronidase. Histology revealed neutrophils as being the dominant infiltrating population. We generated chimeric mice that express CD44 either on their leukocytes or on their endothelium and found that CD44 on both the endothelium and neutrophils was important for optimal leukocyte recruitment into tissues. Of those neutrophils that emigrated in wild-type and CD44(-/-) mice, there was no impairment in migration through the interstitium. This study suggests that CD44 can mediate some neutrophil adhesion and emigration, but does not appear to affect subsequent migration within tissues.  相似文献   

3.
Our objective was to test the hypothesis that endothelial selectins, P and E selectins, are necessary for leukocyte migration after muscle injury from unloading/reloading. Mice hindlimbs were suspended for 10 days followed by reloading periods of 6 or 24 h after which the soleus muscle was dissected. Light microscopic observations showed that macrophages, but not neutrophils, were able to invade soleus muscles in mice deficient in P/E selectins (P/E-/-) during reloading periods. The recruitment efficiency of neutrophils after 6 and 24 h of reloading was minimal in P/E-/- mice relative to unloaded animals. The recruitment of macrophages in the soleus muscle was preserved in P/E-/- mice. The concentration of macrophages increased by 8.1-fold compared with unloaded muscles in double-mutant mice after 24 h of reloading. The accumulation of macrophages in reloaded muscles did not lead to fiber necrosis. Together, these findings indicate that macrophages can invade skeletal muscle through cellular mechanisms that do not involve P/E selectins during skeletal muscle reloading.  相似文献   

4.
Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration.   总被引:29,自引:0,他引:29  
To differentiate the unique and overlapping functions of LFA-1 and Mac-1, LFA-1-deficient mice were developed by targeted homologous recombination in embryonic stem cells, and neutrophil function was compared in vitro and in vivo with Mac-1-deficient, CD18-deficient, and wild-type mice. LFA-1-deficient mice exhibit leukocytosis but do not develop spontaneous infections, in contrast to CD18-deficient mice. After zymosan-activated serum stimulation, LFA-1-deficient neutrophils demonstrated activation, evidenced by up-regulation of surface Mac-1, but did not show increased adhesion to purified ICAM-1 or endothelial cells, similar to CD18-deficient neutrophils. Adhesion of Mac-1-deficient neutrophils significantly increased with stimulation, although adhesion was lower than for wild-type neutrophils. Evaluation of the strength of adhesion through LFA-1, Mac-1, and CD18 indicated a marked reduction in firm attachment, with increasing shear stress in LFA-1-deficient neutrophils, similar to CD18-deficient neutrophils, and only a modest reduction in Mac-1-deficient neutrophils. Leukocyte influx in a subcutaneous air pouch in response to TNF-alpha was reduced by 67% and 59% in LFA-1- and CD18-deficient mice but increased by 198% in Mac-1-deficient mice. Genetic deficiencies demonstrate that both LFA-1 and Mac-1 contribute to adhesion of neutrophils to endothelial cells and ICAM-1, but adhesion through LFA-1 overshadows the contribution from Mac-1. Neutrophil extravasation in response to TNF-alpha in LFA-1-deficient mice dramatically decreased, whereas neutrophil extravasation in Mac-1-deficient mice markedly increased.  相似文献   

5.
There is controversy in the literature over whether nitric oxide (NO) released during the inflammatory process has a pro- or inhibitory effect on neutrophil migration. The aim of the present investigation was to clarify this situation. Treatment of rats with non-selective, NG-nitro-L-arginine (nitro), or selective inducible NO synthase (iNOS), aminoguanidine (amino) inhibitors enhanced neutrophil migration 6h after the administration of low, but not high, doses of carrageenan (Cg) or Escherichia coli endotoxin (LPS). The neutrophil migration induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) was also enhanced by nitro or amino treatments. The enhancement of Cg-induced neutrophil migration by NOS inhibitor treatments was reversed by co-treatment with L-arginine, suggesting an involvement of the L-arginine/NOS pathway in the process. The administration of Cg in iNOS deficient (iNOS(-/-)) mice also enhanced the neutrophil migration compared with wild type mice. This enhancement was markedly potentiated by treatment of iNOS(-/-) mice with nitro. Investigating the mechanisms by which NOS inhibitors enhanced the neutrophil migration, it was observed that they promoted an increase in Cg-induced rolling and adhesion of leukocytes to endothelium and blocked the apoptosis of emigrated neutrophils. Similar results were observed in iNOS(-/-) mice, in which these mechanisms were potentiated and reverted by nitro and L-arginine treatments, respectively. In conclusion, these results suggest that during inflammation, NO released by either constitutive NOS (cNOS) or iNOS down-modulates the neutrophil migration. This NO effect seems to be a consequence of decreased rolling and adhesion of the neutrophils on endothelium and also the induction of apoptosis in migrated neutrophils.  相似文献   

6.
Pulmonary eosinophilia is one of the most consistent hallmarks of asthma. Infiltration of eosinophils into the lung in experimental asthma is dependent on the adhesion molecule vascular cell adhesion molecule-1 (VCAM-1) on endothelial cells. Ligation of VCAM-1 activates endothelial cell NADPH oxidase, which is required for VCAM-1-dependent leukocyte migration in vitro. To examine whether endothelial-derived NADPH oxidase modulates eosinophil recruitment in vivo, mice deficient in NADPH oxidase (CYBB mice) were irradiated and received wild-type hematopoietic cells to generate chimeric CYBB mice. In response to ovalbumin (OVA) challenge, the chimeric CYBB mice had increased numbers of eosinophils bound to the endothelium as well as reduced eosinophilia in the lung tissue and bronchoalveolar lavage. This occurred independent of changes in VCAM-1 expression, cytokine/chemokine levels (IL-5, IL-10, IL-13, IFNgamma, or eotaxin), or numbers of T cells, neutrophils, or mononuclear cells in the lavage fluids or lung tissue of OVA-challenged mice. Importantly, the OVA-challenged chimeric CYBB mice had reduced airway hyperresponsiveness (AHR). The AHR in OVA-challenged chimeric CYBB mice was restored by bypassing the endothelium with intratracheal administration of eosinophils. These data suggest that VCAM-1 induction of NADPH oxidase in the endothelium is necessary for the eosinophil recruitment during allergic inflammation. Moreover, these studies provide a basis for targeting VCAM-1-dependent signaling pathways in asthma therapies.  相似文献   

7.
P-selectin and intercellular adhesion molecule-1 (ICAM-1) mediate early interaction and adhesion of neutrophils to coronary endothelial cells and myocytes after myocardial ischemia and reperfusion. In the present study, we examined the physiological consequences of genetic deletions of ICAM-1 and P-selectin in mice. In wild-type mice, after 1 h of ischemia followed by reperfusion, neutrophil influx into the area of ischemia was increased by 3 h with a peak at 24 h and a decline by 72 h. ICAM-1/P-selectin-deficient mice showed a significant reduction in neutrophils by immunohistochemistry or by myeloperoxidase activity at 24 h but no significant difference at 3 h. Infarct size (area of necrosis/area at risk) assessed 24 h after reperfusion was not different between wild-type and deficient mice after 30 min and 1 h of occlusion. Mice with a deficiency in both ICAM-1 and P-selectin have impaired neutrophil trafficking without a difference in infarct size due to myocardial ischemia-reperfusion.  相似文献   

8.
The mechanisms that facilitate remodeling of the cervix in preparation for and during parturition remain poorly understood. In the current study, we have evaluated the timing of inflammatory cell migration in cervix through comparisons between wild-type mice and steroid 5alpha-reductase type 1 null mice (Srd5a1-/-), which fail to undergo cervical ripening due to insufficient local progesterone metabolism. The timing of migration and distribution of macrophages, monocytes, and neutrophils were examined using cervices from wild-type and Srd5a1-/- mice before Day 15 (d15) and during cervical ripening (late d18), and postpartum (d19). Neutrophil numbers were quantitated by cell counts and activity was estimated by measurement of myeloperoxidase activity. The mRNA and/or protein expression of neutrophil chemoattractants, CXCL2 and CXCL1, and other proinflammatory and adhesion molecules, including IL1A, IL1B, TNF, CCL11, CCL5, CCL3, ITGAM, and ICAM1, were measured in cervices collected before, during, and after birth. The effect of neutrophil depletion on parturition was tested. Tissue macrophages, myeloperoxidase activity, and expression of proinflammatory molecules are not increased within the cervix until after birth. Neutrophil numbers do not change after birth and neutrophil depletion before term has no effect on timing or success of parturition. These results suggest that cervical ripening does not require neutrophils. Moreover, neutrophil activation and a general inflammatory response are not initiated within the cervix until shortly after parturition. The timing of inflammatory cell migration and activation in pregnant cervix suggest a role for these cells in postpartum remodeling of the cervix rather than in the initiation of cervical ripening at parturition.  相似文献   

9.
Intraperitoneally administered chondroitin sulfate E inhibited the development of antibody-induced arthritis, a model of rheumatoid arthritis, while chondroitin 4-sulfate showed no effects. Chondroitin sulfate E inhibited in vitro differentiation of osteoclasts, which play key roles in the etiology of rheumatoid arthritis. One of the targets of chondroitin sulfate E is midkine, a heparin-binding growth factor or cytokine. Indeed, a chimeric-type siRNA for midkine inhibited the development of antibody-induced arthritis and adhesion of the omentum to the injured abdominal wall. These results indicate the significance of midkine as a molecular target to treat or prevent rheumatoid arthritis and adhesion after surgery, and the utility of chondroitin sulfate E to inhibit midkine in vivo.  相似文献   

10.
The Ig-like receptor family member, PIR-B, has been shown to play an inhibitory role in receptor signaling within B cells, mast cells, and dendritic cells. As it has been implicated in integrin-mediated responses, we investigated the effect of loss of the PIR-B protein on integrin-mediated signaling in primary murine myeloid cells. The pir-b-/- neutrophils displayed enhanced respiratory burst, secondary granule release, and a hyperadhesive phenotype when plated on surfaces coated with either extracellular matrix proteins or cellular adhesion molecules in the presence or absence of the soluble inflammatory agonist TNF-alpha. The pir-b-/- and wild-type cells responded equivalently when stimulated with TNF-alpha in suspension, indicating that the hyperresponsive phenotype of the pir-b-/- cells during adhesion was due to enhanced integrin signaling. Both wild-type and pir-b-/- neutrophils expressed similar levels of integrin subunits. Primary bone marrow-derived macrophages from pir-b-/- mice were also hyperadhesive and spread more rapidly than wild-type cells following plating on surfaces that cross-linked cellular beta2 integrins. Biochemical analysis of macrophages from pir-b-/- mice revealed enhanced phosphorylation and activation of proteins involved in integrin signaling. These observations point to a nonredundant role for PIR-B in the regulation of leukocyte integrin signaling.  相似文献   

11.
Midkine (MK) is a multifunctional heparin-binding protein and promotes migration of neutrophils, macrophages, and neurons. In the normal mouse kidney, MK is expressed in the proximal tubules. After renal ischemic reperfusion injury, its expression in proximal tubules was increased. Immediate increase of MK expression was found when renal proximal tubular epithelial cells in culture were exposed to 5 mM H(2)O(2). Histologically defined tubulointerstitial damage was less severe in MK-deficient (Mdk(-/-)) than in wild-type (Mdk(+/+)) mice at 2 and 7 days after ischemic reperfusion injury. Within 2 days after ischemic injury, inflammatory leukocytes, of which neutrophils were the major population, were recruited to the tubulointerstitium. The numbers of infiltrating neutrophils and also macrophages were lower in Mdk(-/-) than in Mdk(+/+) mice. Induction of macrophage inflammatory protein-2 and macrophage chemotactic protein-1, chemokines for neutrophils and macrophages, respectively, were also suppressed in Mdk(-/-) mice. Furthermore, renal tubular epithelial cells in culture expressed macrophage inflammatory protein-2 in response to exogenous MK administration. These results suggested that MK enhances migration of inflammatory cells upon ischemic injury of the kidney directly and also through induction of chemokines, and contributes to the augmentation of ischemic tissue damage.  相似文献   

12.
We studied the mechanisms underlying the severely impaired wound healing associated with human leukocyte-adhesion deficiency syndrome-1 (LAD1) using a murine disease model. In CD18(-/-) mice, healing of full-thickness wounds was severely delayed during granulation-tissue contraction, a phase where myofibroblasts play a major role. Interestingly, expression levels of myofibroblast markers alpha-smooth muscle actin and ED-A fibronectin were substantially reduced in wounds of CD18(-/-) mice, suggesting an impaired myofibroblast differentiation. TGF-beta signalling was clearly involved since TGF-beta1 and TGF-beta receptor type-II protein levels were decreased, while TGF-beta(1) injections into wound margins fully re-established wound closure. Since, in CD18(-/-) mice, defective migration leads to a severe reduction of neutrophils in wounds, infiltrating macrophages might not phagocytose apoptotic CD18(-/-) neutrophils. Macrophages would thus be lacking their main stimulus to secrete TGF-beta1. Indeed, in neutrophil-macrophage cocultures, lack of CD18 on either cell type leads to dramatically reduced TGF-beta1 release by macrophages due to defective adhesion to, and subsequent impaired phagocytic clearance of, neutrophils. Our data demonstrates that the paracrine secretion of growth factors is essential for cellular differentiation in wound healing.  相似文献   

13.
Beta2-integrins contribute to skeletal muscle hypertrophy in mice   总被引:1,自引:0,他引:1  
We tested the contribution of β2-integrins, which are important for normal function of neutrophils and macrophages, to skeletal muscle hypertrophy after mechanical loading. Using the synergist ablation model of hypertrophy and mice deficient in the common β-subunit of β2-integrins (CD18–/–), we found that overloaded muscles of wild-type mice had greater myofiber size, dry muscle mass, and total protein content compared with CD18–/– mice. The hypertrophy in wild-type mice was preceded by elevations in neutrophils, macrophages, satellite cell/myoblast proliferation (5'-bromo-2'-deoxyuridine- and desmin-positive cells), markers of muscle differentiation (MyoD1 and myogenin gene expression and formation and size of regenerating myofibers), signaling for protein synthesis [phosphorylation of Akt and 70-kDa ribosomal protein S6 kinase (p70S6k)], and reduced signaling for protein degradation (decreased gene expression of muscle atrophy F box/atrogin-1). The deficiency in β2-integrins, however, altered the accumulation profile of neutrophils and macrophages, disrupted the temporal profile of satellite cell/myoblast proliferation, reduced the markers of muscle differentiation, and impaired the p70S6k signaling, all of which could serve as mechanisms for the impaired hypertrophy in overloaded CD18–/– mice. In conclusion, our findings indicate that β2-integrins contribute to the hypertrophic response to muscle overload by temporally regulating satellite cells/myoblast proliferation and by enhancing muscle differentiation and p70S6k signaling. skeletal muscle growth; neutrophils; macrophages; compensatory hypertrophy  相似文献   

14.
RhoB affects macrophage adhesion, integrin expression and migration   总被引:1,自引:0,他引:1  
Rho GTPases regulate multiple cellular responses, including cell motility and cell cycle progression. The Rho isoform RhoB represses transformation and affects endosomal trafficking, but its effects on cell adhesion and migration have not been investigated in detail. Here we show that RhoB-null macrophages are more rounded than wild-type macrophages on fibronectin and uncoated glass, and have reduced adhesion to ICAM-1 and glass but not fibronectin. This correlated with lower cell surface expression of beta2 and beta3 integrins but not beta1 integrin. RhoB-null cells migrated faster than Wt cells on fibronectin, consistent with their smaller spread area, but slower than Wt cells on glass, reflecting their reduced adhesion. C3 transferase, which inhibits RhoA, RhoB and RhoC, induced cell spreading but this effect was reduced in RhoB-null cells. However, RhoB is not required for assembly of podosomes, which are integrin-based adhesion sites, whereas C3 transferase induced a decrease in podosomes and defects in tail retraction. Since macrophages do not express RhoC, these effects of C3 transferase are due to inhibition of RhoA rather than RhoB. Our results suggest that RhoB affects cell shape and migration by regulating surface integrin levels.  相似文献   

15.
P- and E-selectin mediate CD4+ Th1 cell migration into the inflamed skin in a murine contact hypersensitivity model. In this model, not only CD4+ T cells but also CD8+ T cells infiltrate the inflamed skin, and the role of CD8+ type 1 cytotoxic T (Tc1) cells as effector cells has been demonstrated. Here we show that in mice deficient in both P- and E-selectin, the infiltration of CD8+ T cells in the inflamed skin is reduced, suggesting the role of these selectins in CD8+ T cell migration. We directly studied the role of selectins using in vitro-generated Tc1 cells. These cells are able to migrate into the inflamed skin of wild-type mice. This migration is partially mediated by P- and E-selectin, as shown by the reduced Tc1 cell migration into the inflamed skin of mice deficient in both P- and E-selectin or wild-type mice treated with the combination of anti-P-selectin and anti-E-selectin Abs. During P- and E-selectin-mediated migration of Tc1 cells, P-selectin glycoprotein ligand-1 appears to be the sole ligand for P-selectin and one of the ligands for E-selectin. P- and E-selectin-independent migration of Tc1 cells into the inflamed skin was predominantly mediated by L-selectin. These observations indicate that all three selectins can mediate Tc1 cell migration into the inflamed skin.  相似文献   

16.
Selectin family members largely mediate initial tethering and rolling of leukocytes on vascular endothelium, whereas integrin and Ig family members are essential for leukocyte firm adhesion. To quantify functional synergy between L-selectin and Ig family members during leukocyte rolling, the EA.hy926 human vascular endothelial line was transfected with either fucosyltransferase VII (926-FtVII) cDNA to generate L-selectin ligands alone or together with ICAM-1 cDNA (926-FtVII/ICAM-1). The ability of transfected 926 cells to support human leukocyte interactions was assessed in vitro using parallel plate flow chamber assays. Lymphocyte rolling on 926-FtVII cells was increased by approximately 70% when ICAM-1 was expressed at physiological levels. Although initial tether formation was similar for both cell types, lymphocyte rolling was 26% slower on 926-FtVII/ICAM-1 cells. Pretreatment of lymphocytes with an anti-CD18 mAb eliminated the increase in rolling, and all rolling was blocked by anti-L-selectin mAb. In addition, rolling velocities of lymphocytes from CD18-hypomorphic mice were 48% faster on 926-FtVII/ICAM-1 cells, with a similar reduction in rolling frequency relative to wild-type lymphocytes. CD18-hypomorphic lymphocytes also showed an approximately 40% decrease in migration to peripheral and mesenteric lymph nodes during in vivo migration assays compared with wild-type lymphocytes. Likewise, wild-type lymphocyte migration to peripheral lymph nodes was reduced by approximately 50% in ICAM-1(-/-) recipient mice. Similar to human lymphocytes, human neutrophils showed enhanced rolling interactions on 926-FtVII/ICAM-1 cells, but also firmly adhered. Thus, in addition to mediating leukocyte firm adhesion, CD18 integrin/ICAM-1 interactions regulate leukocyte rolling velocities and thereby optimize L-selectin-mediated leukocyte rolling.  相似文献   

17.
Neutrophil recruitment into lung constitutes a major response to airborne endotoxins. In many tissues endothelial intercellular adhesion molecule-1 (ICAM-1) interacts with lymphocyte function associated antigen-1 (LFA-1) on neutrophils, and this interaction plays a critical role in neutrophil recruitment. There are conflicting reports about the role of ICAM-1 in neutrophil recruitment into lungs. We studied neutrophil recruitment into alveolar space in a murine model of aerosolized LPS-induced lung inflammation. LPS induces at least a 100-fold increase in neutrophil numbers in alveolar space, as determined by flow cytometry of bronchoalveolar lavage fluid. Neutrophil recruitment was reduced by 54% in ICAM-1 null mice and by 45% in LFA-1 null mice. In wild-type mice treated with anti-ICAM-1 and anti-LFA-1 antibodies, there was 51 and 58% reduction in the neutrophil recruitment, respectively. In chimeric mice, generated by the transplantation of mixtures of bone marrows from LFA-1 null and wild-type mice, the normalized recruitment of LFA-1 null neutrophils was reduced by 60% compared with wild-type neutrophils. Neither the treatment of ICAM-1 null mice with a function-blocking antibody to LFA-1 nor the treatment of LFA-1 null mice with anti-ICAM-1 antibody resulted in further reduction in the recruitment compared with untreated ICAM-1 null and LFA-1 null mice. We conclude that ICAM-1 and LFA-1 play critical roles in the recruitment of neutrophils into the alveolar space in aerosolized LPS-induced lung inflammation, and LFA-1 serves as a ligand of ICAM-1 in the lung.  相似文献   

18.
Macrophages accumulate during the course of corneal neovascularization, but its mechanisms and roles still remain elusive. To address these points, we herein examined corneal neovascularization after alkali injury in mice deficient in fractalkine receptor/CX3CR1, which is normally expressed by macrophages. After alkali injury, the mRNA expression of CX3CR1 was augmented along with accumulation of F4/80-positive macrophages and Gr-1-positive neutrophils in the corneas. Compared with wild-type mice, CX3CR1-deficient mice exhibited enhanced corneal neovascularization 2 wk after injury, as evidenced by enlarged CD31-positive areas. Concomitantly, the accumulation of F4/80-positive macrophages, but not Gr-1-positive neutrophils, was markedly attenuated in CX3CR1-deficient mice compared with wild-type mice. The intraocular mRNA expression of vascular endothelial growth factor (VEGF) was enhanced to similar extents in wild-type and CX3CR1-deifient mice after the injury. However, the mRNA expression of antiangiogenic factors, thrombospondin (TSP) 1, TSP-2, and a disintegrin and metalloprotease with thrombospondin (ADAMTS) 1, was enhanced to a greater extent in wild-type than CX3CR1-deificient mice. A double-color immunofluorescence analysis demonstrated that F4/80-positive cells also expressed CX3CR1 and ADAMTS-1 and that TSP-1 and ADAMTS-1 were detected in CX3CR1-positive cells. CX3CL1 enhanced TSP-1 and ADAMTS-1, but not VEGF, expression by peritoneal macrophages. Moreover, topical application of CX3CL1 inhibited corneal neovascularization at 2 wk, along with enhanced intraocular expression of TSP-1 and ADAMTS-1 but not VEGF. Thus, these observations indicate that accumulation of CX3CR1-positive macrophages intraocularly can dampen alkali-induced corneal neovascularization by producing antiangiogenic factors such as TSP-1 and ADAMTS-1 and suggest the potential therapeutic efficacy of using CX3CL1 against alkali-induced corneal neovascularization.  相似文献   

19.
Human C-reactive protein (CRP) is an acute phase protein that binds to receptors on human and mouse leukocytes. We have recently determined that the high and low affinity receptors for CRP on human leukocytes are Fc gamma RIIa and Fc gamma RI, respectively. Previous work by others suggested that CRP receptors on mouse macrophages are distinct from Fc gamma R. We have taken advantage of the availability of mice deficient in one or more Fc gamma R to reexamine the role of Fc gamma R in CRP binding to mouse leukocytes. Three strains of Fc gamma R-deficient mice were examined: gamma-chain-deficient mice that lack Fc gamma RI and Fc gamma RIII, Fc gamma RII-deficient mice, and mice deficient in both gamma-chain and Fc gamma RII that lack all Fc gamma R. No binding of CRP was detected to leukocytes from double-deficient mice, indicating that Fc gamma R are required for CRP binding. CRP binding to leukocytes from gamma-chain-deficient and Fc gamma RII-deficient mice was reduced compared with binding to leukocytes from wild-type mice. Further analysis of CRP binding to macrophages, neutrophils, and lymphocytes provides direct evidence that Fc gamma RIIb1, Fc gamma RIIb2, and Fc gamma RI are the receptors for CRP on mouse leukocytes. These findings may have important implications in understanding the physiological function of CRP.  相似文献   

20.
Phosphoinositide 3-kinases (PI3Ks) are important regulators of cell migration. The PI3K isoform gamma is primarily expressed in haematopoietic cells, and is activated by G protein-coupled receptors (GPCRs). Here, we investigate the contribution of PI3Kgamma to macrophage responses to chemoattractants, using bone marrow-derived macrophages from wild-type and PI3Kgamma-null mice. We observe that early membrane ruffling induced by MCP-1, which activates a GPCR, or by CSF-1, which activates a tyrosine kinase receptor, is unaltered in PI3Kgamma(-/-) mice, although by 30 min MCP-1-induced cell polarization was strongly reduced in PI3Kgamma(-/-) compared to wild-type macrophages. The migration behaviour of the macrophages was analysed by time-lapse microscopy in Dunn chemotaxis chambers. PI3Kgamma(-/-) macrophages showed reduced migration speed and translocation, and no chemotaxis to MCP-1. Interestingly, there was also a reduction in migration efficiency in PI3Kgamma(-/-) macrophages stimulated with CSF-1 although early CSF-1R signalling was normal. These results indicate that the initial actin reorganization induced by either a GPCR or tyrosine kinase receptor agonist is not dependent on PI3Kgamma, whereas PI3Kgamma is needed for optimal migration of macrophages to either agonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号