共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
He S Liang XF Li RQ Li GG Wang L Shen D 《Journal of biochemical and molecular toxicology》2010,24(5):293-302
Heat shock protein 70 (HSP70) protect cell from oxidative stress by preventing the irreversible loss of vital proteins and facilitating their subsequent regeneration. Silver carp (Hypophthalmichthys molitrix), grass carp (Ctenopharyngodon idellus), and Nile tilapia (Oreochromis nilotica) are three warm freshwater fishes with differential tolerance to microcystin-LR (MC-LR). Full-length cDNAs encoding the HSP70 were cloned from the livers of the three fishes. The HSP70 cDNAs of silver carp, grass carp, and Nile tilapia were 2356, 2348, and 2242 bp in length and contained an open-reading frame of 1950 bp (encoding a polypeptide of 649 amino acids), 1950 bp (649 amino acids), and 1917 bp (638 amino acids), respectively. Like mammalian HSP70, the HSP70 of the three fish was also composed of an ATPase domain from residues 1 to 383 (44 kDa), substrate peptide binding domain from residues 384 to 544 (18 kDa), and a C-terminus domain from residues 545 to 649 (10 kDa). The relatively high conservation of HSP70 sequences among different vertebrates is consistent with their important role in fundamental cellular processes. Using beta-actin as an external control, RT-PCR within the exponential phase was conducted to determine the constitutive and inducible expression level of HSP70 gene among the three fishes (6-12 g) intraperitoneally injected with MC-LR (50 μg kg(-1) body weight). Both constitutive and inducible liver mRNA levels of the fish HSP70 genes showed positive relationships with their tolerance to MC-LR: highest in Nile tilapia, followed by silver carp, and lowest in grass carp. The differential expression pattern of liver HSP70 genes in the three fish indicated a potential role of HSP70 in the detoxification process of MC-LR. 相似文献
5.
Molecular identification and expression of heat shock cognate 70 (hsc70) and heat shock protein 70 (hsp70) genes in the Pacific oyster Crassostrea gigas 总被引:3,自引:0,他引:3 下载免费PDF全文
The 70-kDa heat shock protein (Hsp) family is composed of both environmentally inducible (Hsp) and constitutively expressed (Hsc) family members. We sequenced 2 genes encoding an Hsp70 and an Hsc70 in the Pacific oyster Crassostrea gigas. The Cghsc70 gene contained introns, whereas the Cghsp70 gene did not. Moreover, the corresponding amino acid sequences of the 2 genes presented all the characteristic motifs of the Hsp70 family. We also investigated the expression of Hsp70 in tissues of oysters experimentally exposed to metal. A recombinant Hsc72 was used as an antigen to produce a polyclonal antibody to quantify soluble Hsp70 by enzyme-linked immunosorbent assay in protein samples extracted from oysters. Our results showed that metals (copper and cadmium) induced a decrease in cytosolic Hsp70 level in gills and digestive gland of oysters experimentally exposed to metal. These data suggest that metals may inhibit stress protein synthesis. 相似文献
6.
[目的]本研究旨在克隆韭菜眼蕈蚊Bradysia odoriphaga热休克蛋白Hsp70基因,并对其进行序列和表达模式分析,以及探讨该基因在韭菜迟眼蕈蚊生长发育及响应温度胁迫方面的作用.[方法]选择韭菜迟眼蕈蚊温度转录组中高温下表达上调的Hsp70序列,设计其基因引物扩增序列,构建qRT-PCR检测体系分析该虫在短时高温热激(30、32、34和36℃;1、2、4、6、8、10和12 h)和高温热激后不同恢复时间(25℃;1 h、2 h)下的Hsp70表达谱.[结果]获得韭菜迟眼蕈蚊Hsp70基因cDNA全长序列并命名为BoHp70(GeneBank登录号:MW250640),包含1 971 bp的开放阅读框,编码656个氨基酸,具有真核生物Hsp70基因家族的3个保守序列,同时在C-末端具有KDEL序列,推测其属于内质网型热休克蛋白.BLAST分析和氨基酸序列系统发育分析结果显示,韭菜迟眼蕈蚊与双翅目蝇类昆虫Hsp70聚类为一个分支.BoHsp70在韭菜迟眼蕈蚊体内不同发育阶段中都有表达,雄成虫体内的表达量高于雌成虫,且在雌雄成虫头部表达量的差异显著.高温胁迫可诱导BoHsp70表达,并在诱导1-2 h内达到最高水平.在30、32和34℃热激条件下随热激时间的增加,BoHsp70表达量呈下降趋势,而在36℃热激下,
BoHsp70表达水平不变.韭菜迟眼蕈蚊在解除高温热激后,BoHsp70表达水平随着恢复时间的增长而下降.[结论]韭菜迟眼蕈蚊可以通过调节体内Hsp70的表达来应对不良的环境温度. 相似文献
7.
8.
9.
Cloning and expression of heat shock protein genes in two whitefly species in response to thermal stress 总被引:1,自引:0,他引:1
Two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B were shown to have different temperature tolerance and seasonal dynamics. To determine whether this variation in thermal tolerance is related to different expression patterns of heat shock protein (hsp) genes during temperature stress, we obtained complete cDNA sequences for hsp90, hsp70 and hsp20, and analysed their expression profiles across temperature gradients by real‐time quantitative polymerase chain reaction (PCR). Six full‐length cDNAs were cloned and sequenced from these two species. The full‐length cDNAs of hsp90s contain 2166 and 2157 bp open‐reading frames (ORF) which encode proteins with calculated molecular weights of 83 013 and 82 857 Da in T. vaporariorum and B. tabaci, respectively. The 1947 and 1959 bp ORFs of whitefly hsp70s comprise 649 and 653 amino acids with the calculated masses of 70 885 and 71 008 Da in T. vaporariorum and B. tabaci, respectively. Both complete cDNAs of hsp20 of T. vaporariorum and B. tabaci contain 585 bp ORFs and deduced amino acid sequences had molecular weights of 21 559 and 21 539 Da, respectively. The hsp expression profile results showed that temperatures for onset (Ton) or maximal (Tmax) induction of hsp expression in T. vaporariorum were generally 2–6°C lower than those in B. tabaci. These results suggest that the Ton (or Tmax) of hsps can represent the differences in temperature tolerance of these two whitefly species, and may be used to determine their natural geographical distribution and natural population seasonal dynamics. Significant upregulation of most hsps were observed when temperature stress was lifted, except that hsp70 and hsp20 of B. tabaci did not respond to the cold stress, indicating that response to heat and cold stress may have a different genetic and physiological basis in two whitefly species. These results highlight the importance of understanding the complexity of the heat shock response across multiple isoforms while attempting to link them to whole‐organism traits such as thermal tolerance. 相似文献
10.
柑橘全爪螨热激蛋白基因PcHsp90的克隆及表达模式分析 总被引:1,自引:0,他引:1
【目的】研究热激蛋白基因Hsp90在柑橘全爪螨Panonychus citri生长发育及响应高温和低温胁迫方面的作用。【方法】采用RT-PCR和RACE技术克隆柑橘全爪螨Hsp90基因cDNA全长序列;利用生物信息学软件分析该基因的序列特性;运用荧光Real-time PCR技术,分析Hsp90基因mRNA在该螨各发育阶段、高温及低温胁迫条件下的表达模式。【结果】克隆鉴定出柑橘全爪螨一条Hsp90基因的c DNA全长序列,命名为PcHsp90(Gen Bank登录号:GQ495086),全长为2 763 bp,包含2 193 bp的开放阅读框,编码730个氨基酸,编码蛋白质的理论分子量和等电点分别为83.85kDa和4.99,氨基酸序列包括Hsp90家族的5个特征基序及细胞质型Hsp90的特征序列"MEEVD"。系统进化分析表明,PcHsp90与朱砂叶螨Tetranychus cinnabarinus的Hsp90首先聚为一支,然后再与肩突硬蜱Ixodes scapularis的Hsp90聚合,说明它们较近的亲缘关系。PcHsp90在柑橘全爪螨的各发育阶段均有所表达,其中在幼螨期表达量较低,且显著低于若螨和成螨期的表达水平(P=0.015)。0~10℃低温胁迫下,Pc Hsp90的mRNA相对表达量无显著变化(P=0.492);但在35~41℃高温胁迫下,Pc Hsp90的mRNA相对表达量随胁迫温度的升高而上调,尤其是当温度升高到41℃时,mRNA相对表达量达到对照(25℃)的6.75倍,且差异达显著水平(P=0.007)。【结论】柑橘全爪螨PcHsp90不仅对该螨的生长发育具有重要作用,而且是其响应高温胁迫的重要机制之一。 相似文献
11.
二化螟热休克蛋白70基因的克隆及热胁迫下的表达分析 总被引:3,自引:0,他引:3
热休克蛋白70是已知热休克蛋白家族中最重要的一种, 它在细胞内的大量表达可以明显改善细胞的生存能力, 提高对环境胁迫的耐受性。为探讨热胁迫对二化螟Chilo suppressalis幼虫热休克蛋白70表达的影响, 采用RT-PCR及RACE技术从二化螟血淋巴细胞中克隆了热休克蛋白70基因全长cDNA序列。该基因全长2 102 bp, 开放阅读框 (open reading frame, ORF)为1 959 bp, 编码652个氨基酸; 5′非编码区(untranslated region, UTR)为81 bp, 3′UTR为62 bp。从该基因推导的氨基酸序列与其他昆虫的同源序列比较有很高的相似性(73%~97%)。实时定量PCR显示二化螟HSP70基因能被热胁迫诱导表达, 幼虫血淋巴细胞的HSP70基因在36℃ 时表达量最高。流式细胞术研究发现HSP70在蛋白质水平上的表达变化与在mRNA水平上高度一致, 说明二化螟HSP70基因在转录及翻译水平上受到热应激的调节。 相似文献
12.
M Tom J Douek I Yankelevich T C Bosch B Rinkevich 《Biochemical and biophysical research communications》1999,262(1):103-108
The branching coral Stylophora pistillata, one of the most abundant hermatypic corals along the coasts of the Red Sea, has been used for many years as a model species for coral biological studies. Here we characterize the first coral heat shock protein 70 gene (SP-HSP70), cloned from S. pistillata, to be used as a tool for studying coral stress response. The cloning was carried out by a combination of PCR methods using heterologous, degenerate HSP70-based primers, followed by plaque-lift screening of a genomic library. The sequenced clone (5212 bp), contains a complete 1953 bp, intronless open reading frame, and 5' and 3' flanking regions of 1,935 and 1,324 bp, respectively. TATA, CAAT, and ATF boxes as well as 11 putative heat shock elements were identified in the SP-HSP70 5' flanking region. A polyadenylation site was identified in the 3' flanking region. SP-HSP70 protein sequence resembles the cytosolic/nuclear HSP70 cluster. RT-PCR studies confirmed SP-HSP70 mRNA expression in corals grown within their normal physiological conditions. Furthermore, SP-HSP70 has been shown to belong to the coral genome and not to its symbiotic algae one, as revealed by SP-HSP70 PCR amplification, using purified algal and coral DNA templates. 相似文献
13.
CH Li XR Su MQ Wang YY Li Y Li J Zhou TW Li 《Genetics and molecular research : GMR》2012,11(3):2641-2651
The full-length complementary DNA (cDNA) of heat shock protein 90 was cloned from Phascolosoma esculenta (PeHSP90) using expressed sequence tag and rapid amplification of cDNA end approaches. The cDNA of PeHSP90 was 2521 bp including a 5'-untranslated region of 110 bp, a 3'-untranslated region of 230 bp, and an open reading frame of 2181 bp. All of the characteristic motifs of the HSP90 family were completely conserved in the deduced amino acid of PeHSP90. The expression of PeHSP90 was induced by 3 heavy metals or elevated temperature, under which Zn(2+) displayed effects were more toxic than those of Cd(2+) and Cu(2+). The polyclonal antibodies generated from the recombinant product of PeHSP90 were specifically identified not only in the recombinant product but also in the native protein from hemocytes. These results strongly suggested that PeHSP90 was involved in heavy metal challenge and thermal stress regulation in P. esculenta. 相似文献
14.
Sitodiplosis mosellana Géhin, one of the most important pests of wheat, undergoes obligatory diapause as a larva to survive unfavorable temperature extremes during hot summers and cold winters. To explore the potential roles of heat shock proteins (hsp) in this process, we cloned full-length cDNAs of hsp70, hsc70 and hsp90 from S. mosellana larvae, and examined their expression in response to diapause and short-term temperature stresses. Three hsps included all signature sequences of corresponding protein family and EEVD motifs. They showed high homology to their counterparts in other species, and the phylogenetic analysis of hsp90 was consistent with the known classification of insects. Expression of hsp70 and hsp90 were highly induced by diapause, particularly pronounced during summer and winter. Interestingly, hsp70 was more strongly expressed in summer than in winter whereas hsp90 displayed the opposite pattern. Abundance of hsc70 mRNA was comparable prior to and during diapauses and was highly up-regulated when insects began to enter the stage of post-diapause quiescence. Heat-stressed over-summering larvae (⩾30 °C) or cold-stressed over-wintering larvae (⩽0 °C) could further elevate expression of these three genes, but temperature extremes i.e. as high as 45 °C or as low as −15 °C failed to trigger such expression patterns. Notably, hsp70 was most sensitive to heat stress and hsp90 was most sensitive to cold stress. These results suggested that hsp70 and hsp90 play key roles in diapause maintenance and thermal stress; the former may be more prominent contributor to heat tolerance and the latter for cold tolerance. In contrast, hsc70 most likely is involved in developmental transition from diapause to post-diapause quiescence, and thus may serve as a molecular marker to predict diapause termination. 相似文献
15.
16.
17.
Activation of heme oxygenase and heat shock protein 70 genes by stress in human hepatoma cells 总被引:1,自引:0,他引:1
K Mitani H Fujita S Sassa A Kappas 《Biochemical and biophysical research communications》1990,166(3):1429-1434
Effects of various stresses were examined on the accumulation of mRNA for microsomal heme oxygenase and a heat shock protein, hsp70, in three human hepatoma cell lines. By heat shock, hsp70 mRNA was induced in all three hepatoma lines, Hep G2, Hep 3B and Hep G2f, while heme oxygenase mRNA was increased only in Hep 3B. Time-courses of the heat shock induction of both mRNAs in Hep 3B were similar. Arsenite caused induction of both mRNAs in all three cell lines, while cadmium increased them in Hep G2 and Hep 3B, but not in Hep G2f cells. These findings suggest that, although both hsp70 and heme oxygenase are heat shock proteins, the mode of induction of mRNAs for these proteins is different. 相似文献
18.
19.
It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36–89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at ?70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5–2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5.29 and 2.63-fold higher expression than control. Liver and brain tissues showed the highest gene expression at mRNA levels as compared to kidney, spleen and heart. HST individuals had higher levels of mRNA level expression than HSS individuals in all breeds. The Sirohi breed showed the highest (6.3-fold) mRNA expression levels as compared to the other three breeds, indicating the better heat stress regulation activity in the breed. 相似文献
20.
Liang-Yu Sun Jing Liu Qin Li Di Fu Jia-Yun Zhu Jian-Jun Guo Rong Xiao Dao-Chao Jin 《Journal of Asia》2021,24(1):158-166
Pardosa pseudoannulata is the main predatory natural enemy of crop pests in a paddy ecosystem. When P. pseudoannulata is exposed to unfavorable temperature conditions, the response of heat shock proteins could resist the damage, and is therefore, conducive to the organism’s rapid adaptation to the surrounding stress environment. In this study, we explored the roles of hsp70 and hsp90 genes in response to heat stress, using the rapid amplification of cDNA ends technique and cloned full-length cDNAs of Pphsp70, Pphsp83, and Pphsp90. The mRNA expression levels of the three genes under different temperature stresses (25, 28, 31, 34, 37, 40, and 43 °C) and with different duration stresses (4, 8, 12, 16, and 20 h) were analyzed by quantitative real-time polymerase chain reaction. The full-length cDNA of Pphsp70, Pphsp83, and Pphsp90 was 2331 base pair (bp), 2466 bp, and 2663 bp, respectively. Phylogenetic analysis of amino acid sequences of Pphsp70, Pphsp83, and Pphsp90 showed that the sequences had high homology with that of other spiders. The mRNA expression of all three genes was extremely significantly up-regulated at 43 °C. Moreover at 43 °C, the expression of all three genes in both female and male spiders at the duration of 4 h was the highest compared to that of other stress duration groups. Therefore, it can be inferred that the three genes of P. pseudoannulata play a crucial protective role in resistance in a high-temperature environment. 相似文献