首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Huang W  Yang SJ  Zhang SB  Zhang JL  Cao KF 《Planta》2012,235(4):819-828
Resurrection plants could survive severe drought stress, but the underlying mechanism for protecting their photosynthetic apparatus against drought stress is unclear. Cyclic electron flow (CEF) has been documented as a crucial mechanism for photoprotection in Arabidopsis and tobacco. We hypothesized that CEF plays an important role in protecting photosystem I (PSI) and photosystem II (PSII) against drought stress for resurrection plants. To address this hypothesis, the effects of mild drought stress on light energy distribution in PSII and P700 redox state were examined in a resurrection plant Paraboea rufescens. Cyclic electron flow was not activated below the photosynthetic photon flux density (PPFD) of 400 μmol m−2 s−1 in leaves without drought stress. However, CEF was activated under low light in leaves with mild drought stress, and the effective quantum yield of PSII significantly decreased. Meanwhile, non-photochemical quenching (NPQ) was significantly stimulated not only under high light but also under low light. Compared with the control, the fraction of overall P700 that cannot be oxidized in a given state (PSI acceptor side limitation) under high light was maintained at low level of 0.1 in leaves with water deficit, indicating that the over-reduction of the PSI acceptor side was prevented by the significant stimulation of CEF. Furthermore, methyl viologen could significantly increase the PSII photo-inhibition induced by high light compared with chloramphenicol. These results suggested that CEF is an important mechanism for protecting PSI and PSII from drought stress in resurrection plants.  相似文献   

2.
Cyclic electron flow (CEF) plays an important role in photoprotection for angiosperms under environmental stresses. However, ferns are more sensitive to drought and their water transport systems are not as efficient as those of angiosperms, it is unclear whether CEF also contributes to photoprotection in these plants. Using Microsorum punctatum and Paraleptochillus decurrens, we studied the electron fluxes through both photosystem I (PSI) and photosystem II (PSII) under water stress and their leaf anatomies. Our goal was to determine if CEF functions in the photoprotection of these ferns and, if so, whether CEF stimulation is related to leaf anatomy. Compared with P. decurrens, M. punctatum had thicker leaves and cuticles and higher water storage capacity, but lower stomatal density and slower rate of water loss. During induced drought, the decrease in leaf water potential (Ψleaf) was more pronounced in P. decurrens than in M. punctatum. For both species, the decline in Ψleaf was associated with a lower effective PSII quantum yield, photochemical quantum yield of PSI and electron transport rate (ETR), whereas increases were found in the quantum yield of regulated energy dissipation, CEF and CEF/ETR(II) ratio. Values for CEF and the CEF/ETR(II) ratio peaked in M. punctatum at a light intensity of 500–600 µmol m?2 s?1 vs only 150–200 µmol m?2 s?1 in P. decurrens. Therefore, our results indicate that the stimulation of CEF in tropical ferns contributes to their photoprotection under water stress, and is related to their respective drought tolerance and leaf anatomy.  相似文献   

3.
通过比较棉花(Gossypium hirsutum)幼叶和完全展开叶气体交换参数及叶绿素荧光特性的差异, 探讨高光强下幼叶的光抑制程度及明确光保护机制间的协调机理。在田间自然条件下, 以棉花刚展平的幼嫩叶片(幼叶)和面积已达到最大的完全展开叶片为研究对象, 通过测定不同发育阶段叶片气体交换参数及叶绿素a荧光参数的变化, 并运用Dual-PAM100对不同发育阶段的叶片进行快速光响应曲线的拟合。结果表明: 幼叶和完全展开叶片在光合、荧光特性方面表现出明显的差异。与完全展开叶相比, 较低的叶绿素(Chl)含量和气孔导度(Gs)是幼叶较低净光合速率(Pn)的限制因素, 从而直接导致其光系统II (PSII)实际光化学效率(ΦPSII)和光化学猝灭系数(qP)的降低。在1800 μmol·m-2·s-1光强以下, 完全展开叶具有较强的围绕PSI循环的电子流(CEF), 有利于合成ATP, 是其具有较高光合能力的原因之一。相同光强下, 幼叶较低的光饱和点(LSP)更易受光抑制, 但其PSII原初光化学效率(Fv/Fm)的日变化幅度显著小于完全展开叶, 说明强光下幼叶通过类胡萝卜素(Car)猝灭单线态氧、光呼吸(Pr)、热耗散(NPQ)以及PSI-CEF等光保护机制能有效地耗散过剩的光能, 从而避免其光合机构发生光抑制。  相似文献   

4.
Non‐photochemical quenching (NPQ) plays a major role in photoprotection. Anastatica hierochuntica is an annual desert plant found in hot deserts. We compared A. hierochuntica to three other different species: Arabidopsis thaliana, Eutrema salsugineum and Helianthus annuus, which have different NPQ and photosynthetic capacities. Anastatica hierochuntica plants had very different induction kinetics of NPQ and, to a lesser extent, of photosystem II electron transport rate (PSII ETR), in comparison to all other plants species in the experiments. The major components of the unusual photosynthetic and photoprotective response in A. hierochuntica were: (1) Low NPQ at the beginning of the light period, at various light intensities and CO2 concentrations. The described low NPQ cannot be explained by low leaf absorbance or by low energy distribution to PSII, but was related to the de‐epoxidation state of xanthophylls. (2) Relatively high PSII ETR at various CO2 concentrations in correlation with low NPQ. PSII ETR responded positively to the increase of CO2 concentrations. At low CO2 concentrations PSII ETR was mostly O2 dependent. At moderate and high CO2 concentrations the high PSII ETR in A. hierochuntica was accompanied by relatively high CO2 assimilation rates. We suggest that A. hierochuntica have an uncommon NPQ and PSII ETR response. These responses in A. hierochuntica might represent an adaptation to the short growing season of an annual desert plant.  相似文献   

5.
Hemiepiphytic Ficus species exhibit more conservative water use strategy and are more drought-tolerant compared with their non-hemiepiphytic congeners, but a difference in the response of photosystem I (PSI) and photosystem II (PSII) to drought stress has not been documented to date. The enhancement of non-photochemical quenching (NPQ) and cyclic electron flow (CEF) have been identified as important mechanisms that protect the photosystems under drought conditions. Using the hemiepiphytic Ficus tinctoria and the non-hemiepiphytic Ficus racemosa, we studied the water status and the electron fluxes through PSI and PSII under seasonal water stress. Our results clearly indicated that the decline in the leaf predawn water potential (ψpd), the maximum photosynthetic rate (Amax) and the predawn maximum quantum yield of PSII (Fv/Fm) were more pronounced in F. racemosa than in F. tinctoria at peak drought. The Fv/Fm of F. racemosa was reduced to 0.69, indicating net photoinhibition of PSII. Concomitantly, the maximal photo-oxidizable P700 (Pm) decreased significantly in F. racemosa but remained stable in F. tinctoria. The fraction of non-photochemical quenching [Y(NPQ)] and the ratio of effective quantum yield of PSI to PSII [Y(I)/Y(II)] increased for both Ficus species at peak drought, with a stronger increase in F. racemosa. These results indicated that the enhancement of NPQ and the activation of CEF contributed to the photoprotection of PSI and PSII for both Ficus species under seasonal drought, particularly for F. racemosa.  相似文献   

6.
Kalanchoë daigremontiana, a CAM plant grown in a greenhouse, was subjected to severe water stress. The changes in photosystem II (PSII) photochemistry were investigated in water‐stressed leaves. To separate water stress effects from photoinhibition, water stress was imposed at low irradiance (daily peak PFD 150 μmol m?2 s?1). There were no significant changes in the maximal efficiency of PSII photochemistry (Fv/Fm), the traditional fluorescence induction kinetics (OIP) and the polyphasic fluorescence induction kinetics (OJIP), suggesting that water stress had no direct effects on the primary PSII photochemistry in dark‐adapted leaves. However, PSII photochemistry in light‐adapted leaves was modified in water‐stressed plants. This was shown by the decrease in the actual PSII efficiency (ΦPSII), the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′), and photochemical quenching (qP), as well as a significant increase in non‐photochemical quenching (NPQ) in particular at high PFDs. In addition, photoinhibition and the xanthophyll cycle were investigated in water‐stressed leaves when exposed to 50% full sunlight and full sunlight. At midday, water stress induced a substantial decrease in Fv/Fm which was reversible. Such a decrease was greater at higher irradiance. Similar results were observed in ΦPSII, qP, and Fv′/Fm′. On the other hand, water stress induced a significant increase in NPQ and the level of zeaxanthin via the de‐epoxidation of violaxanthin and their increases were greater at higher irradiance. The results suggest that water stress led to increased susceptibility to photoinhibition which was attributed to a photoprotective process but not to a photodamage process. Such a photoprotection was associated with the enhanced formation of zeaxanthin via de‐epoxidation of violaxanthin. The results also suggest that thermal dissipation of excess energy associated with the xanthophyll cycle may be an important adaptive mechanism to help protect the photosynthetic apparatus from photoinhibitory damage for CAM plants normally growing in arid and semi‐arid areas where they are subjected to a combination of water stress and high light.  相似文献   

7.
This work aimed to evaluate if gas exchange and PSII photochemical activity in maize are affected by different irradiance levels during short-term exposure to elevated CO2. For this purpose gas exchange and chlorophyll a fluorescence were measured on maize plants grown at ambient CO2 concentration (control CO2) and exposed for 4 h to short-term treatments at 800 μmol(CO2) mol−1 (high CO2) at a photosynthetic photon flux density (PPFD) of either 1,000 μmol m−2 s−1 (control light) or 1,900 μmol m−2 s−1 (high light). At control light, high-CO2 leaves showed a significant decrease of net photosynthetic rate (P N) and a rise in the ratio of intercellular to ambient CO2 concentration (C i/C a) and water-use efficiency (WUE) compared to control CO2 leaves. No difference between CO2 concentrations for PSII effective photochemistry (ΦPSII), photochemical quenching (qp) and nonphotochemical quenching (NPQ) was detected. Under high light, high-CO2 leaves did not differ in P N, C i/C a, ΦPSII and NPQ, but showed an increase of WUE. These results suggest that at control light photosynthetic apparatus is negatively affected by high CO2 concentration in terms of carbon gain by limitations in photosynthetic dark reaction rather than in photochemistry. At high light, the elevated CO2 concentration did not promote an increase of photosynthesis and photochemistry but only an improvement of water balance due to increased WUE.  相似文献   

8.
为了解演替中期和后期优势树种对冬季不同光强的适应性,对在全光照(100%自然光强)和低光照(30%自然光强)下生长的演替中期优势种木荷(Schima superba)、锥栗(Castanopsis chinensis)和黧蒴(Castanopsis fissa)及演替后期优势种华润楠(Machilus chinensi...  相似文献   

9.
Some epiphytic Hymenophyllaceae are restricted to lower parts of the host (<60 cm; 10–100 μmol photons m-2 s-1) in a secondary forest of Southern Chile; other species occupy the whole host height (≥10 m; max PPFD >1000 μmol photons m-2 s-1). Our aim was to study the photosynthetic light responses of two Hymenophyllaceae species in relation to their contrasting distribution. We determined light tolerance of Hymenoglossum cruentum and Hymenophyllum dentatum by measuring gas exchange, PSI and PSII light energy partitioning, NPQ components, and pigment contents. H. dentatum showed lower maximum photosynthesis rates (Amax) than H. cruentum, but the former species kept its net rates (An) near Amax across a wide light range. In contrast, in the latter one, An declined at PPFDs >60 μmol photons m-2 s-1. H. cruentum, the shadiest plant, showed higher chlorophyll contents than H. dentatum. Differences in energy partitioning at PSI and PSII were consistent with gas exchange results. H. dentatum exhibited a higher light compensation point of the partitioning of absorbed energy between photochemical Y(PSII) and non-photochemical Y(NPQ) processes. Hence, both species allocated energy mainly toward photochemistry instead of heat dissipation at their light saturation points. Above saturation, H. cruentum had higher heat dissipation than H. dentatum. PSI yield (YPSI) remained higher in H. dentatum than H. cruentum in a wider light range. In both species, the main cause of heat dissipation at PSI was a donor side limitation. An early dynamic photo-inhibition of PSII may have caused an over reduction of the Qa+ pool decreasing the efficiency of electron donation to PSI. In H. dentatum, a slight increase in heat dissipation due to acceptor side limitation of PSI was observed above 300 μmol photons m-2s-1. Differences in photosynthetic responses to light suggest that light tolerance and species plasticity could explain their contrasting vertical distribution.  相似文献   

10.
采用盆栽试验方法,以NaCl为盐分模拟不同盐度环境,研究了施氮(N)对盐环境下生长的甜菜(Beta vulgaris)功能叶光系统Ⅱ (PSⅡ)荧光特性的影响及光合色素含量的变化.结果表明:在轻度、中度及重度盐环境下,施N均能增大PSⅡ最大光化学效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)、PSⅡ实际光量子产量(Y(Ⅱ))、非调节性能量耗散的量子产量(Y(NO))、相对电子传递速率(ETR)及光化学猝灭系数(qp),且在适宜的施N范围内(0-1.2 g·kg-1)上述参数随施N量的增加而增大.各叶绿素荧光参数光响应的结果表明,随着光强的增加,各处理下调节性能量耗散的量子产量(KNPQ))、ETR及非光化学猝灭系数(NPQ)旱上升趋势,相反,Y(Ⅱ)、Y(NO)及qp则呈下降趋势,在有效的光强范围内(0-1 000 μmol·m-2·s-1)施N提高了甜菜功能叶PSⅡ反应中心的开放程度,并且在高光强下调节PSⅡ耗散掉过剩的光能以避免对其反应中心造成伤害.各盐度环境下施N也显著增加了甜菜功能叶叶绿素与类胡萝卜素含量,增大了叶绿素a/叶绿素b值,且叶绿素与类胡萝卜素含量随施N水平的增加而增加.说明盐环境下施N能够增强甜菜功能叶PSⅡ的活性,提高PSⅡ光能利用率,从而增强其对盐渍环境的适应性.  相似文献   

11.
前期研究发现线粒体交替氧化酶(AOX)呼吸途径对叶绿体光系统II(PSII)的光抑制有明显的缓解作用。线粒体内另一条呼吸途径——细胞色素氧化酶(COX)呼吸途径是否也具有光保护作用尚不清楚。该文通过荧光快速诱导动力学和荧光淬灭分析,解析了烟草(Nicotiana tabacum)叶片中COX途径对PSII光保护的贡献及其与AOX途径的关系。结果表明,强光处理后PSII活性在所有叶片中均下降。AOX途径受抑明显加速了叶片PSII活性的下降。而当COX途径受抑后,叶片PSII活性的下降与水处理的对照叶片无明显差异。当AOX途径与COX途径同时受抑时,叶片PSII活性的下降比单独抑制AOX途径时更严重。此外,呼吸电子传递受抑均导致叶片非光化学淬灭(NPQ)增加,AOX途径受抑导致的NPQ上调比COX途径受抑时更明显,AOX和COX途径同时受抑时NPQ的增幅最大。上述结果表明,烟草叶片中COX途径和AOX途径均参与PSⅡ的光保护。当COX途径受抑时,其光保护功能可以被AOX途径和NPQ补偿,而AOX途径的光保护作用不能被COX途径和NPQ完全补偿。  相似文献   

12.
Light harvesting and utilization by chloroplasts located near the adaxial vs the abaxial surface of sun and shade leaves were examined by fluorometry in two herbaceous perennials that differed in their anatomy and leaf inclination. Leaves of Thermopsis montana had well-developed palisade and spongy mesophyll whereas the photosynthetic tissue of Smilacina stellata consisted of spongy mesophyll only. Leaf orientation depended upon the irradiance during leaf development. When grown under low-light levels, leaves of S. stellata and T. montana were nearly horizontal, whereas under high-light levels, S. stellata leaves and T. montana leaves were inclined 600 and 300, respectively. Leaf inclination increased the amount of light that was intercepted by the lower leaf surfaces and affected the photosynthetic properties of the chloroplasts located near the abaxial leaf surface. The slowest rates of quinone pool reduction and reoxidation were found in chloroplasts located near the adaxial leaf surface of T. montana plants grown under high light, indicating large quinone pools in these chloroplasts. Chloroplasts near the abaxial surface of low-light leaves had lower light utilization capacities as shown by photochemical quenching measurements. The amount of photosystem II (PSII) down regulation, measured from each leaf surface, was also found to be influenced by irradiance and leaf inclination. The greatest difference between down regulation monitored from the adaxial vs abaxial surfaces was found in plants with horizontal leaves. Different energy dissipation mechanisms may be employed by the two species. Values for down regulation in S. stellata were 2–3 times higher than those in T. montana, while the portion of the PSII population which was found to be QB nonreducing was 4–6 times lower in high light S. stellata leaves than in T. montana. All values of Stern-Volmer type nonphotochemical quenching (NPQ) from S. stellata leaves were similar when quenching analysis was performed at actinic irradiances that were higher than the irradiance to which the leaf surface was exposed during growth. In contrast, with T. montana, NPQ values from the abaxial leaf surface were up to 45% higher than those from the adaxial leaf surface regardless of growth conditions. The observed differences in chloroplast properties between species and between the adaxial and abaxial leaf surfaces may depend upon a complex interaction among light, leaf anatomy and leaf inclination.  相似文献   

13.

Light is essential for all photosynthetic organisms while an excess of it can lead to damage mainly the photosystems of the thylakoid membrane. In this study, we have grown Chlamydomonas reinhardtii cells in different intensities of high light to understand the photosynthetic process with reference to thylakoid membrane organization during its acclimation process. We observed, the cells acclimatized to long-term response to high light intensities of 500 and 1000 µmol m?2 s?1 with faster growth and more biomass production when compared to cells at 50 µmol m?2 s?1 light intensity. The ratio of Chl a/b was marginally decreased from the mid-log phase of growth at the high light intensity. Increased level of zeaxanthin and LHCSR3 expression was also found which is known to play a key role in non-photochemical quenching (NPQ) mechanism for photoprotection. Changes in photosynthetic parameters were observed such as increased levels of NPQ, marginal change in electron transport rate, and many other changes which demonstrate that cells were acclimatized to high light which is an adaptive mechanism. Surprisingly, PSII core protein contents have marginally reduced when compared to peripherally arranged LHCII in high light-grown cells. Further, we also observed alterations in stromal subunits of PSI and low levels of PsaG, probably due to disruption of PSI assembly and also its association with LHCI. During the process of acclimation, changes in thylakoid organization occurred in high light intensities with reduction of PSII supercomplex formation. This change may be attributed to alteration of protein–pigment complexes which are in agreement with circular dichoism spectra of high light-acclimatized cells, where decrease in the magnitude of psi-type bands indicates changes in ordered arrays of PSII–LHCII supercomplexes. These results specify that acclimation to high light stress through NPQ mechanism by expression of LHCSR3 and also observed changes in thylakoid protein profile/supercomplex formation lead to low photochemical yield and more biomass production in high light condition.

  相似文献   

14.
Planktonic diatoms (Bacillariophyceae) have to cope with large fluctuations of light intensity and periodic exposure to high light. After a shift to high light, photoprotective dissipation of excess energy characterized by the nonphotochemical quenching of fluorescence (NPQ) and the concomitant deepoxidation of diadinoxanthin to diatoxanthin (DT) were measured in four different planktonic marine diatoms (Bacillariophyceae): Skeletonema costatum (Greville) Cleve, Cylindrotheca fusiformis Reimann et Lewin, Thalassiosira weissflogii (Grunow) Fryxell et Hasle, and Ditylum brightwellii (West) Grunow in comparison to the model organism Phaeodactylum tricornutum Böhlin. Upon a sudden increase of light intensity, deepoxidation was rapid and de novo synthesis of DT also occurred. In all species, NPQ was linearly related to the amount of DT formed during high light. In this report, we focused on the role of DT in the dissipation of energy that takes place in the light‐harvesting complex. In S. costatum for the same amount of DT, less NPQ was formed than in P. tricornutum and as a consequence the photoprotection of PSII was less efficient. The general features of photoprotection by harmless dissipation of excess energy in planktonic diatoms described here partly explain why diatoms are well adapted to light intensity fluctuations.  相似文献   

15.
Moderate heat stress has been reported to increase PSI cyclic electron flow (CEF). We subjected leaves of Arabidopsis (Arabidopsis thaliana) mutants disrupted in the regulation of one or the other pathway of CEF flow—crr2 (chlororespiratory reduction, deficient in regulation of chloroplast NAD(P)H dehydrogenase-dependent CEF) and pgr5 (proton gradient regulation, proposed to have reduced efficiency of antimycin-A-sensitive-CEF regulation) to moderate heat stress. Light-adapted leaves were switched from 23 to 40°C in 2 min. Gas exchange, chlorophyll fluorescence, the electrochromic shift (ECS), and P700 were measured. Photosynthesis of crr2 and pgr5 was more sensitive to heat and had less ability to recover than the genetic background gl. The proton conductance in light was increased by heat and it was twice as much in pgr5, which had much smaller light-induced proton motive force. We confirmed that P700 becomes more reduced at high temperature and show that, in contrast, the proportion of PSII open centers (with Q A oxidized) increases. The two mutants had much slower P700+ reduction rate during and after heat than gl. The proportion of light absorbed by PSI versus PSII was increased in gl and crr2 during and after heat treatment, but not in pgr5. We propose that heat alters the redox balance away from PSII and toward PSI and that the regulation of CEF helps photosynthesis tolerate heat stress.  相似文献   

16.
The principle of quantifying the efficiency of protection of photosystem II (PSII) reaction centres against photoinhibition by non-photochemical energy dissipation (NPQ) has been recently introduced by Ruban & Murchie (2012 Biochim. Biophys. Acta 1817, 977–982 (doi:10.1016/j.bbabio.2012.03.026)). This is based upon the assessment of two key parameters: (i) the relationship between the PSII yield and NPQ, and (ii) the fraction of intact PSII reaction centres in the dark after illumination. In this paper, we have quantified the relationship between the amplitude of NPQ and the light intensity at which all PSII reaction centres remain intact for plants with different levels of PsbS protein, known to play a key role in the process. It was found that the same, nearly linear, relationship exists between the levels of the protective NPQ component (pNPQ) and the tolerated light intensity in all types of studied plants. This approach allowed for the quantification of the maximum tolerated light intensity, the light intensity at which all plant leaves become photoinhibited, the fraction of (most likely) unnecessary or ‘wasteful’ NPQ, and the fraction of photoinhibited PSII reaction centres under conditions of prolonged illumination by full sunlight. It was concluded that the governing factors in the photoprotection of PSII are the level and rate of protective pNPQ formation, which are often in discord with the amplitude of the conventional measure of photoprotection, the quickly reversible NPQ component, qE. Hence, we recommend pNPQ as a more informative and less ambiguous parameter than qE, as it reflects the effectiveness and limitations of the major photoprotective process of the photosynthetic membrane.  相似文献   

17.
Naturally selected atrazine-resistant (AR) weeds possessing a Ser264 → Gly D1 protein encoded by a mutant psbA allele in the chloroplast-DNA have increased photosensitivity and lower fitness. The D1 mutant lines of S. nigrum revealed impaired regulation of photosystem II (PSII) activity as compared with the wild-type plants resulting in a less effective photochemical light utilization and in addition, a lower capacity of non-photochemical thermal dissipation (NPQ), one of the main photoprotective mechanisms in oxygenic photosynthetic organisms. In this work, comparative chlorophyll fluorescence analysis in attached leaves of wild-type and AR Solanum nigrum L. and in their reciprocal crosses has been used to establish how the lower NPQ is inherited. Both a 50% reduction in steady-state NPQ and a 60–70% reduction in the rapidly reversible, energy-dependent (qE) component of NPQ were common phenomena in the parent and hybrid lines of D1 mutant S. nigrum. The nuclear hybrid status of the F2 plant material was confirmed by morphological observations on fully developed leaves. No alteration was found in the nucleotide sequence and the deduced amino acid sequences of the nuclear psbS gene isolated from different biotypes of S. nigrum, and there were no differences in the expressions of both the PsbS and the D1 proteins. All things considered, co-inheritance of the lower photoprotective NPQ capacity and the Ser264 → Gly D1 protein mutation was clearly observed, suggesting that the evolutionarily conserved D1 structure must be indispensable for the efficient NPQ process in higher plants.  相似文献   

18.
Photosynthesis and photoprotection in mangroves under field conditions   总被引:8,自引:2,他引:6  
Net CO2 exchange and in vivo chlorophyll fluorescence were studied in mangrove (Rhizophora stylosa) leaves at a field site in Western Australia, and leaf samples were collected for the analysis of enzymes and substrates potentially involved in anti-oxidant photoprotection. Photosynthesis saturated at 900 μmol quanta m?2 s?1 and at no more than 7.5 μmol CO2 m?2 s?1. However, fluorescence analysis indicated no chronic photoinhibition: Fv:Fm was 0.8 shortly after sunset, and quantum efficiencies of PSII were high up to 500 μmol quanta m?2 s?1. Electron flow through PSII was more than 3 times higher than electron consumption through Calvin cycle activity, however, even with photorespiration and temperature-dependent Rubisco specificities taken into account. Acknowledging the growing body of literature attributing a role to antioxidant systems in photoprotection, we also assayed the activities of superoxide dismutase (SOD) and several enzymes potentially involved in H2O2 metabolism. Their levels of maximal potential activity were compared with those in greenhouse-grown mangroves (R. mangle), and growth chamber-grown peas. Monodehydroascorbate reductase activities were similar in all species, and glutathione reductase was lower, and ascorbate peroxidase ~40% higher, in the mangroves. SOD activities in field-grown mangroves were more than 40 times those in peas. Our results support the hypothesis that O2 may be a significant sink for photochemically derived electrons under field conditions, and suggest an important role for O2? scavenging in photoprotection. However, when relative patterns are compared between species, imbalances between SOD and the other enzymes in the mangroves suggest that more components of the system (e.g. phenolics or peroxidases) are yet to be identified.  相似文献   

19.
Highly time-resolved photoacclimation patterns of the chlorophyte microalga Dunaliella tertiolecta during exposure to an off–on–off (block) light pattern of saturating photon flux, and to a regime of consecutive increasing light intensities are presented. Non-photochemical quenching (NPQ) mechanisms unexpectedly responded with an initial decrease during dark–light transitions. NPQ values started to rise after light exposure of approximately 4 min. State-transitions, measured as a change of PSII:PSI fluorescence emission at 77 K, did not contribute to early NPQ oscillations. Addition of the uncoupler CCCP, however, caused a rapid increase in fluorescence and showed the significance of qE for NPQ. Partitioning of the quantum efficiencies showed that constitutive NPQ was (a) higher than qE-driven NPQ and (b) responded to light treatment within seconds, suggesting an active role of constitutive NPQ in variable energy dissipation, although it is thought to contribute statically to NPQ. The PSII connectivity parameter p correlated well with F′, F m ′ and NPQ during the early phase of the dark–light transients in sub-saturating light, suggesting a plastic energy distribution pattern within energetically connected PSII centres. In consecutive increasing photon flux experiments, correlations were weaker during the second light increment. Changes in connectivity can present an early photoresponse that are reflected in fluorescence signals and NPQ and might be responsive to the short-term acclimation state, and/or to the actinic photon flux.  相似文献   

20.
The effects of iron limitation on photoacclimation to dynamic irradiance were studied in Phaeocystis antarctica G. Karst. and Fragilariopsis cylindrus (Grunow) W. Krieg. in terms of growth rate, photosynthetic parameters, pigment composition, and fluorescence characteristics. Under dynamic light conditions mimicking vertical mixing below the euphotic zone, P. antarctica displayed higher growth rates than F. cylindrus both under iron (Fe)–replete and Fe‐limiting conditions. Both species showed xanthophyll de‐epoxidation that was accompanied by low levels of nonphotochemical quenching (NPQ) during the irradiance maximum of the light cycle. The potential for NPQ at light levels corresponding to full sunlight was substantial in both species and increased under Fe limitation in F. cylindrus. Although the decline in Fv/Fm under Fe limitation was similar in both species, the accompanying decrease in the maximum rate of photosynthesis and growth rate was much stronger in F. cylindrus. Analysis of the electron transport rates through PSII and on to carbon (C) fixation revealed a large potential for photoprotective cyclic electron transport (CET) in F. cylindrus, particularly under Fe limitation. Probably, CET aided the photoprotection in F. cylindrus, but it also reduced photosynthetic efficiency at higher light intensities. P. antarctica, on the other hand, was able to efficiently use electrons flowing through PSII for C fixation at all light levels, particularly under Fe limitation. Thus, Fe limitation enhanced the photophysiological differences between P. antarctica and diatoms, supporting field observations where P. antarctica is found to dominate deeply mixed water columns, whereas diatoms dominate shallower mixed layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号