首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epothilone A (EpoA) is under investigation as an antitumor agent. To provide better understanding of the activity of EpoA against cancers, by theoretical studies such as using docking method, molecular dynamics simulation and density functional theory calculations, we identify several key residues located on β-tubulin as the active sites to establish an active pocket responsible for interaction with EpoA. Eight residues (Arg276, Asp224, Asp26, His227, Glu27, Glu22, Thr274, and Met363) are identified as the active sites to form the active pocket on β-tubulin. The interaction energy is predicted to be -121.3?kJ/mol between EpoA and β-tubulin. In the mutant of β-tubulin at Thr274Ile, three residues (Arg359, Glu27, and His227) are identified as the active sites for the binding of EpoA. In the mutant of β-tubulin at Arg282Gln, three residues (Arg276, Lys19, and His227) serve as the active sites. The interaction energy is reduced to -77.2?kJ/mol between EpoA and Arg282Gln mutant and to -50.2?kJ/mol between EpoA and Thr274Ile mutant. The strong interaction with β-tubulin is significant to EpoA's activity against cancer cells. When β-tubulin is mutated either at Arg282Gln or at Thr274Ile, the decreased strength of interaction explains the activity reduced for EpoA. Therefore, this work shows that the structural basis of the active pocket plays an important role in regulating the activity for EpoA with a Taxol-like mechanism of action to be promoted as an antitumor agent.  相似文献   

2.
Poly(ADP-ribose) polymerase (PARP) is regarded as a target protein for paclitaxel (PTX) to bind. An important issue is to identify the key residues as active sites for PTX interacting with PARP, which will help to understand the potential drug activity of PTX against cancer cells. Using docking method and MD simulation, we have constructed a refined structure of PTX docked on the catalytic function domain of PARP (PDB code: 1A26). The residues Glu327(988), Tyr246(907), Lys242(903), His165(826), Asp105(766), Gln102(763) and Gln98(759) in PARP are identified as potential sites involved in interaction with PTX according to binding energy (E(b)) between PTX and single residue calculated with B3LYP/6-31G(d,p). These residues form an active binding pocket located on the surface of the catalytic fragment, possibly interacting with the required groups of PTX leading to its activity against cancer cells. It is noted that most of the active sites make conatct with the "southern hemisphere" of PTX except for one residue, Tyr246(907), which interacts with the "northern hemisphere" of PTX. The conformation of PTX in complex with the catalytic fragment is observed as being T-shaped, similar to that complexed with β-tubulin. The total Eb of -269.9 kJ/mol represents the potent interaction between PTX and the catalytic fragment, implying that PTX can readily bind to the active pocket. The tight association of PTX with the catalytic fragment would inhibit PARP activation, suggesting a potential application of PTX as an effective antineoplastic agent.  相似文献   

3.
The structure of amylosucrase from Neisseria polysaccharea in complex with beta-D-glucose has been determined by X-ray crystallography at a resolution of 1.66 A. Additionally, the structure of the inactive active site mutant Glu328Gln in complex with sucrose has been determined to a resolution of 2.0 A. The D-glucose complex shows two well-defined D-glucose molecules, one that binds very strongly in the bottom of a pocket that contains the proposed catalytic residues (at the subsite -1), in a nonstrained (4)C(1) conformation, and one that binds in the packing interface to a symmetry-related molecule. A third weaker D-glucose-binding site is located at the surface near the active site pocket entrance. The orientation of the D-glucose in the active site emphasizes the Glu328 role as the general acid/base. The binary sucrose complex shows one molecule bound in the active site, where the glucosyl moiety is located at the alpha-amylase -1 position and the fructosyl ring occupies subsite +1. Sucrose effectively blocks the only visible access channel to the active site. From analysis of the complex it appears that sucrose binding is primarily obtained through enzyme interactions with the glucosyl ring and that an important part of the enzyme function is a precise alignment of a lone pair of the linking O1 oxygen for hydrogen bond interaction with Glu328. The sucrose specificity appears to be determined primarily by residues Asp144, Asp394, Arg446, and Arg509. Both Asp394 and Arg446 are located in an insert connecting beta-strand 7 and alpha-helix 7 that is much longer in amylosucrase compared to other enzymes from the alpha-amylase family (family 13 of the glycoside hydrolases).  相似文献   

4.
We hypothesized that some amino acid substitutions in conserved proteins that are strongly fixed by critical functional roles would show lineage-specific distributions. As an example of an archetypal conserved eukaryotic protein we considered the active site of β-tubulin. Our analysis identified one amino acid substitution—β-tubulin F224—which was highly lineage specific. Investigation of β-tubulin for other phylogenetically restricted amino acids identified several with apparent specificity for well-defined phylogenetic groups. Intriguingly, none showed specificity for “supergroups” other than the unikonts. To understand why, we analysed the β-tubulin Neighbor-Net and demonstrated a fundamental division between core β-tubulins (plant-like) and divergent β-tubulins (animal and fungal). F224 was almost completely restricted to the core β-tubulins, while divergent β-tubulins possessed Y224. Thus, our specific example offers insight into the restrictions associated with the co-evolution of β-tubulin during the radiation of eukaryotes, underlining a fundamental dichotomy between F-type, core β-tubulins and Y-type, divergent β-tubulins. More broadly our study provides proof of principle for the taxonomic utility of critical amino acids in the active sites of conserved proteins.  相似文献   

5.
In the last step of penicillin biosynthesis, acyl-CoA:isopenicillin N acyltransferase (IAT) (E.C. 2.3.1.164) catalyzes the conversion of isopenicillin N (IPN) to penicillin G. IAT substitutes the α-aminoadipic acid side chain of IPN by a phenylacetic acid phenolate group (from phenylacetyl-CoA). Having a three-dimensional (3D) structure of IAT helps to determine the steps involved in side chain exchange by identifying the atomic details of substrate recognition. We predicted the IAT 3-D structure (α- and β-subunits), as well as the manner of IPN and phenylacetyl-CoA bind to the mature enzyme (β-subunit). The 3D IAT prediction was achieved by homology modeling and molecular docking in different snapshots, and refined by molecular dynamic simulations. Our model can reasonably interpret the results of a number of experiments, where key residues for IAT processing as well as strictly conserved residues most probably involved with enzymatic activity were mutated. Based on the results of docking studies, energies associated with the complexes, and binding constants calculated, we identified a site located in the region generated by β1, β2 and β5 strands, which forms part of the central structure of β-subunit, as the potential binding site of IPN. The site comprises the amino acid residues Cys103, Asp121, Phe122, Phe123, Ala168, Leu169, His170, Gln172, Phe212, Arg241, Leu262, Asp264, Arg302, Ser309, and Arg310. Through hydrogen bonds, the IPN binding site establishes interactions with Cys103, Leu169, Gln172, Asp264 and Arg310. Our model is also validated by a recently revealed crystal structure of the mature enzyme.  相似文献   

6.
Recent studies of proteins with reversed charged residues have demonstrated that electrostatic interactions on the surface can contribute significantly to protein stability. We have used the approach of reversing negatively charged residues using Arg to evaluate the effect of the electrostatics context on the transition temperature (T(m)), the unfolding Gibbs free energy change (DeltaG), and the unfolding enthalpy change (DeltaH). We have reversed negatively charged residues at a pocket (Asp9) and protrusions (Asp10, Asp20, Glu85), all located in interconnecting segments between elements of secondary structure on the surface of Arg73Ala Escherichia coli thioredoxin. DSC measurements indicate that reversal of Asp in a pocket (Asp9Arg/Arg73Ala, DeltaT(m) = -7.3 degrees C) produces a larger effect in thermal stability than reversal at protrusions: Asp10Arg/Arg73Ala, DeltaT(m) = -3.1 degrees C, Asp20Arg/Arg73Ala, DeltaT(m) = 2.0 degrees C, Glu85Arg/Arg73Ala, DeltaT(m) = 3.9 degrees ). The 3D structure of thioredoxin indicates that Asp20 and Glu85 have no nearby charges within 8 A, while Asp9 does not only have Asp10 as sequential neighbor, but it also forms a 5-A long-range ion pair with the solvent-exposed Lys69. Further DSC measurements indicate that neutralization of the individual charges of the ion pair Asp9-Lys69 with nonpolar residues produces a significant decrease in stability in both cases: Asp9Ala/Arg73Ala, DeltaT(m) = -3.7 degrees C, Asp9Met/Arg73Ala, DeltaT(m) = -5.5 degrees C, Lys69Leu/Arg73Ala, DeltaT(m) = -5.1 degrees C. However, thermodynamic analysis shows that reversal or neutralization of Asp9 produces a 9-15% decrease in DeltaH, while both reversal of Asp at protrusions and neutralization of Lys69 produce negligible changes. These results correlate well with the NMR analysis, which demonstrates that only the substitution of Asp9 produces extensive conformational changes and these changes occur in the surroundings of Lys69. Our results led us to suggest that reversal of a negative charge at a pocket has a larger effect on stability than a similar reversal at a protrusion and that this difference arises largely from short-range interactions with polar groups within the pocket, rather than long-range interactions with solvent-exposed charged groups.  相似文献   

7.
Summary The occurrence of the dominant ‘whey’ protein in samples of milk from 1180 sows is examined. It exhibits genetic polymorphism with some unusual features. Although immunologically different from bovine β-lactoglobulin, it is shown by chemical studies of the isolated protein to be a β-lactoglobulin. Two homozygous genetic variants, designated porcine β-lactoglobulin A and C, are isolated and their amino acid compositions and peptide maps compared. It is shown that the C variant has +1 His, −1 Gln, and +1 Asp, −1 Glu, with respect to the A variant. These variants, containingca. 162 residues per molecule, are considered in relationship to porcine β-lactoglobulins isolated by other workers. The sequence of the first 50 residues is determined and compared with sequence of the bovine protein. The sequences ofca. 70% of the remaining residues is proposed on the basis of the composition of tryptic peptides and assumed homology.  相似文献   

8.
Retinoid X receptors (RXRα, β and γ) are recently known to be cancer chemotherapies targets. The ligand binding domains of RXRs have been crystallized, but the information of RXRγ ligand binding site is not yet available due to the lack of liganded complex. A thorough understanding of the ligand binding sites is essential to study RXRs and may result in cancer therapeutic breakthrough. Thus we aimed to study the RXRγ ligand binding site and find out the differences between the three subtypes. Alignment and molecular simulation were carried out for identifying the RXRγ ligand binding site, characterizing the RXRγ ligand binding mode and comparing the three RXRs. The result has indicated that the RXRγ ligand binding site is defined by helices H5, H10, β-sheet s1 and the end loop. Besides hydrophobic interactions, the ligand 9-cis retinoic acid interacts with RXRγ through a hydrogen bond with Ala106, a salt bridge with Arg95 and the π-π interactions with Phe217 and Phe218. The binding modes exhibit some similarities among RXRs, such as the interactions with Arg95 and Ala106. Nonetheless, owing to the absence of Ile47, Cys48, Ala50, Ala51 and residues 225∼237 in the active site, the binding pocket in RXRγ is two times larger than those of RXRα and RXRβ. Meanwhile, spatial effects of Trp84, Arg95, Ala106, Phe217 and Phe218 help to create a differently shaped binding pocket as compared to those of RXRα and RXRβ. Consequently, the ligand in RXRγ undergoes a “standing” posing which is distinct from the other two RXRs.  相似文献   

9.
Zhao Z  Hou J  Xie Z  Deng J  Wang X  Chen D  Yang F  Gong W 《The protein journal》2010,29(8):531-537
Research has shown that the palmitoyl group of α-tubulin mediates the hydrophobic interaction between microtubules and intracellular membranes and that palmitoylated tubulin plays a role in signal transduction. There are 20 cysteine residues per α/β tubulin heterodimer. C376 of α-tubulin was reported to be predominantly palmitoylated and C20, C213 and C305 of α-tubulin were palmitoylated at lower levels. The previous method used for the analysis of the palmitoylation sites on α-tubulin was based on 3H-labeling, enzymolysis, purification and sequencing. This approach, although efficient, is laborious. Mass spectrometry (MS), especially tandem MS, has been shown to be a successful method for identification of various post-translational modifications of proteins. We report here a convenient MS-based method to comprehensively analyze the palmitoylation sites of the α/β tubulin heterodimer. Acyl-biotinyl exchange chemistry and streptavidin agarose affinity purification were applied to enrich palmitoylated peptides from tubulin. After nano-LC-MS/MS analysis, database searching and manual analysis of the spectra revealed that 11 cysteine residues of the α/β tubulin heterodimer were palmitoylated.  相似文献   

10.
Newell JL  Fay PJ 《Biochemistry》2008,47(33):8786-8795
Factor VIII is activated by thrombin through proteolysis at Arg740, Arg372, and Arg1689. One region implicated in this exosite-dependent interaction is the factor VIII a2 segment (residues 711-740) separating the A2 and B domains. Residues 717-725 (DYYEDSYED) within this region consist of five acidic residues and three sulfo-Tyr residues, thus representing a high density of negative charge potential. The contributions of these residues to thrombin-catalyzed activation of factor VIII were assessed following mutagenesis of acidic residues to Ala or Tyr residues to Phe and expression and purification of the B-domainless proteins from stable-expressing cell lines. All mutations showed reduced specific activity from approximately 30% to approximately 70% of the wild-type value. While replacement of the Tyr residues showed little, if any, effect on rates of thrombin-catalyzed proteolysis of factor VIII and consequent activation, the acidic to Ala mutations Glu720Ala, Asp721Ala, Glu724Ala, and Asp725Ala showed decreased rates of proteolysis at each of the three P1 residues. Mutations at residues Glu724 and Asp725 were most affected with double mutations at these sites showing approximately 10-fold and approximately 30-fold reduced rates of cleavage at Arg372 and Arg1689, respectively. Factor VIII activation profiles paralleled the results assessing rates of proteolysis. Kinetic analyses revealed these mutations minimally affected apparent V max for thrombin-catalyzed cleavage but variably increased the K m for procofactor up to 7-fold, suggesting the latter parameter was dominant in reducing catalytic efficiency. These results suggest that residues Glu720, Asp721, Glu724, and Asp725 likely constitute an exosite-interactive region in factor VIII facilitating cleavages for procofactor activation.  相似文献   

11.
Mutation of Arg(423) at the N-domain of Na(+)/K(+)-ATPase resulted in a large decrease of both TNP-ATP and ATP binding. Thus, this residue, localized outside the binding pocket, seems to play a key role in supporting the proper structure and shape of the binding site. In addition, mutation of Glu(472) also caused a large decrease of both TNP-ATP and ATP binding. On the basis of our computer model, we hypothesized that a hydrogen bond between Arg(423) and Glu(472) supports the connection of two opposite halves of the ATP-binding pocket. To verify this hypothesis, we have also prepared the construct containing both these mutations. Binding of neither TNP-ATP nor ATP to this double mutant differed from binding to any of the single mutants. This strongly supported the existence of the hydrogen bond between Arg(423) and Glu(472). Similarly, the conserved residue Pro(489) seems to be substantial for the proper interaction of the third and fourth beta-strands of the N-domain, which both contain residues that take part in ATP binding. Mutation of Asp(443) affected only ATP, but not TNP-ATP, binding, suggesting that these ligands adopt different positions in the nucleotide-binding pocket. On the basis of a recently published crystal structure [H?kansson, K. O. (2003) J. Mol. Biol. 332, 1175-1182], we improved our model and computed the interaction of these two ligands with the N-domain. This model is in good agreement with all previously reported spectroscopic data and revealed that Asp(443) forms a hydrogen bond with the NH(2) group of the adenosine moiety of ATP, but not TNP-ATP.  相似文献   

12.
The structures of the native fructose-1,6-bisphosphatase (Fru-1,6-Pase), from pig kidney cortex, and its fructose 2,6-bisphosphate (Fru-2,6-P2) complexes have been refined to 2.8 A resolution to R-factors of 0.194 and 0.188, respectively. The root-mean-square deviations from the standard geometry are 0.021 A and 0.016 A for the bond length, and 4.4 degrees and 3.8 degrees for the bond angle. Four sites for Fru-2,6-P2 binding per tetramer have been identified by difference Fourier techniques. The Fru-2,6-P2 site has the shape of an oval cave about 10 A deep, and with other dimensions about 18 A by 12 A. The two Fru-2,6-P2 binding caves of the dimer in the crystallographically asymmetric unit sit next to one another and open in opposite directions. These two binding sites mutually exchange their Arg243 side-chains, indicating the potential for communication between the two sites. The beta, D-fructose 2,6-bisphosphate has been built into the density and refined well. The oxygen atoms of the 6-phosphate group of Fru-2,6-P2 interact with Arg243 from the adjacent monomer and the residues of Lys274, Asn212, Tyr264, Tyr215 and Tyr244 in the same monomer. The sugar ring primarily contacts with the backbone atoms from Gly246 to Met248, as well as the side-chain atoms, Asp121, Glu280 and Lys274. The 2-phosphate group interacts with the side-chain atoms of Ser124 and Lys274. A negatively charged pocket near the 2-phosphate group includes Asp118, Asp121 and Glu280, as well as Glu97 and Glu98. The 2-phosphate group showed a disordered binding perhaps because of the disturbance from the negatively charged pocket. In addition, Asn125 and Lys269 are located within a 5 A radius of Fru-2,6-P2. We argue that Fru-2,6-P2 binds to the active site of the enzyme on the basis of the following observations: (1) the structure similarity between Fru-2,6-P2 and the substrate; (2) sequence conservation of the residues directly interacting with Fru-2,6-P2 or located at the negatively charged pocket; (3) a divalent metal site next to the 2-phosphate group of Fru-2,6-P2; and (4) identification of some active site residues in our structure, e.g. tyrosine and Lys274, consistent with the results of the ultraviolet spectra and the chemical modification. The structures are described in detail including interactions of interchain surfaces, and the chemically modifiable residues are discussed on the basis of the refined structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Lactose/H(+) symport by lactose permease of Escherichia coli involves interactions between four irreplaceable charged residues in transmembrane helices that play essential roles in H(+) translocation and coupling [Glu269 (helix VIII) with His322 (helix X) and Arg302 (helix IX) with Glu325 (helix X)], as well as Glu126 (helix IV) and Arg144 (helix V) which are obligatory for substrate binding. The conservative mutation Glu325-->Asp causes a 10-fold reduction in the V(max) for active lactose transport and markedly decreased lactose-induced H(+) influx with no effect on exchange or counterflow, neither of which involves H(+) symport. Thus, shortening the side chain may weaken the interaction of the carboxyl group at position 325 with the guanidino group of Arg302. Therefore, Gly-scanning mutagenesis of helices IX and X and the intervening loop was employed systematically with mutant Glu325-->Asp in an effort to rescue function by introducing conformational flexibility between the two helices. Five Gly replacement mutants in the Glu325-->Asp background are identified that exhibit significantly higher transport activity. Furthermore, mutant Val316-->Gly/Glu325-->Asp catalyzes active transport, efflux, and lactose-induced H(+) influx with kinetic properties approaching those of wild-type permease. It is proposed that introduction of conformational flexibility at the interface between helices IX and X improves juxtapositioning between Arg302 and Asp325 during turnover, thereby allowing more effective deprotonation of the permease on the inner surface of the membrane [Sahin-Tóth, M., Karlin, A., and Kaback, H. R. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 10729-10732.  相似文献   

14.
3-Hydroxyanthranilic acid 3,4-dioxygenase (3HAO) is a non-heme ferrous extradiol dioxygenase in the kynurenine pathway from tryptophan. It catalyzes the conversion of 3-hydroxyanthranilate (HAA) to quinolinic acid (QUIN), an endogenous neurotoxin, via the activation of N-methyl-D-aspartate (NMDA) receptors and the precursor of NAD(+) biosynthesis. The crystal structure of 3HAO from S. cerevisiae at 2.4 A resolution shows it to be a member of the functionally diverse cupin superfamily. The structure represents the first eukaryotic 3HAO to be resolved. The enzyme forms homodimers, with two nickel binding sites per molecule. One of the bound nickel atoms occupies the proposed ferrous-coordinated active site, which is located in a conserved double-strand beta-helix domain. Examination of the structure reveals the participation of a series of residues in catalysis different from other extradiol dioxygenases. Together with two iron-binding residues (His49 and Glu55), Asp120, Asn51, Glu111, and Arg114 form a hydrogen-bonding network; this hydrogen-bond network is key to the catalysis of 3HAO. Residues Arg101, Gln59, and the substrate-binding hydrophobic pocket are crucial for substrate specificity. Structure comparison with 3HAO from Ralstonia metallidurans reveals similarities at the active site and suggests the same catalytic mechanism in prokaryotic and eukaryotic 3HAO. Based on sequence comparison, we suggest that bicupin of human 3HAO is the first example of evolution from a monocupin dimer to bicupin monomer in the diverse cupin superfamilies. Based on the model of the substrate HAA at the active site of Y3HAO, we propose a mechanism of catalysis for 3HAO.  相似文献   

15.
Relaxin-3 is a newly identified insulin/relaxin superfamily peptide that plays a putative role in the regulation of food intake and stress response by activating its cognate G-protein-coupled receptor RXFP3. Relaxin-3 has three highly conserved arginine residues, B12Arg, B16Arg and B26Arg. We speculated that these positively charged arginines may interact with certain negatively charged residues of RXFP3. To test this hypothesis, we first replaced the negatively charged residues in the extracellular domain of RXFP3 with arginine, respectively. Receptor activation assays showed that arginine replacement of Glu141 or Asp145, especially Glu141, significantly decreased the sensitivity of RXFP3 to wild-type relaxin-3. In contrast, arginine replacement of other negatively charged extracellular residues had little effect. Thus, we deduced that Glu141 and Asp145, locating at the extracellular end of the second transmembrane domain, played a critical role in the interaction of RXFP3 with relaxin-3. To identify the ligand residues interacting with the negatively charged EXXXD motif of RXFP3, we replaced the three conserved arginines of relaxin-3 with negatively charged glutamate or aspartate, respectively. The mutant relaxin-3s retained the native structure, but their binding and activation potencies towards wild-type RXFP3 were decreased significantly. The compensatory effects of the mutant relaxin-3s towards mutant RXFP3s suggested two probable interaction pairs during ligand–receptor interaction: Glu141 of RXFP3 interacted with B26Arg of relaxin-3, meanwhile Asp145 of RXFP3 interacted with both B12Arg and B16Arg of relaxin-3. Based on these results, we proposed a relaxin-3/RXFP3 interaction model that shed new light on the interaction mechanism of the relaxin family peptides with their receptors.  相似文献   

16.
Vinblastine (VLB) is one of vinca alkaloids with high cytotoxicity toward cancer cells approved for clinical use. However, because of drug resistance, toxicity, and other side effects caused from the use of VLB, new vinca alkaloids with higher cytotoxicity toward cancer cells and other good qualities need to develop. One strategy is to further study and better understand the essence why VLB possesses the high cytotoxicity toward cancer cells. In present work, by using molecular simulation, molecular docking, density functional calculation, and the crystal structure of α,β-tubulin complex, we find two modes labeled in catharanthine moiety (CM) and vindoline moiety (VM) modes of VLB bound with the interface of α,β-tubulin to probe the essence why VLB has the high cytotoxicity toward cancer cells. In the CM mode, nine key residues B-Ser178, B-Asp179, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, C-Lys336, and C-Lys352 from the α,β-tubulin complex are determined as the active sites for the interaction of VLB with α,β-tubulin. Some of them such as B-Ser178, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, and C-Lys336 are newly identified as the active sites in present work. The affinity between VLB and the active pocket within the interface of α,β-tubulin is ?60.8 kJ mol?1 in the CM mode. In the VM mode, that is a new mode established in present paper, nine similar key residues B-Lys176, B-Ser178, B-Asp179, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, and C-Lys336 from the α,β-tubulin complex are found as the active sites for the interaction with VLB. The difference is from one key residue C-Lys352 in the CM mode changed to the key residue B-Lys176 in the VM mode. The affinity between VLB and the active pocket within the interface of α,β-tubulin is ?96.3 kJ mol?1 in the VM mode. Based on the results obtained in present work, and because VLB looks like two faces, composed of CM and VM both to have similar polar active groups, to interact with the active sites, we suggest double-faces sticking mechanism for the binding of VLB to the interface of α,β-tubulin. The double-faces sticking mechanism can be used to qualitatively explain high cytotoxicity toward cancer cells of vinca alkaloids including vinblastine, vincristine, vindestine, and vinorelbine approved for clinical use and vinflunine still in a phase III clinical trial. Furthermore, this mechanism will be applied to develop novel vinca alkaloids with much higher cytotoxicity toward cancer cells.  相似文献   

17.
The selectivity filter and adjacent regions in the bacterial KcsA and inwardly rectifying K+ (Kir) channels reveal significant conformational changes that cause the channel pore to transition from an activated to inactive state (C-type inactivation) once the channel is open. The meshwork of residues stabilizing the pore of KcsA involves Glu71–Asp80 carboxyl–carboxylate interaction ‘behind’ the selectivity filter. Interestingly, the Kir channels do not have this exact interaction, but instead have a Glu–Arg salt bridge where the Glu is in the same position but the Arg is one position N-terminal compared to the Asp in KcsA. Also, the Kir channels lack the Trp that hydrogen bonds to Asp80 in KcsA. Here, the sequence and structural information are combined to understand the dissimilarity in the role of the pore-helix Glu in stabilizing the pore structure in KcsA and Kir channels. This review illustrates that although Glu is quite conserved among both types of channels, the network of interactions is not translatable from one channel to the other; thereby suggesting a unique phenomenon of diverse gating patterns in K+ channels.  相似文献   

18.
Guan L  Nakae T 《Journal of bacteriology》2001,183(5):1734-1739
The MexABM efflux pump exports structurally diverse xenobiotics, utilizing the proton electrochemical gradient to confer drug resistance on Pseudomonas aeruginosa. The MexB subunit traverses the inner membrane 12 times and has two, two, and one charged residues in putative transmembrane segments 2 (TMS-2), TMS-4, and TMS-10, respectively. All five residues were mutated, and MexB function was evaluated by determining the MICs of antibiotics and fluorescent dye efflux. Replacement of Lys342 with Ala, Arg, or Glu and Glu346 with Ala, Gln, or Asp in TMS-2 did not have a discernible effect. Ala, Asn, or Lys substitution for Asp407 in TMS-4, which is well conserved, led to loss of activity. Moreover, a mutant with Glu in place of Asp407 exhibited only marginal function, suggesting that the length of the side chain at this position is important. The only replacements for Asp408 in TMS-4 or Lys939 in TMS-10 that exhibited significant function were Glu and Arg, respectively, suggesting that the native charge at these positions is required. In addition, double neutral mutants or mutants in which the charged residues Asp407 and Lys939 or Asp408 and Lys939 were interchanged completely lost function. An Asp408-->Glu/Lys939-->Arg mutant retained significant activity, while an Asp407-->Glu/Lys939-->Arg mutant exhibited only marginal function. An Asp407-->Glu/Asp408-->Glu double mutant also lost activity, but significant function was restored by replacing Lys939 with Arg (Asp407-->Glu/Asp408-->Glu/Lys939-->Arg). Taken as a whole, the findings indicate that Asp407, Asp408, and Lys939 are functionally important and raise the possibility that Asp407, Asp408, and Lys939 may form a charge network between TMS-4 and TMS-10 that is important for proton translocation and/or energy coupling.  相似文献   

19.
Su P  Scheiner-Bobis G 《Biochemistry》2004,43(16):4731-4740
P-type ATPases such as the sodium pump appear to be members of a superfamily of hydrolases structurally typified by the L-2-haloacid dehalogenases. In the dehalogenase L-DEX-ps, Lys151 serves to stabilize the excess negative charge in the substrate/reaction intermediates and Asp180 coordinates a water molecule that is directly involved in ester intermediate hydrolysis. To investigate the importance of the corresponding Lys691 and Asp714 of the sodium pump alpha subunit, sodium pump mutants were expressed in yeast and analyzed for their properties. Lys691Ala, Lys691Asp, Asp714Ala, and Asp714Arg mutants were inactive, not only with respect to ATPase activity but also to interaction with the highly sodium pump-specific inhibitors ouabain or palytoxin (PTX). In contrast, conservative mutants Lys691Arg and Asp714Glu retained some of the partial activities of the wild-type enzyme, although they completely failed to display any ATPase activity. Yeast cells expressing Lys691Arg and Asp714Glu mutants are sensitive to the sodium pump-specific inhibitor PTX and lose intracellular K+. Their sensitivity to PTX, with EC50 values of 118 +/- 24 and 76.5 +/- 3.6 nM, respectively, was clearly reduced by almost 7- or 4-fold below that of the native sodium pump (17.8 +/- 2.7 nM). Ouabain was recognized under these conditions with low affinity by the mutants and inhibited the PTX-induced K+ efflux from the yeast cells. The EC50 for the ouabain effect was 183 +/- 20 microM for Lys691Arg and 2.3 +/- 0.08 mM for the Asp714Glu mutant. The corresponding value obtained with cells expressing the native sodium pump was 69 +/- 18 microM. In the presence of Pi and Mg2+, none of the mutant sodium pumps were able to bind ouabain. When Mg2+ was omitted, however, both Lys691Asp and Asp714Glu mutants displayed ouabain binding that was reduced by Mg2+ with an EC50 of 0.76 +/- 0.11 and 2.3 +/- 0.2 mM, respectively. In the absence of Mg2+, ouabain binding was also reduced by K+. The EC50 values were 1.33 +/- 0.23 mM for the wild-type enzyme, 0.93 +/- 0.2 mM for the Lys691Arg mutant, and 1.02 +/- 0.24 mM for the Asp714Glu enzyme. None of the neutral or nonconservative mutants displayed any ouabain-sensitive ATPase activity. Ouabain-sensitive phosphatase activity, however, was present in membranes containing either the wild-type (1105 +/- 100 micromol of p-nitrophenol phosphate hydrolyzed min(-1) mg of protein(-1)) or the Asp714Glu mutant (575 +/- 75 micromol min(-1) mg(-1)) sodium pump. Some phosphatase activity was also associated with the Lys691Arg mutant (195 +/- 63 micromol min(-1) mg(-1)). The results are consistent with Lys691 and Asp714 being essential for the phosphorylation/dephosphorylation process that allows the sodium pump to accomplish the catalytic cycle.  相似文献   

20.
The sensitivity of the homobasidiomyceteCoprinus cinereus to the benzimidazole fungicide benomyl allowed us to isolate β-tubulin mutants as strains resistant to benomyl. To understand the molecular basis for the interaction between benomyl and β tubulin and for cellular defects in the β-tubulin mutants, we first analyzed the wild-type β1-tubulin gene (benA) ofC. cinereus, revealing thatbenA contains eight introns and encodes a 445 amino-acid protein. We then characterized 16 β1-tubulin mutants. The 16 mutations involved 11 different amino-acid substitutions at 10 different residues in β1 tubulin. The mutated residues were widely distributed along the primary sequence of β1 tubulin, from residue 3 in the N-terminal domain to residue 350 in the intermediate domain, but half of them appeared to be close to the αβ intradimer interface in an atomic model determined by electron crystallography. The benomyl resistant strain BEN 193, which exhibits clear heat sensitivity for hyphal growth and defects in various cellular processes, had a novel mutation, i.e., the Leu to Phe substitution at residue 350. Benomyl resistance and the heat sensitivity in BEN 193 were suppressed by additional amino-acid substitutions at various residues in β1 tubulin, suggesting that conformational changes of β1 tubulin are involved in the alterations. The DDBJ/GeneBank/EMBL accession number for the sequence reported in this paper is AB000116.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号