首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution structure and dynamics of sucrose are examined using a combination of NMR residual dipolar coupling and molecular mechanics force fields. It is found that the alignment tensors of the individual rings are different, and that fitting 35 measured residual dipolar couplings to structures with specific phi, psi values indicates the presence of three major conformations: phi, psi=(120 degrees ,270 degrees), (45 degrees, 300 degrees) and (90 degrees ,180 degrees). Furthermore, fitting two structures simultaneously to the 35 residual dipolar couplings results in a substantial improvement in the fits. The existence of multiple conformations having similar stabilities is a strong indication of motion, due to the interconversion among these states. Results from four molecular mechanics force fields are in general agreement with the experimental results. However, there are major disagreements between force fields. Because fits of residual dipolar couplings to structures are dependent on the force field used to calculate the structures, multiple force fields were used to interpret NMR data. It is demonstrated that the pucker of the fructofuranosyl ring affects the calculated potential energy surface, and the fit to the residual dipolar couplings data. Previously published 13C nuclear relaxation results suggesting that sucrose is rigid are not inconsistent with the present results when motional timescales are considered.  相似文献   

2.
David R. Koes  John K. Vries 《Proteins》2017,85(10):1944-1956
NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1H, 15N, and 13Ca atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields.  相似文献   

3.
Cothros N  Wong J  Gribble PL 《PloS one》2008,3(4):e1990

Background

Previous studies of learning to adapt reaching movements in the presence of novel forces show that learning multiple force fields is prone to interference. Recently it has been suggested that force field learning may reflect learning to manipulate a novel object. Within this theoretical framework, interference in force field learning may be the result of static tactile or haptic cues associated with grasp, which fail to indicate changing dynamic conditions. The idea that different haptic cues (e.g. those associated with different grasped objects) signal motor requirements and promote the learning and retention of multiple motor skills has previously been unexplored in the context of force field learning.

Methodology/Principle Findings

The present study tested the possibility that interference can be reduced when two different force fields are associated with differently shaped objects grasped in the hand. Human subjects were instructed to guide a cursor to targets while grasping a robotic manipulandum, which applied two opposing velocity-dependent curl fields to the hand. For one group of subjects the manipulandum was fitted with two different handles, one for each force field. No attenuation in interference was observed in these subjects relative to controls who used the same handle for both force fields.

Conclusions/Significance

These results suggest that in the context of the present learning paradigm, haptic cues on their own are not sufficient to reduce interference and promote learning multiple force fields.  相似文献   

4.
Does the observation of well-timed movements imply the existence of some internal representation of time, such as a hypothetical neural clock? Here we report the results of experiments designed to investigate whether subjects form a correct adaptive representation of mechanical environments that change in a very predictable manner. In these experiments, subjects were asked to execute arm movements over a two-dimensional workspace while experiencing time-dependent disturbing forces. We provide a formal definition for time representation and conclude that our subjects didn't use time representation for motor adaptation under the tested conditions. Subjects performed arm-reaching movements in the following experiments: (1) six experiments in a sinusoidal time-varying force field; (2) six experiments in a simple sequence of alternating viscous force fields, in which the number of targets allowed for the approximation of the force by a complex state-dependent force field; and (3) six experiments in the same simple sequence of alternating viscous force fields, in which no state-dependent force field approximation was possible. We found that the subjects did not adapt to the time-varying force field and were unable to form an adequate representation of the simple sequence of force fields. In the latter case, whenever possible, they adapted to a single state-dependent field that produced forces similar to the two alternating fields. This state-dependent field produced the same forces as the applied sequence of fields only over the trajectories that subjects executed during the training phase. However, the state-dependent field was inadequate to produce the correct forces generated by the field sequence over a new set of trajectories.These results are not consistent with the hypothesis that subjects would develop a correct representation of time-dependent forces, at least under the tested circumstances. We speculate that the system responsible for adaptation of movements to external forces may be unable to employ temporal representation. While it is possible that such a representation may emerge in a more prolonged and/or intense training, our findings indicate a preference by the adaptive system to generalize based on representing dependence of external forces upon state rather than upon time.  相似文献   

5.
Effects of static magnetic fields on diffusion in solutions   总被引:2,自引:0,他引:2  
Static magnetic fields affect the diffusion of biological particles in solutions through the Lorentz force and Maxwell stress. These effects were analyzed theoretically to estimate the threshold field strength for these effects. Our results show that the Lorentz force suppresses the diffusion of charged particles such as Na+, K+, Ca2+, Cl-, and plasma proteins. However, the threshold is so high, i.e., more than 10(4) T, that the Lorentz force does not affect the ion diffusion at typical field strengths (a few Tesla at most). Since the threshold of gradient fields for producing a change in ion diffusion through the Maxwell stress is more than 10(5) T2/m for paramagnetic molecules (FeCl3, O2) and plasma proteins, their diffusion would be unaffected by typical gradient fields (100 T2/m at most) and even by high gradient fields (less than 10(5) T2/m) used in magnetic separation techniques. In contrast, movement of deoxygenated erythrocytes and FeCl3 colloids (more than 10(3) molecules) is influenced by the usual gradient fields due to a volume effect.  相似文献   

6.
Gnanakaran S  García AE 《Proteins》2005,59(4):773-782
The force fields used in classical modeling studies are semiempirical in nature and rely on their validation by comparison of simulations with experimental data. The all-atom replica-exchange molecular dynamics (REMD) methodology allows us to calculate the thermodynamics of folding/unfolding of peptides and small proteins, and provides a way of evaluating the reliability of force fields. We apply the REMD to obtain equilibrium folding/unfolding thermodynamics of a 21-residue peptide containing only alanine residues in explicit aqueous solution. The thermodynamics of this peptide is modeled with both the OPLS/AA/L and the A94/MOD force fields. We find that the helical content and the values for the helix propagation and nucleation parameters for this alanine peptide are consistent with measurements on similar peptides and with calculations using the modified AMBER force field (A94/MOD). The nature of conformations, both folded and unfolded, that contributes to the helix-coil transition profile, however, is quite different between these two force fields.  相似文献   

7.
Recent modifications and improvements to standard nucleic acid force fields have attempted to fix problems and issues that have been observed as longer timescale simulations have become routine. Although previous work has shown the ability to fold the UUCG stem–loop structure, until now no group has attempted to quantify the performance of current force fields using highly converged structural populations of the tetraloop conformational ensemble. In this study, we report the use of multiple independent sets of multidimensional replica exchange molecular dynamics (M-REMD) simulations with different initial conditions to generate well-converged conformational ensembles for the tetranucleotides r(GACC) and r(CCCC), as well as the larger UUCG tetraloop motif. By generating what is to our knowledge the most complete RNA structure ensembles reported to date for these systems, we remove the coupling between force field errors and errors due to incomplete sampling, providing a comprehensive comparison between current top-performing MD force fields for RNA. Of the RNA force fields tested in this study, none demonstrate the ability to correctly identify the most thermodynamically stable structure for all three systems. We discuss the deficiencies present in each potential function and suggest areas where improvements can be made. The results imply that although “short” (nsec-μsec timescale) simulations may stay close to their respective experimental structures and may well reproduce experimental observables, inevitably the current force fields will populate alternative incorrect structures that are more stable than those observed via experiment.  相似文献   

8.
We performed folding simulations of three proteins using four force fields, AMBER parm96, AMBER parm99, CHARMM 27 and OPLS-AA/L, in order to examine the features of these force fields. We studied three proteins, protein A (all α-helix), cold-shock protein (all β-strand) and protein G (α/β-structures), for the folding simulations. For the simulation, we used the simulated annealing molecular dynamics method, which was performed 50 times for each protein using the four force fields. The results showed that the secondary-structure-forming tendencies are largely different among the four force fields. AMBER parm96 favours β-bridge structures and extended β-strand structures, and AMBER parm99 favours α-helix structures and 310-helix structures. CHARMM 27 slightly favours α-helix structures, and there are also π-helix and β-bridge structures. OPLS-AA/L favours α-helix structures and 310-helix structures.  相似文献   

9.
We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5′ ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.  相似文献   

10.
A quantitative evaluation of 20 second-generation carbohydrate force fields was carried out using ab initio and density functional methods. Geometry-optimized structures (B3LYP/6-31G(d)) and relative energies using augmented correlation consistent basis sets were calculated in gas phase for monosaccharide carbohydrate benchmark systems. Selected results are: (i). The interaction energy of the alpha-d-glucopyranose.H(2)O heterodimer is estimated to be 4.9 kcal/mol, using a composite method including terms at highly correlated (CCSD(T)) level. Most molecular mechanics force fields are in error in this respect; (ii). The (3)E envelope (south) pseudorotational conformer of methyl 5-deoxy-beta-d-xylofuranoside is 0.66 kcal/mol more stable than the (3)E envelope (north) conformer and the alpha-anomer of methyl d-glucopyranoside is 0.82 kcal/mol more stable than the beta-anomer; (iii). The relative energies of the (gg, gt and tg) rotamers of methyl alpha-d-glucopyranoside and methyl alpha-d-galactopyranoside are (0.13, 0.00, 0.15) and (0.64, 0.00, 0.77) kcal/mol, respectively. The results of the quantum mechanical calculations are compared with the results of calculations using the 20 second-generation carbohydrate force fields. No single force field is consistently better than the others for all the test cases. A statistical assessment of the performance of the force fields indicates that CHEAT(95), CFF, certain versions of Amber and of MM3 have the best overall performance, for these gas phase monosaccharide systems.  相似文献   

11.
The applications of atomic force microscopy and the methods based on atomic force microscopy that can be useful in medical nanoanalytics have been reviewed. The main fields of possible application of scanning probe microscopy in medicine have been outlined. Among these are studying the resistance of bacterial cells to modern antibiotics and drugs, morphological analysis of blood components, trichology, nanotoxicology, DNA sequencing, and biocompatibility of medicinal materials. Examples of application of atomic force microscopy for studies in these fields have been considered, and prospects for its use in medicine have been demonstrated.  相似文献   

12.
The applications of atomic force microscopy and the methods based on atomic force microscopy that can be useful in medical nanoanalytics have been reviewed. The main fields of possible application of scanning probe microscopy in medicine have been outlined. Among these are studying the resistance of bacterial cells to modern antibiotics and drugs, morphological analysis of blood components, trichology, nanotoxicology, DNA sequencing, and biocompatibility of medicinal materials. Examples of application of atomic force microscopy for studies in these fields have been considered, and prospects for its use in medicine have been demonstrated.  相似文献   

13.
The conformational space and structural ensembles of amyloid beta (Aβ) peptides and their oligomers in solution are inherently disordered and proven to be challenging to study. Optimum force field selection for molecular dynamics (MD) simulations and the biophysical relevance of results are still unknown. We compared the conformational space of the Aβ(1‐40) dimers by 300 ns replica exchange MD simulations at physiological temperature (310 K) using: the AMBER‐ff99sb‐ILDN, AMBER‐ff99sb*‐ILDN, AMBER‐ff99sb‐NMR, and CHARMM22* force fields. Statistical comparisons of simulation results to experimental data and previously published simulations utilizing the CHARMM22* and CHARMM36 force fields were performed. All force fields yield sampled ensembles of conformations with collision cross sectional areas for the dimer that are statistically significantly larger than experimental results. All force fields, with the exception of AMBER‐ff99sb‐ILDN (8.8 ± 6.4%) and CHARMM36 (2.7 ± 4.2%), tend to overestimate the α‐helical content compared to experimental CD (5.3 ± 5.2%). Using the AMBER‐ff99sb‐NMR force field resulted in the greatest degree of variance (41.3 ± 12.9%). Except for the AMBER‐ff99sb‐NMR force field, the others tended to under estimate the expected amount of β‐sheet and over estimate the amount of turn/bend/random coil conformations. All force fields, with the exception AMBER‐ff99sb‐NMR, reproduce a theoretically expected β‐sheet‐turn‐β‐sheet conformational motif, however, only the CHARMM22* and CHARMM36 force fields yield results compatible with collapse of the central and C‐terminal hydrophobic cores from residues 17‐21 and 30‐36. Although analyses of essential subspace sampling showed only minor variations between force fields, secondary structures of lowest energy conformers are different.  相似文献   

14.
Molecular dynamics simulations of membrane proteins have become a popular tool for studying their dynamic features, which are not easily accessible by experiments. Whether the force fields developed for globular proteins are adequate this purpose is an important question that is often glossed over. Here we determine the permeation properties of potassium ions in the gramicidin A channel in a lipid bilayer from free energy simulations, and compare the results to experimental data. In particular, we check the dependence of the free energy barriers ions face at the channel center on the membrane size. The results indicate that there is a serious problem with the current rigid force fields independent of the membrane size, and new, possibly polarizable, force fields need to be developed to resolve this problem.  相似文献   

15.
ABSTRACT

Molecular dynamics simulations are more frequently being utilised to predict macroscale mechanical properties as a result of atomistic defects. However, the interatomic force field can significantly affect the resulting mechanical properties. While several studies exist which demonstrate the ability of various force fields to predict mechanical properties, the investigation into which is most accurate for the investigation of vacancies is limited. To obtain meaningful predictions of mechanical properties, a clear understanding of force field parameterisation is required. As such, the current study evaluates various many-body force fields to demonstrate the reduction in mechanical properties of iron and iron–chromium due to the presence of vacancies while undergoing room temperature atomistic uniaxial tension. Reduction was normalised in each case with the zero-vacancy elastic modulus, removing the need to predict an accurate nominal elastic modulus. Comparisons were made to experimental data and an empirical model from literature. It was demonstrated that accurate fitting to vacancy formation and migration energy allowed for accurate predictions. In addition, bond-order based force fields showed enhanced predictions regardless of fitting procedure. Overall, these findings highlight the need to understand capabilities and limitations of available force fields, as well as the need for enhanced parameterisation of force fields.  相似文献   

16.
Computational models of motor control have often explained the straightness of horizontal planar reaching movements as a consequence of optimal control. Departure from rectilinearity is thus regarded as sub-optimal. Here we examine if subjects may instead select to make curved trajectories following adaptation to force fields and visuomotor rotations. Separate subjects adapted to force fields with or without visual feedback of their hand trajectory and were retested after 24 hours. Following adaptation, comparable accuracies were achieved in two ways: with visual feedback, adapted trajectories in force fields were straight whereas without it, they remained curved. The results suggest that trajectory shape is not always straight, but is also influenced by the calibration of available feedback signals for the state estimation required by the task. In a follow-up experiment, where additional subjects learned a visuomotor rotation immediately after force field, the trajectories learned in force fields (straight or curved) were transferred when directions of the perturbations were similar but not when directions were opposing. This demonstrates a strong bias by prior experience to keep using a recently acquired control policy that continues to produce successful performance inspite of differences in tasks and feedback conditions. On relearning of force fields on the second day, facilitation by intervening visuomotor rotations occurred only when required motor adjustments and calibration of feedback signals were similar in both tasks. These results suggest that both the available feedback signals and prior history of learning influence the choice and maintenance of control policy during adaptations.  相似文献   

17.
Accurate force fields are essential for the success of molecular dynamics simulations. In apparent contrast to the conformational preferences of most force fields, recent NMR experiments suggest that short polyalanine peptides in water populate the polyproline II structure almost exclusively. To investigate this apparent contradiction, with its ramifications for the assessment of molecular force fields and the structure of unfolded proteins, we performed extensive simulations of Ala5 in water (∼5 μs total time), using twelve different force fields and three different peptide terminal groups. Using either empirical or density-functional-based Karplus relations for the J-couplings, we find that most current force fields do overpopulate the α-region, with quantitative results depending on the choice of Karplus relation and on the peptide termini. Even after reweighting to match experiment, we find that Ala5 retains significant α- and β-populations. In fact, several force fields match the experimental data well before reweighting and have a significant helical population. We conclude that radical changes to the best current force fields are not necessary, based on the NMR data. Nevertheless, experiments on short peptides open the way toward the systematic improvement of current simulation models.  相似文献   

18.
We use the well-known structural and functional properties of the gramicidin A channel to test the appropriateness of force fields commonly used in molecular dynamics (MD) simulations of ion channels. For this purpose, the high-resolution structure of the gramicidin A dimer is embedded in a dimyristoylphosphatidylcholine bilayer, and the potential of mean force of a K(+) ion is calculated along the channel axis using the umbrella sampling method. Calculations are performed using two of the most common force fields in MD simulations: CHARMM and GROMACS. Both force fields lead to large central barriers for K(+) ion permeation, that are substantially higher than those deduced from the physiological data by inverse methods. In long MD simulations lasting over 60 ns, several ions are observed to enter the binding site but none of them crossed the channel despite the presence of a large driving field. The present results, taken together with many earlier studies, highlights the shortcomings of the standard force fields used in MD simulations of ion channels and calls for construction of more appropriate force fields for this purpose.  相似文献   

19.
Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side‐chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha‐helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side‐chain torsion potentials of these residues to match new, high‐level quantum‐mechanical calculations. Finally, we used microsecond‐timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side‐chain conformations. The new force field, which we have termed Amber ff99SB‐ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号