首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Deacetoxycephalosporin C (DAOC) is produced by Acremonium chrysogenum as an intermediate compound in the cephalosporin C biosynthetic pathway, and is present in small quantities in cephalosporin C fermentation broth. This compound forms an undesirable impurity, 7-aminodeacetoxycephalosporanic acid (7-ADCA), when the cephalosporin C is converted chemically or enzymatically to 7-aminocephalosporanic acid (7-ACA). In the cephalosporin C biosynthetic pathway of A. chrysogenum, the bifunctional expandase/hydroxylase enzyme catalyzes the conversion of penicillin N to DAOC and subsequently deacetylcephalosporin C (DAC). By genetically engineering strains for increased copy number of the expandase/hydroxylase gene, we were able to reduce the level of DAOC present in the fermentation broth to 50% of the control. CHEF gel electrophoresis and Southern analysis of DNA from two of the transformants revealed that one copy of the transforming plasmid had integrated into chromosome VIII (ie a heterologous site from the host expandase/hydroxylase gene situated on chromosome II). Northern analysis indicated that the amount of transcribed expandase/hydroxylase mRNA in one of the transformants is increased approximately two-fold over that in the untransformed host. Received 5 January 1998/ Accepted in revised form 29 May 1998  相似文献   

2.
The case studies focus on two types of enzyme applications for pharmaceutical development. Demethylmacrocin O-methyltransferase, macrocin O-methyltransferase (both putatively rate-limiting) and tylosin reductase were purified from Streptomyces fradiae, characterized and the genes manipulated for increasing tylosin biosynthesis in S. fradiae. The rate-limiting enzyme, deacetoxycephalosporin C (DAOC) synthase/hydroxylase (expandase/ hydroxylase), was purified from Cephalosporium acremonium, its gene over-expressed, and cephalosporin C biosynthesis improved in C. acremonium. Also, heterologous expression of penicillin N epimerase and DAOC synthase (expandase) genes of Streptomyces clavuligerus in Penicillium chrysogenum permitted DAOC production in the fungal strain. Second, serine hydroxymethyltransferase of Escherichia coli and phthalyl amidase of Xanthobacter agilis were employed in chemo-enzymatic synthesis of carbacephem. Similarly, echinocandin B deacylase of Actinoplanes utahensis was used in the second-type synthesis of the ECB antifungal agent. Received 07 March 1997/ Accepted in revised form 15 June 1997  相似文献   

3.
Summary In the last decade numerous genes involved in the biosynthesis of antibiotics, pigments, herbicides and other secondary metabolites have been cloned. The genes involved in the biosynthesis of penicillin, cephalosporin and cephamycins are organized in clusters as occurs also with the biosynthetic genes of other antibiotics and secondary metabolites (see review by Martín and Liras [65]). We have cloned genes involved in the biosynthesis of -lactam antibiotics from five different -lactam producing organisms both eucaryotic (Penicillium chrysogenum, Cephalosporium acremonium (syn.Acremonium chrysogenum) Aspergillus nidulans) and procaryotic (Nocardia lactamdurans, Streptomyces clavuligerus). InP. chrysogenum andA. nidulans the organization of thepcbAB,pcbC andpenDE genes for ACV synthetase, IPN synthase and IPN acyltransferase showed a similar arrangement. InA. chrysogenum two different clusters of genes have been cloned. The cluster of early genes encodes ACV synthetase and IPN synthase, whereas the cluster of late genes encodes deacetoxycephalosporin C synthetase/hydroxylase and deacetylcephalosporin C acetyltransferase. InN. lactamdurans andS. clavuligerus a cluster of early cephamycin genes has been fully characterized. It includes thelat (for lysine-6-aminotransferase),pcbAB (for ACV synthase) andpcbC (for IPN synthase) genes. Pathway-specific regulatory genes which act in a positive (or negative) form are associated with clusters of genes involved in antibiotic biosynthesis. In addition, widely acting positive regulatory elements exert a pleiotropic control on secondary metabolism and differentiation of antibiotic producing microorganisms.The application of recombinant DNA techniques will contribute significantly to the improvement of fermentation organisms.  相似文献   

4.
Cephalosporin C (CPC) fermentation by Acremonium chrysogenum featured with two major problems: (1) high raw materials cost (low CPC yield from soybean oil) and (2) low oxygen transfer rate between gaseous/aqueous phases leading to low CPC productivity and quality instability of CPC fermentation product due to the accumulation of deacetoxycephalosporin C (DAOC). To solve the problems, in this study, we proposed a novel DO-Stat based co-substrates feeding strategy by simultaneously supplementing soybean oil and glucose, and testified the effectiveness of the strategy in a 7 L bioreactor. The CPC fermentation performance were significantly improved when co-feeding soybean oil and glucose at a weight ratio of 1:0.7, as compared with those when feeding pure soybean oil: (1) final CPC concentration and yield reached higher levels of 37 g/L and 23.5%, the increments were 46% and 82%, respectively; (2) oxygen transfer rate was largely improved, oil consumption rate and CPC productivity were enhanced by 31% and 136%, respectively; and (3) DO could be controlled at adequately high levels so that DAOC accumulation could be minimized and the quality of CPC fermentation product be ensured. The proposed strategy showed application potential in improving the economics of industrial CPC productions.  相似文献   

5.
A recombinant fungal microorganism capable of producing deacetylcephalosporin C was constructed by transforming a cephalosporin C esterase gene from Rhodosporidium toruloides into Acremonium chrysogenum. The cephalosporin C esterase gene can be expressed from its endogenous R. toruloides promoter or from the Aspergillus nidulans trpC promoter under standard Acremonium chrysogenum fermentation conditions. The expression of an active cephalosporin C esterase enzyme in A. chrysogenum results in the conversion of cephalosporin C to deacetylcephalosporin C in vivo, a novel fermentation process for the production of deacetylcephalosporin C. The stability of deacetylcephalosporin C in the fermentation broth results in a 40% increase in the cephalosporin nucleus.  相似文献   

6.
7.
Summary The cefD and cefE genes of Nocardia lactamdurans, which encode isopenicillin N epimerase and deacetoxycephalosporin C synthase respectively, have been located 0.63 kb upstream from the lysine-6-amino-transferase (lat) gene. cefD contains an open reading frame (ORF) of 1197 nucleotides (nt) encoding a protein of 398 amino acids with a Mr of 43 622. The deduced amino acid sequence exhibits 62.2% identity to the cefD gene product of Streptomyces clavuligerus. The sequence SXHKXL in isopenicillin N epimerase resembles the consensus sequence for pyridoxal phosphate binding found in several amino acid decarboxylases from Enterobacteria. cefE contains an ORF of 945 nt encoding a protein of 314 amino acids with a Mr of 34532, which is similar to the deacetoxycephalosporin C synthase of S. clavuligerus. Expression of both genes, cefD and cefE, in S. lividans transformants, results in deacetoxycephalosporin C synthase and isopenicillin N epimerase activities that are 10–12 times higher than those in N. lactamdurans. The cefD and cefE genes of N. lactamdurans are closely linked but the overall organization of the cephamycin gene cluster differs in N. lactamdurans and S. clavuligerus.  相似文献   

8.
Cephamycin C is an extracellular broad spectrum β-lactam antibiotic produced by Streptomyces clavuligerus, S. cattleya and Nocardia lactamdurans. In the present study, different substrates for solid-state fermentation were screened for maximum cephamycin C production by S. clavuligerus NT4. The fermentation parameters such as substrate concentration, moisture content, potassium dihydrogen phosphate, inoculum size and ammonium oxalate were optimized by response surface methodology (RSM). The optimized conditions yielded 21.68 ± 0.76 mg gds−1 of cephamycin C as compared to 10.50 ± 1.04 mg gds−1 before optimization. Effect of various amino acids on cephamycin C production was further studied by using RSM, which resulted in increased yield of 27.41 ± 0.65 mg gds−1.  相似文献   

9.
Xylose-rich undefined broth, extracted from the dilute acid pretreatment wastes of barley straw, serves as resourceful media for Acremonium chrysogenum M35 culture and production of cephalosporin C (CPC). Concentrating the extract with proper reprocessing enables to prepare various concentrations of xylose broth (2%–8%). The undefined xylose media were prepared for CPC production from A. chrysogenum M35 by the addition of other nutrients. Cell growth and CPC production were the most effective at 6% xylose and additional 2% glycerol, with maximum CPC production of 9.07 g/L after 6 days, which is higher production than that in defined media prepared with laboratory-level nutrients and reagents. Investigation of autotrophic and reverse trans-sulfuration pathways for cysteine synthesis, a limited element of three precursors for CPC synthesis, supports the enhanced CPC production in undefined media. Abundance of xylose ensures a maintained NADPH concentration required for sulfate reduction and synthesis of amino sulfide such as cysteine. Cystathionine-γ-lyase activity profiling indicated more efficient biosynthesis in undefined media than in other cultures use glycerol and glucose, and the biosynthesis pathway of CPC production by the cephalosporin gene cluster (i.e. pcbC and cefG genes) was investigated. The process using undefined xylose media was designed, and process simulation program confirmed our results.  相似文献   

10.
We examined the performance of Streptomyces lividans strain W25 containing a hybrid expandase (deacetoxycephalosporin C synthase; DAOCS) gene, obtained by in vivo recombination between the expandase genes of S. clavuligerus and Nocardia lactamdurans for resting-cell bioconversion of penicillin G to deacetoxycephalosporin G. Strain W25 carried out a much more effective level of bioconversion than the previously used strain, S. clavuligerus NP1. The two strains also differed in the concentrations of FeSO4 and α-ketoglutarate giving maximal activity. Whereas NP1 preferred 1.8 mM FeSO4 and 1.3 mM α-ketoglutarate, recombinant W25 performed best at 0.45 mM FeSO4 and 1.9 mM α-ketoglutarate. Electronic Publication  相似文献   

11.
本文对头孢菌素C(Cephalosporin C,CPC)发酵过程中碳源补料控制策略进行了优化研究,提出了一种基于DO—Stat的混合碳源流加策略,提高了发酵整体性能。在7L发酵罐上对使用该策略和传统补油策略的头孢菌素发酵性能进行比较,结果表明,采用补加混合碳源(葡萄糖+豆油)策略时,CPC终浓度最高,达到36.99g/L,CPC得率也从使用传统单纯补油策略时的11.39%提高到22.19%,代谢副产物去乙酰氧头孢菌素C(DAOC)的积累量少,DAOC/CPC只有0.38%,达到生产要求。  相似文献   

12.
13.
The production of Cephalosporin-C (CPC) a secondary metabolite, using a mold Acremonium chrysogenum was studied in a lab scale Internal loop air lift reactor. Cephalosporin-C production process is a highly aerobic fermentation process. Volumetric gas–liquid mass transfer coefficient (kLa) and viscosity (η) were evaluated, during the growth and production phases of the microbial physiology. An attempt has been made to correlate the broth viscosity, η and volumetric oxygen transfer coefficient, kLa during the Cephalosporin-C production in an air lift reactor. The impact of biomass concentration and mycelial morphology on broth viscosity has been also evaluated. The broth exhibits a typical non-Newtonian fermentation broth. Rheology parameters like consistency index and fluidity index are also studied.  相似文献   

14.
Cephalosporins are widely used as anti-infectious β-lactam antibiotics in clinic. For the purpose of increasing the yield of cephalosporin C (CPC) fermentation, especially in an industrial strain, A. chrysogenum genes cefEF and cefG, which encode the ultimate and penultimate steps in CPC biosynthesis, cefT, which encodes a CPC efflux pump, and vgb, which encodes a bacterial hemoglobin gene were transformed in various combinations into an industrial strain of A. chrysogenum. Both PCR and Southern blotting indicated that the introduced genes were integrated into the chromosome of A. chrysogenum. Carbon monoxide difference spectrum absorbance assay was performed and the result showed that Vitreoscilla hemoglobin was successfully expressed in A. chrysogenum and had biological activity. HPLC analysis of fermentation broth of recombinant A. chrysogenum showed that most transformants had a higher CPC production level than the parental strain. Multiple transformants containing an additional copy of cefG showed a significant increase in CPC production. However, cefT showed little effect on CPC production in this high producer. The highest improvement of CPC titer was observed in the mutant with an extra copy of cefG + cefEF + vgb whose CPC production was increased by 116.3%. This was the first report that three or more genes were introduced simultaneously into A. chrysogenum. Our results also demonstrated that the combination of these genes had a synergy effect in a CPC high producer.  相似文献   

15.
刘佳佳  刘钢 《微生物学报》2016,56(3):461-470
头孢菌素C由丝状真菌顶头孢霉产生,属于β-内酰胺类抗生素。其经改造后的7-氨基头孢烷酸是头孢类抗生素的重要中间体。头孢类抗生素在国内外抗生素市场中占有巨大的份额,是临床上的主要抗感染药物。随着分子生物学的发展,头孢菌素C的生物合成途径已基本阐明。为提高头孢菌素C的产量和降低生产成本,越来越多的研究者开始关注其较为精细、复杂的调控机制。本文重点对头孢菌素C生物合成及其调控机制的最新进展进行了简述,希望为今后头孢菌素C生产菌株的菌种改造和传统产业的升级换代提供一定的借鉴。  相似文献   

16.
Summary Cephalosporin C was produced with the moldCephalosporium acremonium in a 20 1 stirred tank reactor with 100 kg/m3 peanut flour in fed-batch operation. The growth and product formation was followed by on-line analysis of the broth composition. The cell concentration was estimated from the RNA-content of the cells. By optimization of the fed-batch operation and by increasing the phosphate content in the broth, a final cephalosporin C concentration of 12 kg/m3 was attained.Nomenclature CPC cephalosphorin C - DAC deacetylcephalosporin C - DAOC deacetoxycephalosporin C - k L a volumetric mass transfer coefficient - MMBS 2-Hydroxy-4-methylmercaptobutyric acid - PABAH p-Hydroxybenzoicacidhydrazid - RNA ribonucleic acid - RQ respiratory quotient - oxygen transfer rate - CO2-production rate - t fermentation time  相似文献   

17.
Cephalosporin C (CPC) is the precursor of a class of antibiotics that were more effective than traditional penicillins. CPC production is performed mainly through fermentation by Acremonium chrysogenum, whose secondary metabolism was sensitive to the environmental changes. In the present work, secondary metabolites were measured by ion-pair reversed-phase liquid chromatography tandemed with hybrid quadrupole time-of-flight mass spectrometry, and the disparity of them from two scales of CPC fermentations (pilot and industrial) and also two different post-treatment processes (oxalic acid and formaldehyde added and control) were investigated. When fermentation size was enlarged from pilot scale (50 l) to industrial scale (156,000 l), the remarkable disparities of concentrations and changing trends of the secondary metabolites in A. chrysogenum were observed, which indicated that the productivity of CPC biosynthesis was higher in the large scale of fermentation. Three environmental factors were measured, and the potential reasons that might cause the differences were analyzed. In the post-treatment process after industrial fermentation, the changes of these secondary metabolites in the tank where oxalic acid and formaldehyde were added were much less than the control tank where none was added. This indicated that the quality of the final product was more stable after the oxalic acid and formaldehyde were added in the post-treatment process. These findings provided new insight into industrial CPC production.  相似文献   

18.
19.
Summary Compared to controls, a maltose-fed fermentation ofStreptomyces clavuligerus showed a 2-fold reduction in desacetoxycephalosporin C synthase activity and in the production of the antibiotic, cephamycin C. Accumulation of the pathway intermediate, penicillin N occurred in the control fermentations but not in the maltose-fed culture, indicating that the carbon source was also regulating steps earlier in the pathway.Since the dissolved oxygen concentration was effectively maintained at almost constant levels in both the controls and maltose-fed fermentations, the observed maltose interference with cephamycin C biosynthesis was not related to the aeration condition of the actively growingS. clavuligerus culture.  相似文献   

20.
Deacetoxy/deacetylcephalosporin C synthase (acDAOC/DACS) from Acremonium chrysogenum is a bifunctional enzyme that catalyzes both the ring-expansion of penicillin N to deacetoxycephalosporin C (DAOC) and the hydroxylation of the latter to deacetylcephalosporin C (DAC). Three residues N305, R307 and R308 located in close proximity to the C-terminus of acDAOC/DACS were each mutated to leucine. The N305L and R308L mutant acDAOC/DACSs showed significant improvement in their ability to convert penicillin analogs. R308 was identified for the first time as a critical residue for DAOC/DACS activity. Kinetic analyses of purified R308L enzyme indicated its improved catalytic efficiency is due to combined improvements of K(m) and k(cat). Comparative modeling of acDAOC/DACS supports the involvement of R308 in the formation of substrate-binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号