首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Effective spatial management of coral reefs including design of marine protected areas requires an understanding of interpopulation genetic connectivity. We assessed gene flow along 355 km of the Florida reef system and between Florida and Belize in three commensal invertebrates occupying the same host sponge (Callyspongia vaginalis) but displaying contrasting reproductive dispersal strategies: the broadcast-spawning brittle star Ophiothrix lineata and two brooding amphipods Leucothoe kensleyi and Leucothoe ashleyae. Multiple analytical approaches to sequence variation in the mitochondrial COI gene demonstrated a high degree of overall connectivity for all three species along the Florida reef system. Ophiothrix lineata showed significant genetic structuring between Florida and Belize, and a pattern of isolation by distance but no significant genetic structuring along the Florida coastline. Bayesian estimates of migration detected a strong southerly dispersal bias for O. lineata along the Florida reef system, contrary to the general assumption of northerly gene flow in this region based on the direction of the Florida Current. Both amphipods, despite direct development, also showed high gene flow along the Florida reef system. Multiple inferences of long-distance dispersal from a nested clade analysis support the hypothesis that amphipod transport, possibly in detached sponge fragments, could generate the high levels of overall gene flow observed. However, this transport mechanism appears much less effective across deep water as connectivity between Florida and Belize (1072 km) is highly restricted.  相似文献   

2.
Some excavating sponges of the genus Cliona compete with live reef corals, often killing and bioeroding entire colonies. Important aspects affecting distribution of these species, such as dispersal capability and population structure, remain largely unknown. Thus, the aim of this study was to determine levels of genetic connectivity and dispersal of Cliona delitrix across the Greater Caribbean (Caribbean Sea, Bahamas and Florida), to understand current patterns and possible future trends in their distribution and effects on coral reefs. Using ten species‐specific microsatellite markers, we found high levels of genetic differentiation between six genetically distinct populations: one in the Atlantic (Florida‐Bahamas), one specific to Florida and four in the South Caribbean Sea. In Florida, two independent breeding populations are likely separated by depth. Gene flow and ecological dispersal occur among other populations in the Florida reef tract, and between some Florida locations and the Bahamas. Similarly, gene flow occurs between populations in the South Caribbean Sea, but appears restricted between the Caribbean Sea and the Atlantic (Florida‐Bahamas). Dispersal of C. delitrix was farther than expected for a marine sponge and favoured in areas where currents are strong enough to transport sponge eggs or larvae over longer distances. Our results support the influence of ocean current patterns on genetic connectivity, and constitute a baseline to monitor future C. delitrix trends under climate change.  相似文献   

3.
Distributed in tropical and warm-temperate waters worldwide, Lobophora species are found across the Greater Caribbean (i.e., Caribbean sensu stricto, Gulf of Mexico, Florida, the Bahamas, and Bermuda). We presently discuss the diversity, ecology, biogeography, and evolution of the Greater Caribbean Lobophora species based on previous studies and an extensive number of samples collected across the eastern, southern, and to a lesser extent western Caribbean. A total of 18 Lobophora species are now documented from the Greater Caribbean, of which five are newly described (L. agardhii sp. nov., L. dickiei sp. nov., L. lamourouxii sp. nov., L. richardii sp. nov., and L. setchellii sp. nov.). Within the Greater Caribbean, the eastern Caribbean and the Central Province are the most diverse ecoregion and province (16 spp.), respectively. Observed distribution patterns indicate that Lobophora species from the Greater Caribbean have climate affinities (i.e., warm-temperate vs. tropical affinities). In total, 11 Lobophora species exclusively occur in the Greater Caribbean; six are present in the western Atlantic; two in the Indo-Pacific; and one in the eastern Pacific. Biogeographic analyses support that no speciation occurred across the Isthmus of Panama, and that the Greater Caribbean acted as a recipient region for species from the Indo-Pacific and as a region of diversification as well as a donor region to the North-eastern Atlantic. The Greater Caribbean is not an evolutionary dead end for Lobophora, but instead generates and exports diversity. Present results illustrate how sampling based on DNA identification is reshaping biogeographic patterns, as we know them.  相似文献   

4.
The morphological species delimitations (i.e. morphospecies) have long been the best way to avoid the taxonomic impediment and compare insect taxa biodiversity in highly diverse tropical and subtropical regions. The development of DNA barcoding, however, has shown great potential to replace (or at least complement) the morphospecies approach, with the advantage of relying on automated methods implemented in computer programs or even online rather than in often subjective morphological features. We sampled moths extensively for two years using light traps in a patch of the highly endangered Atlantic Forest of Brazil to produce a nearly complete census of arctiines (Noctuoidea: Erebidae), whose species richness was compared using different morphological and molecular approaches (DNA barcoding). A total of 1,075 barcode sequences of 286 morphospecies were analyzed. Based on the clustering method Barcode Index Number (BIN) we found a taxonomic bias of approximately 30% in our initial morphological assessment. However, a morphological reassessment revealed that the correspondence between morphospecies and molecular operational taxonomic units (MOTUs) can be up to 94% if differences in genitalia morphology are evaluated in individuals of different MOTUs originated from the same morphospecies (putative cases of cryptic species), and by recording if individuals of different genders in different morphospecies merge together in the same MOTU (putative cases of sexual dimorphism). The results of two other clustering methods (i.e. Automatic Barcode Gap Discovery and 2% threshold) were very similar to those of the BIN approach. Using empirical data we have shown that DNA barcoding performed substantially better than the morphospecies approach, based on superficial morphology, to delimit species of a highly diverse moth taxon, and thus should be used in species inventories.  相似文献   

5.
Dinoflagellates in the genus Symbiodinium are among the most abundant and important group of eukaryotic microbes found in coral reef ecosystems. Recent analyses conducted on various host cnidarians indicated that Symbiodinium assemblages in the Caribbean Sea are genetically and ecologically diverse. In order to further characterize this diversity and identify processes important to its origins, samples from six orders of Cnidaria comprising 45 genera were collected from reef habitats around Barbados (eastern Caribbean) and from the Mesoamerican barrier reef off the coast of Belize (western Caribbean). Fingerprinting of the ribosomal internal transcribed spacer 2 identified 62 genetically different Symbiodinium. Additional analyses of clade B Symbiodinium using microsatellite flanker sequences unequivocally characterized divergent lineages, or “species,” within what was previously thought to be a single entity (B1 or B184). In contrast to the Indo-Pacific where host-generalist symbionts dominate many coral communities, partner specificity in the Caribbean is relatively high and is influenced little by the host’s apparent mode of symbiont acquisition. Habitat depth (ambient light) and geographic isolation appeared to influence the bathymetric zonation and regional distribution for most of the Symbiodinium spp. characterized. Approximately 80% of Symbiodinium types were endemic to either the eastern or western Caribbean and 40–50% were distributed to compatible hosts living in shallow, high-irradiance, or deep, low-irradiance environments. These ecologic, geographic, and phylogenetic patterns indicate that most of the present Symbiodinium diversity probably originated from adaptive radiations driven by ecological specialization in separate Caribbean regions during the Pliocene and Pleistocene periods.  相似文献   

6.
Tropical reefs shelter one quarter to one third of all marine species but one third of the coral species that construct reefs are now at risk of extinction. Because traditional methods for assessing reef diversity are extremely time consuming, taxonomic expertise for many groups is lacking, and marine organisms are thought to be less vulnerable to extinction, most discussions of reef conservation focus on maintenance of ecosystem services rather than biodiversity loss. In this study involving the three major oceans with reef growth, we provide new biodiversity estimates based on quantitative sampling and DNA barcoding. We focus on crustaceans, which are the second most diverse group of marine metazoans. We show exceptionally high numbers of crustacean species associated with coral reefs relative to sampling effort (525 species from a combined, globally distributed sample area of 6.3 m(2)). The high prevalence of rare species (38% encountered only once), the low level of spatial overlap (81% found in only one locality) and the biogeographic patterns of diversity detected (Indo-West Pacific>Central Pacific>Caribbean) are consistent with results from traditional survey methods, making this approach a reliable and efficient method for assessing and monitoring biodiversity. The finding of such large numbers of species in a small total area suggests that coral reef diversity is seriously under-detected using traditional survey methods, and by implication, underestimated.  相似文献   

7.
1. The occurrence of unresolved complexes of cryptic species may hinder the identification of the main ecological drivers of biodiversity when different cryptic taxa have different ecological requirements. 2. We assessed factors influencing the occurrence of Synchaeta species (monogonont rotifers) in 17 waterbodies of the Trentino‐South Tyrol region in the Eastern Alps. To do so, we compared the results of using unresolved complexes of cryptic species, as is common practice in limnological studies based on morphological taxonomy, and having resolved cryptic complexes, made possible by DNA taxonomy. 3. To identify cryptic species, we used the generalised mixed Yule coalescent (GMYC) model. We investigated the relationship between the environment and the occurrence of Synchaeta spp. by multivariate ordination using two definitions of the units of diversity, namely (i) unresolved species complexes (morphospecies) and (ii) putative cryptic species (GMYC entities). Our expectation was that resolving complexes of cryptic species could provide more information than using morphospecies. 4. As expected, DNA taxonomy provided greater taxonomic resolution than morphological taxonomy. Further, environmental‐based multivariate ordination on cryptic species explained a significantly higher proportion of variance than that based on morphospecies. Occurrence of GMYC entities was related to total phosphorus (TP), whereas no relationship could be found between morphospecies and the environment. Moreover, different cryptic species within the same morphospecies showed different, and even opposite, preferences for TP. In addition, the wide geographical distribution of haplotypes and cryptic species indicated the absence of barriers to dispersal in Synchaeta.  相似文献   

8.
Caribbean cycads (Zamia L.) are well known for variation in leaflet morphology. Here, I examine the variation in leaflet morphology among five populations of Zamia in Florida. Variables measured were leaflet length and width, leaflet length: width ratio, leaflet surface area, rachis and petiole lengths, number of leaflets per leaf, and total leaf area. In addition to comparisons among the Florida populations, these populations are compared with three previously studied populations in Puerto Rico (Newell, 1986). For the most part, the populations exhibited significant differences in all variables. In spite of the extensive morphological variation in this group of plants, leaflet morphology has long been important in Zamia taxonomy. The Florida populations would be considered by some to be either one, two, or three different species. The Florida and Puerto Rico populations together might be considered as few as one species or as many as five species. Based upon the data presented here, the five Florida populations appear to represent a single species; and the three Puerto Rico populations appear to represent two additional species. Further clarification of the taxonomy of Caribbean Zamia will require additional characters such as cone morphology and protein or DNA patterns.  相似文献   

9.
Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) and CO2 partial pressures (pCO2) (400, 900, 1300 μatm). Mixed‐effects models of calcification for each species were then used to project community‐level scleractinian calcification using Florida Keys reef composition data and IPCC AR5 ensemble climate model data. Three of the four most abundant species, Orbicella faveolata, Montastraea cavernosa, and Porites astreoides, had negative calcification responses to both elevated temperature and pCO2. In the business‐as‐usual CO2 emissions scenario, reefs with high abundances of these species had projected end‐of‐century declines in scleractinian calcification of >50% relative to present‐day rates. Siderastrea siderea, the other most common species, was insensitive to both temperature and pCO2 within the levels tested here. Reefs dominated by this species had the most stable end‐of‐century growth. Under more optimistic scenarios of reduced CO2 emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10–100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species like S. siderea are not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reduced CO2 emissions can limit future declines in reef calcification.  相似文献   

10.
Tropical marine habitats often harbor high biodiversity, including many cryptic taxa. Though the prevalence of cryptic marine taxa is well known, the evolutionary histories of these groups remain poorly understood. The snapping shrimp genus Alpheus is a good model for such investigations, as cryptic species complexes are very common, indicating widespread genetic diversification with little or no morphological change. Here, we present an extensive phylogeographic investigation of the diversified amphi-American Alpheus armillatus species complex, with geographic sampling in the Caribbean Sea, Gulf of Mexico, Florida, Brazil, and the tropical Eastern Pacific. Sequence data from two mitochondrial genes (16SrRNA and cytochrome oxidase I) and one nuclear gene (myosin heavy chain) provide strong evidence for division of the species complex into six major clades, with extensive substructure within each clade. Our total data set suggests that the A. armillatus complex includes no less than 19 putative divergent lineages, 11 in the Western Atlantic and 8 in the Eastern Pacific. Estimates of divergence times from Bayesian analyses indicate that the radiation of the species complex began ~10 MYA with the most recent divergences among subclades dating to within the last 3 MY. Furthermore, individuals from the six major clades had broadly overlapping geographic distributions, which may reflect secondary contact among previously isolated lineages, and have apparently undergone several changes in superficial coloration, which is typically the most pronounced phenotypic character distinguishing lineages. In addition, the extensive substructure within clades indicates a great deal of molecular diversification following the rise of the Isthmus of Panama. In summary, this investigation reflects substantial biodiversity concealed by morphological similarity, and suggests that both ancient and ongoing divergences have contributed to the generation of this biodiversity. It also underlines the necessity to work with the most complete data set possible, which includes comprehensive and wide-ranging sampling of taxa.  相似文献   

11.
12.
We report an analysis of the effect of two different times of day (noon and dusk), body weight and sex on the oxygen consumption rate (OCR) of the freshwater crabs Trichodactylus kensleyi (Trichodactylidae), Aegla singularis and A. platensis (Aeglidae) in their natural environment. Both families are sympatric in the studied locations, with a co-occurrence found between T. kensleyi and A. singularis or T. kensleyi and A. platensis. The mean OCR was highest in A. singularis and lowest in A. platensis. The OCR was higher in Aegla species at noon, and Trichodactylus consumed more oxygen at dusk. In aeglids, there was no difference in oxygen consumption between noon and dusk. T. kensleyi exhibited statistically significant differences in the OCR between noon and dusk. The oxygen uptake of all three species analysed was not influenced by the sex of the individual but varied according to the animals’ weight. The families evaluated share some biological and ecological characteristics, such as diet and habitats, but the strategies used in the regulation of gas exchange at different times of the day were different. Environmental factors may be influencing the oxygen consumption of each morphotype differently.  相似文献   

13.

Background  

Colonial invertebrates such as corals exhibit nested levels of modularity, imposing a challenge to the depiction of their morphological evolution. Comparisons among diverse Caribbean gorgonian corals suggest decoupling of evolution at the polyp vs. branch/internode levels. Thus, evolutionary change in polyp form or size (the colonial module sensu stricto) does not imply a change in colony form (constructed of modular branches and other emergent features). This study examined the patterns of morphological integration at the intraspecific level. Pseudopterogorgia bipinnata (Verrill) (Octocorallia: Gorgoniidae) is a Caribbean shallow water gorgonian that can colonize most reef habitats (shallow/exposed vs. deep/protected; 1–45 m) and shows great morphological variation.  相似文献   

14.
Lake Baikal, the oldest lake in the world, is home to spectacular biodiversity and extraordinary levels of endemism. While many of the animal species flocks from Lake Baikal are famous examples of evolutionary radiations, the lake also includes a wide diversity of endemic algae that are not well investigated with regards to molecular‐biological taxonomy and phylogeny. The endemic taxa of the green algal order Cladophorales show a range of divergent morphologies that led to their classification in four genera in two families. We sequenced partial large‐ and small‐subunit rDNA as well as the internal transcribed spacer region of 14 of the 16 described endemic taxa to clarify their phylogenetic relationships. One endemic morphospecies, Cladophora kusnetzowii, was shown to be conspecific with the widespread Aegagropila linnaei. All other endemic morphospecies formed a monophyletic group nested within the genus Rhizoclonium (Cladophoraceae), a very surprising result, in stark contrast to their morphological affinities. The Baikal clade represents a species flock of closely related taxa with very low genetic differentiation. Some of the morphospecies were congruent with lineages recovered in the phylogenies, but due to the low phylogenetic signal in the rDNA sequences the relationships within the Baikal clade were not all well resolved. The Baikal clade appears to represent a recent radiation, based on the low molecular divergence within the group, and it is hypothesized that the large morphological variation results from diversification in sympatry from a common ancestor in Lake Baikal.  相似文献   

15.
Hydrozoans of the genus Zanclea have been acknowledged only recently as a fundamental component of the highly diverse fauna associated with reef‐building scleractinian corals. Although widely distributed in coral reefs and demonstrated to be important in protecting corals from predation and diseases, the biodiversity of these hydrozoans remains enigmatic due to the paucity of available morphological characters, incomplete morphological characterisations and the possible existence of cryptic species. Recently, molecular techniques have revealed the existence of multiple hidden genetic lineages not yet supported by diagnostic morphological characters. In this work, we further explore the morpho‐diversity of three genetic lineages, namely Zanclea associated with the coral genera Goniastrea (clade I), Porites (clade II) and Pavona (clade VI). Aside from providing a complete classical characterisation of the polyp and medusa stage of each clade, we searched for new potential taxonomic indicators either on symbiotic hydroids or on host corals. On the hydroids, statistical analyses on almost 7,000 nematocyst capsules revealed a significant difference in terms of nematocyst size among the three Zanclea clades investigated. On each host coral genus, we identified peculiar skeletal modifications related to the presence of Zanclea symbionts. Lastly, we discussed the potential diagnostic value of these footprints in the characterisation of Zanclea–scleractinian associations.  相似文献   

16.
In preparation for a large-scale coral restoration project, we surveyed host population genetic structure and symbiont diversity of two reef-building corals in four reef zones along the Florida reef tract (FRT). There was no evidence for coral population subdivision along the FRT in Acropora cervicornis or Montastraea faveolata based on microsatellite markers. However, in A. cervicornis, significant genetic differentiation was apparent when extending the analysis to broader scales (Caribbean). Clade diversity of the zooxanthellae differed along the FRT. A. cervicornis harbored mostly clade A with clade D zooxanthellae being prominent in colonies growing inshore and in the mid-channel zones that experience greater temperature fluctuations and receive significant nutrient and sediment input. M. faveolata harbored a more diverse array of symbionts, and variation in symbiont diversity among four habitat zones was more subtle but still significant. Implications of these results are discussed for ongoing restoration and conservation work.  相似文献   

17.
Sponge species may present several morphotypes, but sponges that are morphologically similar can be separate species. We investigated morphological variation in Mycale laevis, a common Caribbean reef sponge. Four morphotypes of M. laevis have been observed (1) orange, semi-cryptic, (2) orange, massive, (3) white, semi-cryptic, and (4) white, massive. Samples of M. laevis were collected from Key Largo, Florida, the Bahamas Islands, and Bocas del Toro, Panama. Fragments of the 18S and 28S rRNA ribosomal genes were sequenced and subjected to phylogentic analyses together with sequences obtained for 11 other Mycale species and additional sequences retrieved from GenBank. Phylogenetic analyses confirmed that the genus Mycale is monophyletic within the Order Poecilosclerida, although the subgenus Aegogropila is polyphyletic and the subgenus Mycale is paraphyletic. All 4 morphotypes formed a monophyletic group within Mycale, and no genetic differences were observed among them. Spicule lengths did not differ among the 4 morphotypes, but the dominant megasclere in samples collected from Florida and the Bahamas was the strongyle, while those from Panama had subtylostyles. Our data suggest that the 4 morphotypes constitute a single species, but further studies would be necessary to determine whether skeletal variability is due to phentotypic or genotypic plasticity.  相似文献   

18.

Background

The use of DNA based methods for assessing biodiversity has become increasingly common during the last years. Especially in speciose biomes as tropical rain forests and/or in hyperdiverse or understudied taxa they may efficiently complement morphological approaches. The most successful molecular approach in this field is DNA barcoding based on cytochrome c oxidase I (COI) marker, but other markers are used as well. Whereas most studies aim at identifying or describing species, there are only few attempts to use DNA markers for inventorying all animal species found in environmental samples to describe variations of biodiversity patterns.

Methodology/Principal Findings

In this study, an analysis of the nuclear D3 region of the 28S rRNA gene to delimit species-like units is compared to results based on distinction of morphospecies. Data derived from both approaches are used to assess diversity and composition of staphylinid beetle communities of a Guineo-Congolian rain forest in Kenya. Beetles were collected with a standardized sampling design across six transects in primary and secondary forests using pitfall traps. Sequences could be obtained of 99% of all individuals. In total, 76 molecular operational taxonomic units (MOTUs) were found in contrast to 70 discernible morphospecies. Despite this difference both approaches revealed highly similar biodiversity patterns, with species richness being equal in primary and secondary forests, but with divergent species communities in different habitats. The D3-MOTU approach proved to be an efficient tool for biodiversity analyses.

Conclusions/Significance

Our data illustrate that the use of MOTUs as a proxy for species can provide an alternative to morphospecies identification for the analysis of changes in community structure of hyperdiverse insect taxa. The efficient amplification of the D3-marker and the ability of the D3-MOTUs to reveal similar biodiversity patterns as analyses of morphospecies recommend its use in future molecular studies on biodiversity.  相似文献   

19.
A phylogenetic analysis of combined morphological, chemical and ITS/5.8S sequence data reveals that species of Ateleia are often more genetically than morphologically divergent, and that species thought to be most closely related morphologically are distant relatives within the genus. Ateleia shows niche conservatism, with most species confined to seasonally dry tropical forest in Central America and the Caribbean, and fewer species in the same biome in South America. Four independent transitions to wet forests may have occurred in the genus. The estimated ages of Ateleia lineages spanning Central and South America are either older or younger than the estimated age of closure of the Isthmus of Panama. The older dates clearly suggest that over‐water dispersal is responsible for the distribution of Ateleia that includes the Caribbean Islands. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 39–53.  相似文献   

20.
Morphological, toxicological, and genetic variation was examined among 19 strains of Nodularia. The strains examined could be morphologically discriminated into four groups corresponding to N. spumigena Mertens, N. sphaerocarpa Bornet et Flahault, and two strains that did not clearly correspond to currently accepted Nodularia species. Genetic variation was examined using nucleotide sequencing of the phycocyanin intergenic spacer region (cpcBA-IGS) and RAPD-PCR. The PCR-RFLP of the cpcBA-IGS differentiated four genotypes corresponding to the four morphological groups. However, nucleotide sequencing of 598 bp of the 690-bp fragment showed that one of the three strains corresponding to N. sphaerocarpa (PCC 7804) was genetically divergent from the other two, suggesting that it constitutes a distinct species. Nucleotide variation within the morphospecies groups was limited (<1%), and all 14 Australian strains of N. spumigena possessed identical cpcBA-IGS sequences. The RAPD-PCR differentiated the same groups as the cpcBA sequencing and discriminated each of the seven different Australian populations of N. spumigena. Strains from within a bloom appeared genetically identical; however, strains isolated from different blooms could be separated into either a western or a southeastern Australian cluster, with one strain from western Australia showing considerable genetic divergence. The pattern of variation suggests that individual blooms of N. spumigena are clonal but also that Australian N. spumigena populations are genetically distinct from each other. Examination of genetic distance within and between blooms and within and between morphological groups showed clear genetic dicontinuities that, in combination with the cpcBA-IGS data, suggest that Nodularia contains genetically distinct morphospecies rather than a continuous cline of genetic variation. Furthermore, these morphospecies are genetically variable, exhibiting hierarchical patterns of genetic variation on regional and global scales. Production of the hepatotoxin nodularin was not restricted to one genetic lineage but was distributed across three of the five genotypic groups. A strain of N. spumigena from a nontoxic Australian population was found to fall within the range of genetic variation for other toxic Australian strains and appears to be a unique nontoxic strain that might have arisen by loss of toxin production capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号