首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Factors VII, IX, and X play key roles in blood coagulation. Each protein contains an N-terminal gamma-carboxyglutamic acid domain, followed by EGF1 and EGF2 domains, and the C-terminal serine protease domain. Protein C has similar domain structure and functions as an anticoagulant. During physiologic clotting, the factor VIIa-tissue factor (FVIIa*TF) complex activates both factor IX (FIX) and factor X (FX). FVIIa represents the enzyme, and TF represents the membrane-bound cofactor for this reaction. The substrates FIX and FX may utilize multiple domains in binding to the FVIIa*TF complex. To investigate the role of the EGF1 domain in this context, we expressed wild type FIX (FIX(WT)), FIX(Q50P), FIX(PCEGF1) (EGF1 domain replaced with that of protein C), FIX(DeltaEGF1) (EGF1 domain deleted), FX(WT), and FX(PCEGF1). Complexes of FVIIa with TF as well as with soluble TF (sTF) lacking the transmembrane region were prepared, and activations of WT and mutant proteins were monitored by SDS-PAGE and by enzyme assays. FVIIa*TF or FVIIa*sTF activated each mutant significantly more slowly than the FIX(WT) or FX(WT). Importantly, in ligand blot assays, FIX(WT) and FX(WT) bound to sTF, whereas mutants did not; however, all mutants and WT proteins bound to FVIIa. Further experiments revealed that the affinity of the mutants for sTF was reduced 3-10-fold and that the synthetic EGF1 domain (of FIX) inhibited FIX binding to sTF with K(i) of approximately 60 microm. Notably, each FIXa or FXa mutant activated FVII and bound to antithrombin, normally indicating correct folding of each protein. In additional experiments, FIXa with or without FVIIIa activated FX(WT) and FX(PCEGF1) normally, which is interpreted to mean that the EGF1 domain of FX does not play a significant role in its interaction with FVIIIa. Cumulatively, our data reveal that substrates FIX and FX in addition to interacting with FVIIa (enzyme) interact with TF (cofactor) using, in part, the EGF1 domain.  相似文献   

2.
Factor X (FX) has high structure homology with other proteins of blood coagulation such as factor IX (FIX) and factor VII (FVII). These proteins present at their amino-terminal extremity a gamma-carboxyglutamic acid containing domain (Gla domain), followed by two epidermal growth factor-like (EGF1 and EGF2) domains, an activation peptide, and a serine protease domain. After vascular damage, the tissue factor-FVIIa (TF-FVIIa) complex activates both FX and FIX. FXa interacts stoichiometrically with tissue pathway inhibitor (TFPI), regulating TF-FVIIa activity by forming the TF-FVIIa-TFPI-FXa quaternary complex. Conversely, FXa boosts coagulation by its association with its cofactor, factor Va (FVa). To investigate the contribution of the Gla and EGF1 domains of FX in these complexes, FX chimeras were produced in which FIX Gla and EGF1 domains substituted the corresponding domains of FX. The affinity of the two chimeras, FX/FIX(Gla) and FX/FIX(EGF1), for the TF-FVIIa complex was markedly reduced compared with that of wild-type-FX (wt-FX) independently of the presence of phospholipids. Furthermore, the association rate constants of preformed FX/FIX(Gla)-TFPI and FX/FIX(EGF1)-TFPI complexes with TF-FVIIa were, respectively, 10- and 5-fold slower than that of wt-FXa-TFPI complex. Finally, the apparent affinity of FVa was 2-fold higher for the chimeras than for wt-FX in the presence of phospholipids and equal in their absence. These data demonstrate that FX Gla and EGF1 domains contain residues, which interact with TF-FVIIa exosites contributing to the formation of the TF-FVIIa-FX and TF-FVIIa-TFPI-FXa complexes. On the opposite, FXa Gla and EGF1 domains are not directly involved in FVa binding.  相似文献   

3.
Protease-activated receptor (PAR) signaling is closely linked to the cellular activation of the pro- and anticoagulant pathways. The endothelial protein C receptor (EPCR) is crucial for signaling by activated protein C through PAR1, but EPCR may have additional roles by interacting with the 4-carboxyglutamic acid domains of procoagulant coagulation factors VII (FVII) and X (FX). Here we show that soluble EPCR regulates the interaction of FX with human or mouse tissue factor (TF)-FVIIa complexes. Mutagenesis of the FVIIa 4-carboxyglutamic acid domain and dose titrations with FX showed that EPCR interacted primarily with FX to attenuate FX activation in lipid-free assay systems. In human cell models of TF signaling, antibody inhibition of EPCR selectively blocked PAR activation by the ternary TF-FVIIa-FXa complex but not by the non-coagulant TF-FVIIa binary complex. Heterologous expression of EPCR promoted PAR1 and PAR2 cleavage by FXa in the ternary complex but did not alter PAR2 cleavage by TF-FVIIa. In murine smooth muscle cells that constitutively express EPCR and TF, thrombin and FVIIa/FX but not FVIIa alone induced PAR1-dependent signaling. Although thrombin signaling was unchanged, cells with genetically reduced levels of EPCR no longer showed a signaling response to the ternary complex. These results demonstrate that EPCR interacts with the ternary TF coagulation initiation complex to enable PAR signaling and suggest that EPCR may play a role in regulating the biology of TF-expressing extravascular and vessel wall cells that are exposed to limited concentrations of FVIIa and FX provided by ectopic synthesis or vascular leakage.  相似文献   

4.
Cell membranes have important functions in many steps of the blood coagulation cascade, including the activation of factor X (FX) by the factor VIIa (FVIIa)-tissue factor (TF) complex (extrinsic Xase). FVIIa shares structural similarity with factor IXa (FIXa) and FXa. FIXa and FXa are regulated by binding to phosphatidylserine (PS)-containing membranes via their γ-carboxyglutamic acid-rich domain (Gla) and epidermal growth-factor (EGF) domains. Although FVIIa also has a Gla-rich region, its affinity for PS-containing membranes is much lower compared with that of FIXa and FXa. Research suggests that a more common endothelial cell lipid, phosphatidylethanolamine (PE), might augment the contribution of PS in FVIIa membrane-binding and proteolytic activity. We used soluble forms of PS and PE (1,2-dicaproyl-sn-glycero-3-phospho-l-serine (C6PS), 1,2-dicaproyl-sn-glycero-3-phospho-ethanolamine (C6PE)) to test the hypothesis that the two lipids bind to FVIIa jointly to promote FVIIa membrane binding and proteolytic activity. By equilibrium dialysis and tryptophan fluorescence, we found two sites on FVIIa that bound equally to C6PE and C6PS with Kd of ∼ 150–160 μM, however, deletion of Gla domain reduced the binding affinity. Binding of lipids occurred with greater affinity (Kd∼70–80 μM) when monitored by FVIIa proteolytic activity. Global fitting of all datasets indicated independent binding of two molecules of each lipid. The proteolytic activity of FVIIa increased by ∼50–100-fold in the presence of soluble TF (sTF) plus C6PS/C6PE. However, the proteolytic activity of Gla-deleted FVIIa in the presence of sTF was reduced drastically, suggesting the importance of Gla domain to maintain full proteolytic activity.  相似文献   

5.
The binding of factor VIIa (FVIIa) to tissue factor (TF) initiates blood coagulation. The binary complex is dependent on Ca2+ binding to several sites in FVIIa and is maintained by multiple contacts distributed throughout the various domains. Although the contributions from various residues and domains, including the Ca2+ coordination, to the global binding energy have been characterized, their importance for specific local interactions is virtually unknown. To address this aspect, we have attached four spectroscopic probes to an engineered Cys residue replacing Phe140 in soluble TF (sTF). This allows the monitoring of local changes in hydrophobicity and rigidity upon complex formation at the interface between the first epidermal growth factor-like (EGF1) domain of FVIIa and sTF. The fluorescent labels used sense a more hydrophobic environment and the spin labels are dramatically immobilized when FVIIa binds sTF. The results obtained with a 4-carboxyglutamic acid (Gla)-domainless derivative of FVIIa indicate that the Gla domain has no or minimal influence on the interaction between EGF1 and sTF. However, there is a difference in local Ca2+ dependence between Gla-domainless and full-length FVIIa.  相似文献   

6.
Vessel wall tissue factor (TF) is exposed to blood upon vascular damage which enables association with factor VIIa (FVIIa). This leads to initiation of the blood coagulation cascade through localization and allosteric induction of FVIIa procoagulant activity. To examine the docking pathway of the FVIIa-TF complex, various residues in the extracellular part of TF (sTF) that are known to interact with FVIIa were replaced with cysteines labelled with a fluorescent probe. By using stopped-flow fluorescence kinetic measurements in combination with surface plasmon resonance analysis, we studied the association of the resulting sTF variants with FVIIa. We found the docking trajectory to be a sequence of events in which the protease domain of FVIIa initiates contact with sTF. Thereafter, the two proteins are tethered via the first epidermal growth factor-like and finally the γ-carboxyglutamic acid (Gla) domain. The two labelled sTF residues interacting with the protease domain of FVIIa bind or become eventually ordered at different rates, revealing kinetic details pertinent to the allosteric activation of FVIIa by sTF. Moreover, when the Gla domain of FVIIa is removed the difference in the rate of association for the remaining domains is much more pronounced.  相似文献   

7.
Formation of the factor VIIa (FVIIa)‐tissue factor (TF) complex triggers the blood coagulation cascade. Using a structure‐based rationale, we investigated how the length of the linker region between the two epidermal growth factor (EGF)‐like domains in FVIIa influences TF binding and the allosteric activity enhancement, as well as the interplay between the γ‐carboxyglutamic acid (Gla)‐containing and protease domains. Removal of two residues from the native linker was compatible with normal cofactor binding and accompanying stimulation of the enzymatic activity, as was extension by two (Gly‐Ser) residues. In sharp contrast, truncation by three or four residues abolished the TF‐mediated stabilization of the active conformation of FVIIa and abrogated TF‐induced activity enhancement. In addition, FVIIa variants with short linkers associated 80‐fold slower with soluble TF (sTF) as compared with wild‐type FVIIa, resulting in a corresponding increase in the equilibrium dissociation constant. Molecular modeling suggested that the shortest FVIIa variants would have to be forced into a tense and energetically unfavorable conformation in order to be able to interact productively with TF, explaining our experimental observations. We also found a correlation between linker length and the residual intrinsic enzymatic activity of Ca2+‐free FVIIa; stepwise truncation resulting in gradually higher activity with des(83–86)‐FVIIa reaching the level of Gla‐domainless FVIIa. The linker appears to determine the average distance between the negatively charged Gla domain and a structural element in the protease domain, presumably of opposite charge, and proximity has a negative impact on apo‐FVIIa activity.  相似文献   

8.
Manithody C  Yang L  Rezaie AR 《Biochemistry》2007,46(11):3193-3199
Tissue factor (TF) facilitates the recognition and rapid activation of factor X (fX) by factor VIIa (fVIIa) in the extrinsic Xase pathway. TF makes extensive interactions with both light and heavy chains of fVIIa; however, with the exception of a basic recognition site for the Gla domain of fX, no other interactive site on TF for the substrate has been identified. Structural and modeling data have predicted that a basic region of TF comprised of residues Asn-199, Arg-200, and Lys-201 is located at a proper height on the membrane surface to interact with either the C-terminus of the Gla domain or the EGF-1 domain of fX. To investigate this possibility, we prepared the Ala substitution mutants of these residues and evaluated their ability to function as cofactors for fVIIa in the activation of wild-type fX and its two mutants which lack either the Gla domain (GD-fX) or both the Gla and EGF-1 domains (E2-fX). All three TF mutants exhibited normal cofactor activity in the amidolytic activity assays, but the cofactor activity of Arg-200 and Lys-201 mutants in fVIIa activation of both fX and GD-fX, but not E2-fX, was impaired approximately 3-fold. Further kinetic analysis revealed that kcat values with both TF mutants are impaired with no change in Km. These results suggest that both Arg-200 and Lys-201 of TF interact with EGF-1 of fX to facilitate the optimal docking of the substrate into the catalytic groove of the protease in the activation complex.  相似文献   

9.
The first epidermal growth factor-like domain (EGF-1) of factor VII (FVII) provides the region of greatest contact during the interaction of FVIIa with tissue factor. To understand this interaction better, the conformation-sensitive FVII EGF-1-specific monoclonal antibody (mAb) 231-7 was used to investigate the conformational effects occurring in this region upon both FVII activation and active site occupation. The binding affinity of mAb 231-7 was approximately 3-fold greater for the zymogen state than for the active state; a result affected by the presence of both calcium and the adjacent Gla domain. Once activated, active site inhibition of FVIIa with a variety of chloromethyl ketone inhibitors resulted in a 10-fold range of affinities of FVIIai molecules to mAb 231-7. Gla domain removal eliminated this variation in affinity, suggesting the involvement of a Gla/EGF-1 interaction in this conformational effect. In addition, the binding of mAb 231-7 to FVIIa EGF-1 stimulated the amidolytic activity of free FVIIa. Taken together, these results imply an allosteric interaction between the FVIIa active site and the EGF-1 domain that is sensitive to variation in active site occupant structure. Thus, these present studies indicate that the conformational change associated with FVII activation and active site occupation involves the EGF-1 domain and suggest potential functional consequences of these changes.  相似文献   

10.
We have used the site-directed labeling approach to study the Ca(2+)-dependent docking of factor VIIa (FVIIa) to soluble tissue factor (sTF). Nine Ca(2+) binding sites are located in FVIIa and even though their contribution to the overall binding between TF and FVIIa has been thoroughly studied, their importance for local protein-protein interactions within the complex has not been determined. Specifically we have monitored the association of the gamma-carboxyglutamic acid (Gla), the first EGF-like (EGF1), and the protease domains (PD) of FVIIa to sTF. Our results revealed that complex formation between sTF and FVIIa during Ca(2+) titration is initiated upon Ca(2+) binding to EGF1, the domain containing the site of highest Ca(2+) affinity. Besides we showed that a Ca(2+)-loaded Gla domain is required for an optimal association of all domains of FVIIa to sTF. Ca(2+) binding to the PD seems to be of some importance for the docking of this domain to sTF.  相似文献   

11.
The absence or reduced activity of coagulation factor IX (FIX) causes the severe bleeding disorder hemophilia B. FIX contains an N-terminal Gla domain followed by two epidermal growth factor-like (EGF) domains and a serine protease domain. In this study, the epitope of monoclonal antibody AW, which is directed against the C-terminal part of the first EGF domain in human FIX, was defined, and the antibody was used to study interactions between the EGF domain of FIX and other coagulation proteins. Antibody AW completely blocks activation of FIX by activated factor XI, but activation by activated factor FVII-tissue factor is inhibited only slightly. The antibody also causes a marginal reduction in the apparent k(cat) for factor X both in the presence and absence of activated factor VIII. Based on these results, we produced a preliminary model of the structure of the activated factor IX-activated factor VIII-AW complex on the surface of phospholipid. The model suggests that in the Xase complex, EGF1 of activated factor IX is not involved in direct binding to activated factor VIII. Studies of the interaction of antibody AW with a mutated FIX molecule (R94D) also suggest that the Glu(78)-Arg(94) salt bridge is not important for maintaining the structure of FIX.  相似文献   

12.
Although factor VII/factor VIIa (FVII/FVIIa) is known to interact with many non-vascular cells, activated monocytes, and endothelial cells via its binding to tissue factor (TF), the interaction of FVII/FVIIa with unperturbed endothelium and the role of this interaction in clearing FVII/FVIIa from the circulation are unknown. To investigate this, in the present study we examined the binding of radiolabeled FVIIa to endothelial cells and its subsequent internalization. (125)I-FVIIa bound to non-stimulated human umbilical vein endothelial cells (HUVEC) in time- and dose-dependent manner. The binding is specific and independent of TF and negatively charged phospholipids. Protein C and monoclonal antibodies to endothelial cell protein C receptor (EPCR) blocked effectively (125)I-FVIIa binding to HUVEC. FVIIa binding to EPCR is confirmed by demonstrating a marked increase in (125)I-FVIIa binding to CHO cells that had been stably transfected with EPCR compared with the wild-type. Binding analysis revealed that FVII, FVIIa, protein C, and activated protein C (APC) bound to EPCR with similar affinity. FVIIa binding to EPCR failed to accelerate FVIIa activation of factor X or protease-activated receptors. FVIIa binding to EPCR was shown to facilitate FVIIa endocytosis. Pharmacological concentrations of FVIIa were found to impair partly the EPCR-dependent protein C activation and APC-mediated cell signaling. Overall, the present data provide convincing evidence that EPCR serves as a cellular binding site for FVII/FVIIa. Further studies are needed to evaluate the pathophysiological consequences and relevance of FVIIa binding to EPCR.  相似文献   

13.
Activated platelets and phospholipid vesicles promote assembly of the intrinsic factor X (FX) activating complex by presenting high-affinity binding sites for blood coagulation FIXa, FVIIIa, and FX. Previous reports suggest that the second epidermal growth factor (EGF)-like domain of FIXa mediates assembly of the FX activating complex (Ahmad, S. S., Rawala, R., Cheung, W. F., Stafford, D. W., and Walsh, P. N. (1995) Biochem. J. 310, 427-431; Wong, M. Y., Gurr, J. A., and Walsh, P. N. (1999) Biochemistry 38, 8948-8960). To identify important residues, we prepared several chimeric FIXa proteins using homologous sequences from FVII: FIXa(FVIIEGF2) (FIX Delta 88-124,inverted Delta FVII91-127), FIXa(loop1) (FIX Delta 88-99,inverted Delta FVII91-102), FIXa(loop2) (FIX Delta 95-109,inverted Delta FVII98-112), FIXa(loop3) (FIX Delta 111-124,inverted Delta FVII114-127), and point mutants (FIXaR94D and FIXa(loop1)G94R). In the presence and absence of FVIIIa, a 2- to 10-fold reduced V(max) of FX activation (nm FXa min(-1)) was observed for FIXa(FVIIEGF2), FIXa(loop1), FIXa(loop2), and FIXa(loop1)G94R, whereas FIXa(loop3) and FIXaR94D were normal. For all of the FIXa proteins, K(m)((app)) values were normal as were EC(50) values for interactions with FVIIIa. However, K(d)((app)) (in nm) for the FX activating complex assembled on phospholipid vesicles was increased for FIXa(FVIIEGF2) (43.3 +/- 2.70), FIXa(loop1)(10.9 +/- 2.8), FIXa(loop2) (70.5 +/- 1.60), and FIXa(loop1)G94R (17.1 +/- 2.90) relative to FIXa(N) (3.9 +/- 0.11), FIXa(WT) (4.6 +/- 0.17), FIXa(loop3) (4.5 +/- 0.20), and FIXaR94D (2.2 +/- 0.09) suggesting that reduced V(max) is a result of impaired complex assembly. These data indicate that residues 88-109 (but not Arg(94)) are important for normal assembly of the FX activating complex on phospholipid vesicles.  相似文献   

14.
Previously we have determined that residues 88-109 (but not Arg(94)) in the second epidermal growth factor (EGF2)-like domain of factor IXa (FIXa) are important for assembly of the factor X (FX) activating complex on phospholipid vesicles (Wilkinson, F. H., London, F. S., and Walsh, P. N. (2002) J. Biol. Chem. 277, 5725-5733). Here we report that these residues are important for platelet binding affinity, stoichiometry, and assembly of the FX activating complex. We prepared several chimeric FIXa proteins using homologous sequences from factor VII (FVII): FIXa(FVIIEGF2) (FIX Delta 88-124,inverted Delta FVII91-127), FIXa(loop1) (FIX Delta 88-99,inverted Delta FVII91-102), FIXa(loop2) (FIX Delta 95-109,inverted Delta FVII98-112), and FIXa(loop3) (FIX Delta 111-124,inverted Delta FVII114-127) and tested their ability to bind to thrombin-activated platelets. Binding affinities (K(d) values in 10(-9) m) for the proteins were as follows in the presence and absence of FVIIIa, respectively: FIXa(N) (0.55 +/- 0.06, 2.9 +/- 0.45), FIXa(WT) (0.80 +/- 0.08, 3.5 +/- 0.5), FIXa(loop1) (19 +/- 4.0, 27 +/- 5.0), FIXa(loop2) (35 +/- 9.0, 65 +/- 12.0), and FIXa(loop3) (1.1 +/- 0.09, 5.0 +/- 0.90). These K(d) values are in good agreement with K((d)(app)) values (in 10(-9) m) determined from the activation of FX (in the presence and absence of FVIIIa, respectively): FIXa(N) (0.46 +/- 0.05, 1.40 +/- 0.14), FIXa(WT) (0.72 +/- 0.08, 3.8 +/- 0.08), FIXa(loop1) (3.2 +/- 0.72, 14.0 +/- 1.60), FIXa(loop2) (18.4 +/- 1.60, 26.3 +/- 3.40), and FIXa(loop3) (0.7 +/- 0.05, 3.0 +/- 0.15). Moreover, the stoichiometry of binding (sites/platelet) showed an agreement with V(max) of FX activation and was reduced in those proteins that also showed a decreased platelet binding affinity. A peptide corresponding to the FIX EGF2 domain (Leu(84)-Val(128)) was an effective inhibitor of FIXa binding to platelets in both the presence (K(i) = 0.7 x 10(-6) m) and the absence (K(i) = 1.5 x 10(-6) m) of FVIIIa and FX. We conclude that residues 88-109 of the FIXa EGF2 domain mediate binding to platelets and assembly of the FX activating complex.ut not Ar  相似文献   

15.
Tissue factor (TF)-mediated factor VII (FVII) activation and a subsequent proteolytic TF-FVIIa binary complex formation is the key step initiating the coagulation cascade, with implications in various homeostatic and pathologic scenarios. TF binding allosterically modifies zymogen-like free FVIIa to its highly catalytically active form. As a result of unresolved crystal structure of the full-length TF1-263-FVIIa binary complex and free FVIIa, allosteric alterations in FVIIa following its binding to full-length TF and the consequences of these on function are not entirely clear. The present study aims to map and identify structural alterations in FVIIa and TF resulting from full-length TF binding to FVIIa and the key events responsible for enhanced FVIIa activity in coagulation. We constructed the full-length TF1-263-FVIIa membrane bound complex using computational modeling and subjected it to molecular dynamics (MD) simulations. MD simulations showed that TF alters the structure of each domain of FVIIa and these combined alterations contribute to enhanced TF-FVIIa activity. Detailed, domain-wise investigation revealed several new non-covalent interactions between TF and FVIIa that were not found in the truncated soluble TF-FVIIa crystal structure. The structural modulation of each FVIIa domain imparted by TF indicated that both inter and intra-domain communication is crucial for allosteric modulation of FVIIa. Our results suggest that these newly formed interactions can provide additional stability to the protease domain and regulate its activity profile by governing catalytic triad (CT) orientation and localization. The unexplored newly formed interactions between EGF2 and TF provides a possible explanation for TF-induced allosteric activation of FVIIa.  相似文献   

16.
Our previous study has demonstrated a unique biological function of compound 48/80 (48/80) in the downregulation of monocytic tissue factor (TF)-initiated hypercoagulation in response to bacterial endotoxin (lipopolysaccharide, LPS) [A. J. Chu et al. (1999) Biochim. Biophys. Acta 1472, 386-395]. The inhibition was not due to the blockade of LPS cell signaling as evidenced by the unaffected LPS-induced TF synthesis. In the present study, we investigate the direct inhibitory action of 48/80 on the extrinsic coagulation cascade. TF-initiated coagulation was assayed by a single-stage clotting assay. Chromogenic assays dissected the extrinsic pathway to measure the activities of FVII, FX, and prothrombin by monitoring the hydrolyses of nitroaniline-conjugated substrates, identifying the inhibitory site(s). We report that 48/80 in vitro instantaneously inhibited rabbit brain thromboplastin (rbTF)-initiated coagulation in a dose-dependent manner. 48/80 preferentially inhibited FVII activation without any detectable effect on FVIIa, FXa, and thrombin activities. Neither FX activation nor prothrombin activation was affected. The significant inhibition on FVII activation was found to be noncompetitive with a fourfold reduction in the apparent Vmax of FVIIa formation from 7.1 to 1.7 nM/min, while the apparent Km (approximately 365 nM) remained unaffected. Western blotting analysis further confirmed that FVIIa formation derived from FVII was significantly diminished by 48/80, which was accompanied by blocked FVII binding to rbTF. In conclusion, 48/80 readily blocked FVII binding to rbTF, leading to diminished FVII activation and FVIIa formation. As a result, TF-initiated extrinsic coagulation was downregulated.  相似文献   

17.
BACKGROUND: Coagulation factor VIIa (FVIIa) contains a Trypsin-like serine protease domain and initiates the cascade of proteolytic events leading to Thrombin activation and blood clot formation. Vascular injury allows formation of the complex between circulating FVIIa and its cell surface bound obligate cofactor, Tissue Factor (TF). Circulating FVIIa is nominally activated but retains zymogen-like character and requires TF in order to complete the zymogen-to-enzyme transition. The manner in which TF exerts this effect is unclear. The structure of TF/FVIIa is known. Knowledge of the zymogen structure is helpful for understanding the activation transition in this system. RESULTS: The 2 A resolution crystal structure of a zymogen form of FVII comprising the EGF2 and protease domains is revealed in a complex with the exosite binding inhibitory peptide A-183 and a vacant active site. The activation domain, which includes the N terminus, differs in ways beyond those that are expected for zymogens in the Trypsin family. There are large differences in the TF binding region. An unprecedented 3 residue shift in registration between beta strands B2 and A2 in the C-terminal beta barrel and hydrogen bonds involving Glu154 provide new insight into conformational changes accompanying zymogen activation, TF binding, and enzymatic competence. CONCLUSIONS: TF-mediated allosteric control of the activity of FVIIa can be rationalized. The reregistering beta strand connects the TF binding region and the N-terminal region. The zymogen registration allows H bonds that prevent the N terminus from attaining a key salt bridge with the active site. TF binding may influence an equilibrium by selecting the enzymatically competent registration.  相似文献   

18.
Factor VIIa (FVIIa) consists of a gamma-carboxyglutamic acid (Gla) domain, two epidermal growth factor-like domains, and a protease domain. FVIIa binds seven Ca(2+) ions in the Gla, one in the EGF1, and one in the protease domain. However, blood contains both Ca(2+) and Mg(2+), and the Ca(2+) sites in FVIIa that could be specifically occupied by Mg(2+) are unknown. Furthermore, FVIIa contains a Na(+) and two Zn(2+) sites, but ligands for these cations are undefined. We obtained p-aminobenzamidine-VIIa/soluble tissue factor (sTF) crystals under conditions containing Ca(2+), Mg(2+), Na(+), and Zn(2+). The crystal diffracted to 1.8A resolution, and the final structure has an R-factor of 19.8%. In this structure, the Gla domain has four Ca(2+) and three bound Mg(2+). The EGF1 domain contains one Ca(2+) site, and the protease domain contains one Ca(2+), one Na(+), and two Zn(2+) sites. (45)Ca(2+) binding in the presence/absence of Mg(2+) to FVIIa, Gla-domainless FVIIa, and prothrombin fragment 1 supports the crystal data. Furthermore, unlike in other serine proteases, the amide N of Gly(193) in FVIIa points away from the oxyanion hole in this structure. Importantly, the oxyanion hole is also absent in the benzamidine-FVIIa/sTF structure at 1.87A resolution. However, soaking benzamidine-FVIIa/sTF crystals with d-Phe-Pro-Arg-chloromethyl ketone results in benzamidine displacement, d-Phe-Pro-Arg incorporation, and oxyanion hole formation by a flip of the 192-193 peptide bond in FVIIa. Thus, it is the substrate and not the TF binding that induces oxyanion hole formation and functional active site geometry in FVIIa. Absence of oxyanion hole is unusual and has biologic implications for FVIIa macromolecular substrate specificity and catalysis.  相似文献   

19.
Blood coagulation is triggered by the formation of a complex between factor VIIa (FVIIa) and its cofactor, tissue factor (TF). TF-FVIIa is inhibited by tissue factor pathway inhibitor (TFPI) in two steps: first TFPI is bound to the active site of factor Xa (FXa), and subsequently FXa-TFPI exerts feedback inhibition of TF-FVIIa. The FXa-dependent inhibition of TF-FVIIa activity by TFPI leads to formation of the quaternary complex TF-FVIIa-FXa-TFPI. We used site-directed fluorescence probing to map part of the region of soluble TF (sTF) that interacts with FXa in sTF-FVIIa-FXa-TFPI. We found that the C-terminal region of sTF, including positions 163, 166, 200 and 201, is involved in binding to FXa in the complex, and FXa, most likely via its Gla domain, is also in contact with the Gla domain of FVIIa in this part of the binding region. Furthermore, a region that includes the N-terminal part of the TF2 domain and the C-terminal part of the TF1 domain, i.e. the residues 104 and 197, participates in the interaction with FXa in the quaternary complex. Moreover, comparisons of the interaction areas between sTF and FX(a) in the quaternary complex sTF-FVIIa-FXa-TFPI and in the ternary complexes sTF-FVII-FXa or sTF-FVIIa-FX demonstrated large similarities.  相似文献   

20.
During blood coagulation factor IXa binds to factor VIIIa on phospholipid membranes to form an enzymatic complex, the tenase complex. To test whether there is a protein-protein contact site between the gamma-carboxyglutamic acid (Gla) domain of factor IXa and factor VIIIa, we demonstrated that an antibody to the Gla domain of factor IXa inhibited factor VIIIa-dependent factor IXa activity, suggesting an interaction of the factor IXa Gla domain with factor VIIIa. To study this interaction, we synthesized three analogs of the factor IXa Gla domain (FIX1-47) with Phe-9, Phe-25, or Val-46 replaced, respectively, with benzoylphenylalanine (BPA), a photoactivatable cross-linking reagent. These factor IX Gla domain analogs maintain native tertiary structure, as demonstrated by calcium-induced fluorescence quenching and phospholipid binding studies. In the absence of phospholipid membranes, FIX1-47 was able to inhibit factor IXa activity. This inhibition is dependent on the presence of factor VIIIa, suggesting a contact site between the factor IXa Gla domain and factor VIIIa. To demonstrate a direct interaction we did cross-linking experiments with FIX1-479BPA, FIX1-4725BPA, and FIX1-4746BPA. Covalent cross-linking to factor VIIIa was observed primarily with FIX1-4725BPA and to a much lesser degree with FIX1-4746BPA. Immunoprecipitation experiments with an antibody to the C2 domain of factor VIIIa indicate that the factor IX Gla domain cross-links to the A3-C1-C2 domain of factor VIIIa. These results suggest that the factor IXa Gla domain contacts factor VIIIa in the tenase complex through a contact site that includes phenylalanine 25 and perhaps valine 46.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号