首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two phosphorylated proteins of approximately 66 kDa and approximately 60 kDa mass with different DEAE-Sephacel elution patterns were isolated from chicken bone and were shown to be genetically distinct by both biochemical and immunological analysis. A tryptic peptide from the 60 kDa protein was identified that was similar to a sequence of the rat bone sialoprotein II. Both proteins showed RGD inhibited cell-attachment with the MG-63 osteosarcoma cell, and the approximately 66 kDa phosphoprotein appeared to promote cell adhesion better than human vitronectin. The two phosphoproteins appear to share functional and biochemical characteristics and to be homologous to the mammalian bone phosphoproteins, osteopontin and bone sialoprotein II.  相似文献   

2.
A significant consequence of protein phosphorylation is to alter protein-protein interactions, leading to dynamic regulation of the components of protein complexes that direct many core biological processes. Recent proteomic studies have populated databases with extensive compilations of cellular phosphoproteins and phosphorylation sites and a similarly deep coverage of the subunit compositions and interactions in multiprotein complexes. However, considerably less data are available on the dynamics of phosphorylation, composition of multiprotein complexes or that define their interdependence. We describe a method to identify candidate phosphoprotein complexes by combining phosphoprotein affinity chromatography, separation by size, denaturing gel electrophoresis, protein identification by tandem mass spectrometry, and informatics analysis. Toward developing phosphoproteome profiling, we have isolated native phosphoproteins using a phosphoprotein affinity matrix, Pro-Q Diamond resin (Molecular Probes-Invitrogen). This resin quantitatively retains phosphoproteins and associated proteins from cell extracts. Pro-Q Diamond purification of a yeast whole cell extract followed by 1-D PAGE separation, proteolysis and ESI LC-MS/MS, a method we term PA-GeLC-MS/MS, yielded 108 proteins, a majority of which were known phosphoproteins. To identify proteins that were purified as parts of phosphoprotein complexes, the Pro-Q eluate was separated into two fractions by size, <100 kDa and >100 kDa, before analysis by PAGE and ESI LC-MS/MS and the component proteins queried against databases to identify protein-protein interactions. The <100 kDa fraction was enriched in phosphoproteins indicating the presence of monomeric phosphoproteins. The >100 kDa fraction contained 171 proteins of 20-80 kDa, nearly all of which participate in known protein-protein interactions. Of these 171, few are known phosphoproteins, consistent with their purification by participation in protein complexes. By comparing the results of our phosphoprotein profiling with the informational databases on phosphoproteomics, protein-protein interactions and protein complexes, we have developed an approach to examining the correlation between protein interactions and protein phosphorylation.  相似文献   

3.
Abstract. As demonstrated previously, the transition of starving Dictyostelium cells from growth to differentiation phase occurs at a particular position (putative shift point; PS-point) in G2-phase of the cell cycle of Dictyostelium discoideum Ax-2. In this study we examined what proteins are phosphorylated or dephosphorylated at the onset of starvation, with special emphasis on changes of phosphoproteins near the PS-point. When AX-2 cells at any particular phase of the cell cycle were pulse-labeled with inorganic 32P (32Pi) in the presence or absence of nutrients, it was found that 101 kDa and 90 kDa phosphoproteins exhibit specific changes around the PS-point. From the chase-experiments of 32P-labeled cells, the 101 kDa and 90 kDa proteins were found to fail to be phosphorylated at the PS-point under starvation conditions. The protein phosphatase inhibitors such as okadaic acid and calyculin A inhibited completely entry of starving Ax-2 cells to differentiation, and also blocked perfectly dephosphorylation of 32 kDa protein. Taken together it is likely that dephosphorylation of 32 kDa protein as well as low phosphorylation levels of 101 kDa and 90 kDa proteins may be required for the phase-shift of Ax-2 cells from growth to differentiation. Subcellular fractionation showed the 101 kDa phosphoprotein to be located in cytoplasm, while parts, at least, of the 90 kDa and 32 kDa phosproproteins were in the nucleus. In addition, the results of cellulose thin-layer electrophoresis of digested 101 kDa and 90 kDa phosphoproteins show that in both proteins only serine residues are phosphorylated. The significance of phosphorylation states of 101 kDa, 90 kDa, and 32 kDa proteins is discussed in relation to a breakaway of cells from proliferation to differentiation.  相似文献   

4.
Phosphorylation of proteins in purified rod outer segment from frog retina was investigated. Phosphorylation of 18, 17, 12 and 11.5 kDa proteins was stimulated by cAMP (Ka approximately equal to 10(-7) M) and cGMP (Ka approximately equal to 10(-4) M). 32P-incorporation into 18 and 17 kDa proteins was much lower than into 12 and 11.5 kDa, which are in the group of main phosphoproteins of the rod outer segment: 12 and 11.5 kDA phosphoproteins appear to be present in cytoplasm or are slightly bound to disk's membranes. However, they are not discovered in the cytoplasmic membranes. The dephosphorylation of low-molecular weight proteins, discovered earlier by Polans et al., occurs slowly: the light doesn't change the level of phosphorylation of proteins in living retina within the time of photoresponse. It is suggested that the process of light-dependent phosphorylation-dephosphorylation of 12 and 11.5 kDa proteins controls the light sensitivity of the photoreceptor.  相似文献   

5.
We have previously reported a neutral-pH gel system buffered with Bis-Tris hydrochloride (Bis-Tris-HCl) in Zn(2+)-Phos-tag SDS-PAGE for advanced profiling of phosphoproteins with molecular masses of 10-200 kDa. In the current work, we describe characteristics of two neutral-pH gel systems, Bis-Tris-HCl and Tris-acetic acid (Tris-AcOH), based on comparative studies of the separation of a wide range of proteins with molecular masses from 10 to 350 kDa. For 10-200 kDa cellular proteins, the Bis-Tris-HCl system showed a higher resolving power in a 2-D fluorescence DIGE analysis of certain phosphoproteins, e.g. histone H3 (15 kDa) and elongation factor 2 (95 kDa). Furthermore, there was a large difference in the 1-D migration patterns of phosphorylated species of extracellular signal-regulated kinases 1 and 2 (ERK1/2, 44/42 kDa), which arise from changes in the phosphorylation status of the Thr-202 and Tyr-204, in the two buffer systems at the same concentration of Zn(2+)-Phos-tag. In contrast, shifts in the mobility of various phosphorylated species of a high-molecular-mass protein, ataxia telangiectasia-mutated kinase (ATM, 350 kDa), could only be detected in the Tris-AcOH system with a 3% w/v polyacrylamide gel strengthened with 0.5% w/v agarose.  相似文献   

6.
Noninsulin-dependent diabetes is associated with a decrease in the activity of sarcolemmal phosphatase 1, but no change in the activities of phosphatase 2A, 2B, or 2C. Also unaffected by diabetes were the activities of protein kinase C, cAMP-dependent protein kinase and calcium-calmodulin protein kinase. Because of the decrease in phosphatase 1 activity, 32P incorporation into sarcolemmal phosphoproteins catalyzed by either intrinsic protein kinases or extrinsic cAMP-dependent protein kinase was elevated in the diabetic. Among the proteins whose phosphorylation was elevated in diabetes was the phospholamban-like protein, which has been implicated in the regulation of ATP-dependent calcium transport. The phosphate-linked increase could be prevented by exposing the membranes to a phosphatase inhibitor and either extrinsic cAMP-dependent protein kinase or alamethicin. In addition to the phosphatase-linked effects, analysis of individual sarcolemmal phosphoproteins by SDS-polyacrylamide gel electrophoresis indicated that diabetes caused a specific elevation in membrane phosphorylation of some proteins (43 kDa and 78 kDa), but a decrease in the phosphorylation state of other phosphoproteins (31 kDa and 49 kDa). The data indicate that membrane phosphorylation is dramatically altered by diabetes. The possibility that this contributes to altered myocardial function is discussed.  相似文献   

7.
In order to determine whether qualitative and quantitative differences exist between the non-collagenous proteins of crown and root dentin, rat incisors were separated into their enamel- and cementum-related dentin portions (ERD and CRD, respectively). Isolation of the mineral-bound proteins was performed under nondegradative conditions. Analytical procedures included DEAE-chromatography on high pressure liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and determination of phosphate, protein, and hydroxyproline. The results have shown that considerable differences exist among the two dentins with respect to the quantity of the various phosphoproteins. For this group of proteins as a whole, the ERD contains about 2 times the amount of organic phosphate found in the CRD and about 1.4 times the amount of protein. The content of higher phosphorylated phosphoproteins was about 4 times higher in the ERD than in the CRD, whereas the reverse was shown for the lower phosphorylated phosphoproteins. All differences were found to be statistically significant. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that while the ERD contains phosphoproteins with an apparent molecular mass of 98 kDa, the CRD contains two classes of phosphoproteins one of 98 and one of 88 kDa. The relevance of the observed differences in phosphoprotein distribution is discussed in relation to their possible role in mineralization.  相似文献   

8.
Our objectives were to incorporate ATP-gamma-(32)P into boar sperm to radiolabel endogenous phosphoproteins and compare phosphorylation patterns from sperm incubated in capacitating (CM) and non-capacitating conditions (NCM). Sperm were electroporated (1000 V/cm, 125 microF/cm, 65 Omega/cm, 0.3 msec) with ATP-gamma-(32)P which moderately decreased sperm viability (P < 0.01), but did not affect motility (P = 0.34) or the appearance of spontaneous acrosome reactions (P = 0.49). Sperm incubated in CM for 3 hr underwent capacitation, determined by the ability to undergo ionophore-induced acrosome reactions (P 0.05) and the 57 kDa phosphoprotein increased after capacitation (P /= 0.02). ATP-gamma-(32)P can, therefore, be incorporated into porcine sperm to radiolabel endogenous phosphoproteins, and the different profiles from sperm incubated in NCM versus CM suggest that capacitation is mediated by signaling events involving protein phosphorylation.  相似文献   

9.
Sperm motility is a process which involves a cascade of events mediated by cAMP and Ca2+, cAMP in the initiation of flagellar movement, and Ca2+ in the regulation of beat asymmetry, and it has been suggested that these two messengers act through phosphorylation/dephosphorylation of axonemal proteins. Only a few studies on human sperm protein phosphorylation have been reported and no relation of this process with motility or other function has been established. In the present study, phosphorylation of human sperm proteins was performed using detergent-demembranated spermatozoa, in which motility is reactivated by the addition of ATP. This system allows direct accessibility of intracellular kinases to [32P]-γATP and allows some relation between protein phosphorylation and flagellar movements. After electrophoresis and autoradiography, numerous phosphoproteins were detected. Phosphorylation of 2 proteins (36 and 51 kDa) was stimulated by cAMP in a concentration-dependent manner, and this increase was prevented by inhibitors of cAMP-dependent protein kinase. In order to characterize phosphoproteins originating from the cytoskeleton or axoneme, detergent extracted spermatozoa were also subjected to phosphorylation. Three major phosphorylated proteins (14.8, 15.3, and 16.2 kDa) were detected, the first two expressing cAMP-dependency according to their cAMP concentration-dependent increase in phosphorylation and the reversal of this effect by inhibitors of cAMP-dependent protein kinase. Proteins phosphorylation during the reactivation of demembranated spermatozoa previously immobilized H2O2, xanthine + xanthine oxidase-generated reactive oxygen species, or the oxidative phosphorylation uncoupler rotenone, revealed increases in cAMP-independent phosphorylation of proteins of 16.2, 46, and 93 kDa. These results documenting human sperm phosphoproteins form a base for further studies on the role of protein phosphorylation in sperm functions. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Neutrophils stimulated with activators of protein kinase C (i.e., 4 beta-phorbol 12-myristate 13-acetate; sn-1,2-dioctanoylglycerol) exhibit a dramatic, dose-dependent incorporation of 32P[Pi] into two proteins with molecular weights of ca. 47 and 49kDa. Proteins of the same molecular weights are also labelled when the cells are stimulated with a chemotactic peptide. However, with the latter stimulus, labelling of the 47kDa species is transient whereas that of the 49kDa entity persists. Labelling of both proteins always accompanied the release of O2-stimulated by these agents. The kinetics of labelling are compatible with the involvement of both phosphoproteins in the stimulation of these cells.  相似文献   

11.
Abstract: The natural compound, coumarin, caused a change in protein pattern and influenced the phosphorylation status of some ribosome-associated proteins of pumpkin seedlings in vivo and in vitro. Low concentrations of coumarin stimulated ribosome-associated protein phosphorylation only in cotyledons but not in roots and stems. Two phosphoproteins whose phosphorylation state was influenced upon coumarin treatment could be isolated and characterized by their relative molecular weight of about 58 and 65 kDa and pl-values at 5.2 and 5.7, respectively. These phosphoproteins are not major constituents of small or large subunits of ribosomes. We did not find any influence of coumarin on phosphorylation of ribosomal proteins S6, LAO and LAI–3.  相似文献   

12.
Chronic myelogenous leukemia (CML) is characterized by a translocation involving the c-abl protein-tyrosine kinase gene. A chimeric mRNA is formed containing sequences from a chromosome 22 gene (bcr) at its 5' end and all but the variable exon 1 of c-abl sequence. The product of this mRNA, p210bcr-abl, has constitutively high protein-tyrosine kinase activity. We examined K562 cells and other lines established from CML patients for the presence of phosphotyrosine (P-Tyr)-containing proteins which might be p210bcr-abl substrates. Two-dimensional gel separation of 32P-labeled proteins followed by phosphoamino acid analysis of 25 phosphoproteins, which comprised the major alkali-stable phosphoproteins, indicated that three related proteins of 41 kDa are the most prominent P-Tyr-containing proteins detected by this method. The 41-kDa phosphoproteins are found in two other CML lines that we examined but not in lines of similar lineage isolated from patients with distinct leukemic disease. A protein that comigrates with the major form of pp41 (pp41A) and contains P-Tyr is also found in murine fibroblasts and B-lymphoid cells transformed by Abelson murine leukemia virus, which encodes the v-abl protein, and in platelet-derived growth factor-treated fibroblasts, in which it has been described previously. We analyzed three pairs of Epstein-Barr virus-immortalized B-cell lines from individual CML patients and found that only the lines in which active p210bcr-abl was present contained detectable pp41. We also performed immunoblotting with anti-P-Tyr antibodies on the same CML cell lines and detected at least four other putative substrates of p210bcr-abl, which were undetected with use of the two-dimensional gel technique.  相似文献   

13.
Phosphoproteins from Plasmodium berghei, P. chabaudi, and P. falciparum are compared. A major phosphoprotein of 46 kDa is found in all three species. Peptide mapping indicates that this protein is indeed the same in all three cases and is phosphorylated at similar sites in all three species. Monoclonal antibodies were raised against three other P. berghei phosphoproteins. All three monoclonal antibodies recognize both P. berghei and P. chabaudi proteins. Only one of the monoclonal antibodies crossreacts with a P. falciparum protein of 36 kDa, whereas the equivalent P. berghei and P. chabaudi proteins are 34 and 32 kDa, respectively. The highest rate of synthesis of the phosphoproteins is observed during the early trophozoite stage, whereas the highest rate of phosphorylation is observed during the late trophozoite stage.  相似文献   

14.
P J Robinson 《FEBS letters》1991,282(2):388-392
A 96,000 dalton phosphoprotein, called dephosphin, is phosphorylated in intact synaptosomes from rat brain and is rapidly dephosphorylated upon depolarisation-dependent calcium entry. A 96,000 dalton phosphoprotein is also a substrate of protein kinase C in synaptosomal cytosol, and the aim of the study was to determine whether the two proteins may be the same. Dephosphin in intact synaptosomes and the 96,000 dalton protein kinase C substrate comigrated on polyacrylamide gels. Both phosphoproteins had identical phosphopeptide maps after digestion with V8 protease. Both phosphoproteins ran on isoelectric focussing gels with a pI of 6.3-6.7 and focussed as a series of 5-6 spots. Both proteins were phosphorylated exclusively on serine. Both proteins could be resolved into a doublet on longer polyacrylamide gels. The two subunits were of 96 and 93 kDa in both phosphorylation conditions and had dissimilar phosphopeptide maps. However, phosphopeptide maps of either the 96 or 93 kDa subunits were identical in intact synaptosomes compared with synaptosomal cytosol. These results show that a phosphoprotein phosphorylated in intact synaptosomes and a 96,000 dalton protein kinase C substrate from rat brain synaptosomal cytosol are the same, and raise the possibility that protein kinase C is the protein kinase responsible for dephosphin phosphorylation in intact synaptosomes.  相似文献   

15.
Numerous studies have indicated that treatment of Leydig cells with gonadotropin results in increased levels of intracellular cAMP, binding of cAMP to and activation of protein kinase A, phosphorylation of proteins, synthesis of new proteins and eventually, stimulation of steroidogenesis. In addition, recent studies have indicated that protein phosphorylation is an indispensable event in the production of steroids in response to hormone stimulation in adrenal cells. Because of the important role of phosphorylation in steroidogenic regulation, we investigated the effects of human chorionic gonadotropin (hCG), dibutyryl cyclic AMP (dbcAMP), forskolin and the phorbol ester, phorbol-12-myristate 13-acetate (PMA) on protein phosphorylation in MA-10 mouse Leydig tumor cells. Cells were stimulated with different steroidogenic compounds in the presence of [32P]orthophosphoric acid for 2 h and phosphoproteins analyzed by two-dimensional polyacrylamide gel-electrophoresis (PAGE). Results demonstrated an increase in the phosphorylation of four proteins (22 kDa, pI 5.9; 24 kDa, pI 6.7 and 30 kDa, pI 6.3 and 6.5) in response to 34 ng/ml hCG, 1 mM dbcAMP and 100 microM forskolin. Conversely, treatment of cells with PMA increased the phosphorylation of only one of these proteins (30 kDa, pI 6.3). At least two of these proteins (30 kDa, pI 6.5 and 6.3) appear to be identical to proteins which we and others have shown to be synthesized in response to trophic hormone stimulation in adrenal, luteal and Leydig cells. In addition, they also appear to be identical to adrenal cell mitochondrial proteins demonstrated to be phosphorylated in response to ACTH. These data indicate that proteins similar to those phosphorylated in adrenal cells in response to ACTH are phosphorylated in hormone stimulated testicular Leydig cells and that these proteins may be involved in steroidogenic regulation.  相似文献   

16.
Endogenous protein phosphorylation in purified plant mitochondria   总被引:1,自引:0,他引:1  
Purified mitochondria from potato (Solanum tuberosum L. cv Bintje) tubers were incubated with [gamma-32P]ATP. Total 32P incorporation into proteins saturated after about 2 min and showed a Km (ATP) of 0.2 mM and a broad pH optimum of 6.5-8. About 30 polypeptides were labelled as shown by SDS-PAGE and autoradiography. The major labelled polypeptides were at 11, 14, 16 22-23, 40, 42 (the alpha-subunit of the pyruvate dehydrogenase complex), 45-46, 60, 62, 69, 84-86 and 97 kDa. By the use of atractylate, EGTA and trypsin the major phosphoproteins of 40 and 42 kDa and possibly some minor phosphoproteins in the range 26-33 kDa were localized to the matrix or the inner surface of the inner membrane. All other labelled polypeptides as well as (at least) two kinases (one Ca2(+)-dependent, the other Ca2(+)-independent) are outside the inner membrane.  相似文献   

17.
Phosphorylation of polypeptides in isolated thylakoids was examined during chloroplast biogenesis in greening etiolated wheat leaves and 4 day-old wheat leaves grown under a diurnal light regime. At early stages of plastid development standard thylakoid preparations were heavily contaminated with nuclear proteins, which distorted the polypeptide phosphorylation profiles. Removal of contamination from membranes by sucrose density centrifugation demonstrated that the major membrane phosphoprotein in etioplasts was at 35 kDa. During etioplast greening a number of phosphoproteins appeared, of which the 25–27 kDa apoproteins of the light-harvesting chlorophylla/b protein complex associated with photosystem II (LHCII) became the most dominant. At the early stages of thylakoid development found at the base of the 4-day-old light grown leaf the LHCII apoproteins were evident as phosphoproteins; however the major phosphoprotein was polypeptide atca. 9kDA. Phosphorylation of both the LHCII apoproteins and the 9 kDa polypeptide in these thylakoids was not light-dependent. In the older thylakoids isolated from the leaf tip the LHCII apoproteins were the major phosphoproteins and their phosphorylation had become light-regulated; however phosphorylation of the 9 kDa polypeptide remained insensitive to light.  相似文献   

18.
The phosphorylation of human link proteins   总被引:1,自引:0,他引:1  
Three link proteins of 48,44 and 40 kDa were purified from human articular cartilage and identified with monoclonal anti-link protein antibody 8-A-4. Two sets of lower molecular weight proteins of 30-31 kDa and 24-26 kDa also contained link protein epitopes recognized by the monoclonal antibody and were most likely degradative products of the intact link proteins. The link proteins of 48 and 40 kDa were identified as phosphoproteins while the 44 kDa link protein did not contain 32P. The phosphorylated 48 and 40 kDa link proteins contained approximately 2 moles PO4/mole link protein.  相似文献   

19.
A method is described for separation of ionic detergent-solubilized proteins by ion-exchange chromatography. This method has been developed for purification of two phosphoproteins (Mr 19,000 and 30,000) from 32Pi-prelabeled, isoproterenol-stimulated rat parotid tissue and is based on the observation that, in the presence of urea and Nonidet-P40, ionic detergent-solubilized proteins can be adsorbed by ion exchangers according to their own charge. After adsorption, proteins were eluted with a stepwise gradient of NaCl in a urea-containing buffer. By the procedure described, the 30 kDa phosphoprotein was freed from other 32P-labeled substances; and it was identified as ribosomal protein S6 that was phosphorylated at some serine residues. The method is generally applicable and especially suited for preliminary purification of hydrophobic proteins subjected to analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

20.
P Kaur  W J Welch  J Saklatvala 《FEBS letters》1989,258(2):269-273
Interleukin 1 alpha and tumour necrosis factor-alpha stimulated phosphorylation of three 27 kDa phosphoproteins in MRC-5 fibroblasts which was sustained for up to 2 h after adding the cytokines. All three phosphoproteins were immunoprecipitated by a specific antiserum to the small mammalian heat shock protein, hsp 27. The three phosphoproteins from stimulated or control cells contained phosphoserine but not phosphothreonine or phosphotyrosine. Similar increases in phosphorylation of immunoprecipitable 27 kDa proteins were seen in U937 cells stimulated by TNF alpha and Hep G2 cells stimulated by IL1 alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号