首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We examined tryptophan regulation in merodiploid hybrids in which a plasmid carrying the trp operon of Escherichia was introduced into Trp mutants of other enteric genera, or in which a plasmid carrying the trpR+ (repressor) gene of E. coli was transfered into fully constitutive trpR mutants of other genera. In these hybrids the trp operon of one species is controlled by the repressor of a different species. Similar investigations were possible in transduction hybrids in which either the trp operon or the trpR+ locus of Shigella dysenteriae was introduced into E. coli. Our measurements of trp enzymes levels in repressed and nonrepressed cells indicate that Trp regulation is normal, with only minor quantitative variations, in hybrids between E coli and Shigella dysenteriae, Salmonella typhimurium, Klebsiella aerogenes, Serratia marcescens, and Proteus mirabilis. Our results support the idea that a repressor-operator mechanism for regulating trp messenger ribonucleic acid production evolved in a common ancestor of the enteric bacteria, and that this repressor-operator recognition has been conversed during the evolutionary divergence of the Enterobacteriaceae.  相似文献   

2.
3.
4.
Mutant strains of Escherichia coli K-12 have been isolated in which the synthesis of 3-deoxy-d-arabinoheptulosonic acid-7-phosphate (DAHP) synthetase (trp) is partially constitutive. The mutation causing derepression is closely linked to aroH [the structural gene for DAHP synthetase (trp)] and occurs in a locus designated aroJ. The aroJ mutation is not recessive in an aroJ(+)/aroJ(-) diploid strain, as the synthesis of DAHP synthetase (trp) is still derepressed in this strain. On the basis of its close linkage to aroH and its continued expression in an aroJ(+)/aroJ(-) diploid, it is postulated that aroJ is an operator locus controlling the expression of the structural gene aroH. In support of this conclusion, the synthesis of anthranilate synthetase is still normally repressible in aroJ(-) strains, whereas, in trpR(-) strains, both DAHP synthetase (trp) and anthranilate synthetase are synthesized constitutively. The synthesis of DAHP synthetase (trp) remains repressible in an operator-constitutive mutant of the tryptophan operon. In two trpS mutants which possess defective tryptophanyl transfer ribonucleic acid synthetase enzymes, neither DAHP synthetase (trp) nor anthranilate synthetase derepress under conditions in which the defective synthetase causes a decrease in growth rate. On the other hand, an effect of the trpS mutant alleles on the level of anthranilate synthetase has been observed in strains which are derepressed for the synthesis of this enzyme, because of a mutation in the gene trpR. Possible explanations for this effect are presented.  相似文献   

5.
We have isolated a series of nondefective phi80 specialized transducing phage which carry segments of the Salmonella typhimurium trp operon. These phage were obtained from a lysogenic derivative of a merozygote constructed by transferring an S. typhimurium trp episome into an Escherichia coli strain which lacks the normal phi80 attachment site. The deoxyribonucleic acid (DNA) from one such phage was purified and employed in DNA-ribonucleic acid (RNA) hybridization studies. The results obtained show that, under our hybridization conditions, heterologous hybridization is less efficient than homologous hybridization. It was also observed that not all S. typhimurium trp messenger RNA can readily anneal to E. coli trp operon DNA. Heterologous hybrids consisting of S. typhimurium trp messenger RNA and E. coli trp operon DNA were estimated to have a dissociation constant 10-fold larger than that of homologous hybrids.  相似文献   

6.
A RSF1010-trp hybrid plasmid which contained the tryptophan operon of Escherichia coli was introduced into Pseudomonas aeruginosa trp cells by transformation. From the Trp+ transformants several deletion plasmids were obtained, and their physical maps with restriction endonucleases were constructed. P. aeruginosa trp cells with these plasmids showed at first more than 100 times higher levels of tryptophan synthetase beta activity over that of the control P. aeruginosa wild-type cells, but these levels were drastically decreased by 1 week of successive transfers of cultures. This decrease in enzyme activity was found to be due to the change on the plasmids but not to the host cells. The production of E. coli tryptophan synthetase beta enzyme in P. aeruginosa cells was proved by immunological test.  相似文献   

7.
8.
Creighton, T. E. (Stanford University, Stanford), D. R. Helinski, R. L. Somerville, and C. Yanofsky. Comparison of the tryptophan synthetase alpha subunits of several species of Enterobacteriaceae. J. Bacteriol. 91:1819-1826. 1966.-The tryptophan synthetase alpha subunits of Escherichia coli K-12, E. coli B, Shigella dysenteriae, Salmonella typhimurium, and Aerobacter aerogenes have been purified and their structures compared. Each of these alpha subunits exhibits a sedimentation coefficient of about 2.7S. Peptide patterns of trypsin plus chymotrypsin digests of the alpha subunits have indicated that all of the alpha subunits have peptide regions in common. The patterns of E. coli K-12, E. coli B, and S. dysenteriae alpha subunits appear to be nearly identical, whereas the alpha subunits from S. typhimurium and A. aerogenes differ from those of E. coli and from each other. It has also been shown that the E. coli structural gene for the alpha subunit is translated identically in E. coli and S. typhimurium.  相似文献   

9.
J Li  R L Last 《Plant physiology》1996,110(1):51-59
The first step of tryptophan biosynthesis is catalyzed by anthranilate synthase (AS), which is normally subject to feedback inhibition by tryptophan. Three independent trp5 mutants defective in the Arabidopsis thaliana AS alpha subunit structural gene ASA1 were identified by selection for resistance to the herbicidal compound 6-methylanthranilate. In all three mutants these biochemical changes are caused by a single amino acid substitution from aspartate to asparagine at residue position 341. Compared with the enzyme from wild-type plants, the tryptophan concentration causing 50% inhibition of AS activity in the trp5 mutant increased nearly 3-fold, the apparent Km for chorismate decreased by approximately 50%, and the apparent Vmax increased 60%. As a consequence of altered AS kinetic properties, the trp5 mutants accumulated 3-fold higher soluble tryptophan than wild-type plants. However, even though the soluble tryptophan levels were increased in trp5 plants, the concentrations of five tryptophan biosynthetic proteins remained unchanged. These data are consistent with the hypothesis that the reaction catalyzed by A. thaliana AS is rate limiting for the tryptophan pathway and that accumulation of tryptophan biosynthetic enzymes is not repressed by a 3-fold excess of end product.  相似文献   

10.
The tryptophan (trp) operon of Escherichia coli has become the basic reference structure for studies on tryptophan metabolism. Within the past five years the application of recombinant DNA and sequencing methodologies has permitted the characterization of the structural and functional elements in this gene cluster at the molecular level. In this summary report we present the complete nucleotide sequence for the five structural genes of the trp operon of E. coli together with the internal and flanking regions of regulatory information.  相似文献   

11.
12.
A lysogen of a wild-type strain of Escherichia coli K-12 carrying a heat-inducible lambda-phi80 hybrid prophage was induced to yield transducing phages carrying all of the structural genes of the tryptophan operon. The presence or absence of elements of the trp regulatory region was determined by examining the effects of lambda genes N and cI on trp gene expression. The phages were further characterized by transduction studies and by examining anthranilate synthetase (EC 4.1.3.27) (TRYPE+D) synthesis in the presence of the lambda cI product. A number of phages deleted for the trp promoter were found. Recombination studies between trpOc bacteria and the transducing phages have yielded information that can be used to order the trp end points of some phages and to provide an estimate of the size of the trp promoter region.  相似文献   

13.
Crosses between an Escherichia coli Hfr trp strain and three Salmonella typhimurium F- trp strains produced some trp+ hybrids in which the tryptophan operon is composed of genes from both parental species.  相似文献   

14.
Five trp genes, trpD, trpC, trpF, trpB, and trpA, of Lactobacillus casei were cloned by transformation of tryptophan auxotrophic mutants of the respective trp genes in Escherichia coli. These trp genes appear to constitute an operon and are located in the above order in a segment of DNA of 6,468 base pairs. The entire nucleotide sequence of this DNA segment was determined. Five contiguous open reading frames in this segment can encode proteins consisting of 341, 260, 199, 406, and 266 amino acids, respectively, in the same direction. The amino acid sequences of these proteins exhibit 25.5-50.2% homology with the amino acid sequences of the corresponding trp enzymes of E. coli. Two trp genes, trpC and trpF, from L. casei can complement mutant alleles of the corresponding genes of E. coli. However, neither the trpA gene nor the trpB gene of L. casei can complement mutations in the E. coli trpA gene and the trpB gene, respectively, suggesting that the protein products of the L. casei and E. coli trpA and trpB genes, respectively, cannot form heterodimers of tryptophan synthetase with activity. Other features of the coding and flanking regions of the trp genes are also described.  相似文献   

15.
Fourteen mutant strains of Escherichia coli were examined, each of which requires tryptophan for growth but is unaltered in any of the genes of the tryptophan biosynthetic operon. The genetic lesions responsible for tryptophan auxotrophy in these strains map between str and malA. Extracts of these strains have little or no ability to charge transfer ribonucleic acid (tRNA) with tryptophan. We found that several of the mutants produce tryptophanyl-tRNA synthetases which are more heat-labile than the enzyme of the parental wild-type strain. Of these heat-labile synthetases, at least one is protected against thermal inactivation by tryptophan, magnesium, and adenosine triphosphate. Two other labile synthetases which are not noticeably protected against heat inactivation by substrate have decreased affinity for tryptophan. On low levels of supplied tryptophan, these mutants exhibit markedly decreased growth rates but do not contain derepressed levels of the tryptophan biosynthetic enzymes. This suggests that the charging of tryptophan-specific tRNA is not involved in repression, a conclusion which is further substantiated by our finding that 5-methyltryptophan, a compound which represses the tryptophan operon, is not attached to tRNA by the tryptophanyl-tRNA synthetase of E. coli.  相似文献   

16.
17.
18.
Immunological study of anthranilate synthetase.   总被引:4,自引:3,他引:1       下载免费PDF全文
An immunological study of anthranilate synthetase (ASase) has been initiated using quantitative precipitation, enzyme neutralization, and immunodiffusion methods. Cross-reactivity of anthranilate synthetase-anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferase (ASase-PRTase) from Escherichia coli, Klebsiella aerogenes, and Salmonella typhimurium and ASase from Serratia marcescens and Pseudomonas putida was detected with antibodies to ?E. coli trypsin-treated ASase. Cross-reactivity of antigens was also obtained with S. marcescens anti-ASase. Indices of dissimilarity verified the overall structural similarity of ASase-PRTase from E. coli, K. aerogenes, and S. typhimurium and the divergence from S. marcescens ASase. Further divergence of these enzymes from ASase in B. subtilis and P. putida was apparent. Precipitation of ASase components I and II (ASase CoI and ASase CoII) was obtained using anti-ASase or antiserum fractionated to contain component-specific antibodies. Anti-ASase inhibited enzyme activity to binding to determinants on both subunits. Anti-ASase CoI inhibited the ammonia-dependent reaction and interfered with amide transfer from glutaminyl-ASase CoII. Anti-ASase CoII inhibited the glutamine reaction by blocking amide transfer. Enzyme neutralization experiments indicate more conservation of determinants at the active site region of ASase CoII compared to ASase CoI in the enterobacteria. A particulate form of ASase-PRTase in E. coli, K. aerogenes, and S. typhimurium could be distinguished by quantitative precipitation and immunodiffusion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号