首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epstein-Barr virus (EBV)-based plasmids containing the origin of replication (oriP) and EBV nuclear antigen 1 (EBNA-1) are well known for the stable episomal maintenance in human cells. In order to clarify whether an EBV-based plasmid can be maintained stably in the porcine pancreatic cells which are the primary candidate sources of islet xenotransplantation, we constructed pEBVGFP encoding the green fluorescent protein (GFP). Monolayer culture of the porcine neonatal pancreatic cells was lipofected with pEBVGFP or pGFP which was derived from pEBVGFP by deleting out oriP and EBNA-1. pEBVGFP significantly prolonged GFP expression not only in human cell lines but also in the primary porcine pancreatic cells compared with pGFP. Interestingly, the duct cells that are believed as the pancreatic precursor cells were preferentially transfected and conveniently enriched among the mixed primary cell populations using a hygromycin B selection. To our knowledge, this is the first report suggesting the potential application of an EBV-based plasmid for the extended gene expression in the primary porcine pancreatic duct cells.  相似文献   

2.
The present study aimed to establish a novel efficient nonviral strategy for suicide gene transfer in hepatocellular carcinoma (HCC) in vivo. We employed branched polyethylenimine (PEI) and combined it with Epstein-Barr virus (EBV)-based plasmid vectors. The HCC cells transfected with an EBV-based plasmid carrying the herpes simplex virus-1 thymidine kinase (HSV-1 Tk) gene (pSES.Tk) showed up to 30-fold higher susceptibilities to ganciclovir (GCV) than those transfected with a conventional plasmid vector carrying the HSV-1 Tk gene (pS.Tk). The therapeutic effect in vivo was tested by intratumoral injection of the plasmids into HuH-7 hepatomas transplanted into C.B-17 scid/scid mutant (SCID) mice and subsequent GCV administrations. Treatment with pSES.Tk, but not pS.Tk, markedly suppressed growth of hepatomas in vivo, resulting in a significantly prolonged survival period of the mice. These findings suggest that PEI-mediated gene transfer system can confer efficient expression of the suicide gene in HCC cells in vivo by using EBV-based plasmid vectors.  相似文献   

3.
In utero injection of cationic liposome-DNA complexes (CLDCs) containing chloramphenicol acetyltransferase, beta-galactosidase (beta-gal), or human granulocyte colony-stimulating factor (hG-CSF) expression plasmids produced high-level gene expression in fetal rats. Tissues adjacent to the injection site exhibited the highest levels of gene expression. Chloramphenicol acetyltransferase expression persisted for at least 14 days and was reexpressed following postnatal reinjection of CLDCs. Intraperitoneal administration of the hG-CSF gene produced high serum hG-CSF levels. X-gal staining demonstrated widespread beta-gal expression in multiple fetal tissues and cell types. No toxic or inflammatory responses were observed, nor was there evidence of fetal-maternal or maternal-fetal gene transfer, suggesting that CLDCs may provide a useful alternative to viral vectors for in utero gene transfer.  相似文献   

4.
Porcine neonatal pancreatic cell clusters (NPCCs) have been actively studied as a source of pancreatic stem cell transplantation for the treatment of diabetes. In this study, the hepatocyte growth factor (HGF) gene was cloned in an Epstein-Barr virus (EBV)-based plasmid vector (pEBVHGF) and the effects of the HGF expression on the survival and differentiation of NPCCs were analysed. For comparison, pHGF was constructed by deleting EBNA-1 and OriP from pEBVHGF. The expression of HGF, as measured by ELISA, lasted longer when pEBVHGF was used than when pHGF was used. C-Met phosphorylation co-related with the expression of HGF in the transfected NPCCs. Immunocytochemistry experiments showed that NPCCs showed a higher and longer expression of insulin when they were transfected with pEBVHGF than with pHGF. Moreover, a greater number of NPCCs survived for a longer period after they were transfected with pEBVHGF than when they were transfected with pHGF. Taken together, these results indicate that transfecting NPCCs with the HGF gene using an EBV-based plasmid is a more effective method of inducing differentiation to beta cells and enhancing survival than using a conventional plasmid. Therefore, it may be possible to use EBV-based plasmids to modify pancreatic stem cells for xenotransplantation.  相似文献   

5.
The EBNA1 protein of Epstein-Barr virus (EBV) mediates the partitioning of EBV episomes and EBV-based plasmids during cell division by a mechanism that appears to involve binding to the cellular EBP2 protein on human chromosomes. We have investigated the ability of EBNA1 and the EBV segregation element (FR) to mediate plasmid partitioning in Saccharomyces cerevisiae. EBNA1 expression alone did not enable the stable segregation of FR-containing plasmids in yeast, but segregation was rescued by human EBP2. The reconstituted segregation system required EBNA1, human EBP2 and the FR element, and functionally replaced a CEN element. An EBP2 binding mutant of EBNA1 and an EBNA1 binding mutant of EBP2 each failed to support FR-plasmid partitioning, indicating that an EBNA1-EBP2 interaction is required. The results provide direct evidence of the role of hEBP2 in EBNA1-mediated segregation and demonstrate that heterologous segregation systems can be reconstituted in yeast.  相似文献   

6.
Epstein-Barr virus (EBV)-based vectors are extrachromosomal vectors carrying a replicational origin, oriP (about 2200 bp) and a replication initiation factor (EBNA-1) which are sufficient for autonomous replication. Because one disadvantage of these vectors is their large sizes, we examined the effect of partial deletion of oriP on the effectiveness of the EBV-based vectors, using an enhanced green fluorescent protein (EGFP) as a reporter to monitor gene expression. Results indicated that 954 bp-deleted mini-oriP is useful in primate cells since the vector showed high efficiency of stable transfection, a high ratio of EGFP-positive cells, and high recovery of intact plasmid DNA from transfected cells.  相似文献   

7.
Vectors carrying the origin of replication (oriP) and driving expression of the EBNA-1 protein from Epstein-Barr virus (EBV) replicate as extrachromosomal episomes in human cells. Whether these vectors can be maintained as episomes in murine cells is still controversial. Here we demonstrate that EBNA-1 expression alone was unable to maintain episomal expression of an EBV-based vector in the murine Sp2/0 cell line. However, we were able to obtain long-term episome maintenance in Sp2/0 cells after exogenously expressing human EBP2 by genetic engineering. Our results provide further evidence for the fundamental role of human EBP2 in episomal maintenance of EBV-based vectors. Moreover, we demonstrate that EBV-based vectors can be successfully used in cells presumably incompetent for episomal maintenance.  相似文献   

8.
This study describes the development of a transient expression system for CHO cells based on autonomous replication and retention of transfected plasmid DNA. A transient expression system that allows extrachromosomal amplification of plasmids permits more plasmid copies to persist in the transfected cell throughout the production phase leading to a significant increase in transgene expression. The expression system, named Epi-CHO comprises (1) a CHO-K1 cell line stably transfected with the Polyomavirus (Py) large T (LT) antigen gene (PyLT) and (2) a DNA expression vector, pPyEBV encoding the Py origin (PyOri) for autonomous plasmid amplification and encoding Epstein-Barr Virus (EBV) nuclear antigen-1 (EBNA-1) and OriP for plasmid retention. The CHO-K1 cell line expressing PyLT, named CHO-T was adapted to suspension growth in serum-free media to facilitate large-scale transient transfection and recombinant gene expression. Enhanced green fluorescent protein (EGFP) and human growth hormone (hGH) were used as reporter proteins to demonstrate transgene expression and productivity. Transfection of suspension-growing CHO-T cells with the vector pPyEBV encoding hGH resulted in a final concentration of 75 mg L(-1) of hGH in culture supernatants 11 days following transfection.  相似文献   

9.
Epstein-Barr virus (EBV) nonproducer Raji cells stably maintain approximately 45 copies of the EBV genome per cell, depending on the presence of the EBV-determined nuclear antigen 1 (EBNA-1) protein. We found that transfection of the EBV BZLF1 gene causes the disappearance of EBNA proteins on Western blots (immunoblots). On the basis of these results, we attempted to eliminate EBV plasmids in Raji cells by transfecting a BZLF1 plasmid. Among 33 clones that were cotransfected with a BZLF1 plasmid and a hygromycin B resistance plasmid and selected resistant for hygromycin B, 24 clones had decreased numbers of EBV plasmids, as revealed by the decrease in the intensity of the EBV band on Southern blots compared with that of nontransfected Raji cells.  相似文献   

10.
Epstein-Barr virus (EBV) episomal genomes are stably maintained in human cells and are partitioned during cell division by mitotic chromosome attachment. Partitioning is mediated by the viral EBNA1 protein, which binds both the EBV segregation element (FR) and a mitotic chromosomal component. We previously showed that the segregation of EBV-based plasmids can be reconstituted in Saccharomyces cerevisiae and is absolutely dependent on EBNA1, the EBV FR sequence, and the human EBNA1-binding protein 2 (EBP2). We have now used this yeast system to elucidate the functional contribution of human EBP2 to EBNA1-mediated plasmid partitioning. Human EBP2 was found to attach to yeast mitotic chromosomes in a cell cycle-dependent manner and cause EBNA1 to associate with the mitotic chromosomes. The domain of human EBP2 that binds both yeast and human chromosomes was mapped and shown to be functionally distinct from the EBNA1-binding domain. The functionality and localization of human EBP2 mutants and fusion proteins indicated that the attachment of EBNA1 to mitotic chromosomes is crucial for EBV plasmid segregation in S. cerevisiae, as it is in humans, and that this is the contribution of human EBP2. The results also indicate that plasmid segregation in S. cerevisiae can occur through chromosome attachment.  相似文献   

11.
12.
Several lines of evidence are compatible with the hypothesis that Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) or leader protein (EBNA-LP) affects expression of the EBV latent infection membrane protein LMP1. We now demonstrate the following. (i) Acute transfection and expression of EBNA-2 under control of simian virus 40 or Moloney murine leukemia virus promoters resulted in increased LMP1 expression in P3HR-1-infected Burkitt's lymphoma cells and the P3HR-1 or Daudi cell line. (ii) Transfection and expression of EBNA-LP alone had no effect on LMP1 expression and did not act synergistically with EBNA-2 to affect LMP1 expression. (iii) LMP1 expression in Daudi and P3HR-1-infected cells was controlled at the mRNA level, and EBNA-2 expression in Daudi cells increased LMP1 mRNA. (iv) No other EBV genes were required for EBNA-2 transactivation of LMP1 since cotransfection of recombinant EBNA-2 expression vectors and genomic LMP1 DNA fragments enhanced LMP1 expression in the EBV-negative B-lymphoma cell lines BJAB, Louckes, and BL30. (v) An EBNA-2-responsive element was found within the -512 to +40 LMP1 DNA since this DNA linked to a chloramphenicol acetyltransferase reporter gene was transactivated by cotransfection with an EBNA-2 expression vector. (vi) The EBV type 2 EBNA-2 transactivated LMP1 as well as the EBV type 1 EBNA-2. (vii) Two deletions within the EBNA-2 gene which rendered EBV transformation incompetent did not transactivate LMP1, whereas a transformation-competent EBNA-2 deletion mutant did transactivate LMP1. LMP1 is a potent effector of B-lymphocyte activation and can act synergistically with EBNA-2 to induce cellular CD23 gene expression. Thus, EBNA-2 transactivation of LMP1 amplifies the biological impact of EBNA-2 and underscores its central role in EBV-induced growth transformation.  相似文献   

13.
Epstein-Barr virus (EBV) oriP and the EBV nuclear antigen 1 (EBNA-1) protein allow persistence of EBV-based episomes. A nuclear matrix attachment region (MAR) spans oriP and the adjacent region of the EBV genome containing the EBV-expressed RNAs. Here, we show that episomes with the MAR are retained significantly more efficiently in EBV-positive B cells than episomes containing oriP alone.  相似文献   

14.
15.
16.
A Stary  A Sarasin 《Biochimie》1991,73(4):509-514
In order to approach the mechanism of gene amplification, we have developed a model system in human cells based on the use of episomally-replicating shuttle vectors. Shuttle vectors carrying the replication origin of the Epstein-Barr virus can be stably maintained in human cells. These vectors replicate as an episome with a low copy number. We also constructed hybrid plasmids containing both the EBV and the SV40 replication origins. These molecules are able to replicate episomally either like an EBV vector or like SV40 if the SV40 large T antigen is provided at the same time. UV irradiation of both human adenovirus transformed 293 or SV40-transformed MRC5 host cells leads to vector amplification whatever the type of replication origin used for the episomal maintenance. Our result clearly shows that the EBV latent replication origin (OriP), in the presence of the Epstein-Barr nuclear antigen-1 (EBNA-1) and the SV40 large T antigen, is sensitive to over-replication in UV-irradiated human cells. Since the UV doses were small enough to induce very little damage, if any, on the plasmid sequences, this amplification should be mediated through a cellular factor acting in trans. The interest in using shuttle vectors for this kind of study lays in the easy analysis of the amplified vectors in rescued bacterial colonies. The accuracy of the amplification process can be monitored by studying restriction maps of individual plasmid molecules or more precisely the integrity of a target gene, such as the lacZ' sequence, carried by our vectors.  相似文献   

17.
A cDNA expression vector containing the element oriP and the sequence encoding the Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) as well as the hygromycin B-resistance dominant marker gene has been constructed. Its characteristics have been compared to a similar vector lacking the EBV sequences. (a) The EBV+ vector is maintained as an episome with a copy number of approx. 50 per cell, whereas the number of the integrated EBV- copies is in general smaller than 10, when simian virus 40-transformed xeroderma pigmentosum fibroblasts (XP20S-SV) constitute the recipient cell line. (b) The presence of the EBV sequences in the vector resulted in a five- to ten-fold higher transfection efficiency with the Ca.phosphate precipitation technique. (c) cDNA inserts in the EBV+ vector are shown to be efficiently and properly expressed in the recipient cell. (d) If transfection is performed with a mixture of EBV+ vectors with different inserts, transfectants are shown to harbour different plasmids within one cell. (e) The ratio between these plasmids in one cell can be shifted in favour of a vector with a particular insert, when selection for this insert is performed. (f) Reconstruction experiments indicated that isolation of a low-abundance sequence from a mixture of vectors is at least 100-fold more efficient with the EBV+ system, than with the EBV- system. (g) Rescue of the episomal vector from transfected cells can be readily achieved.  相似文献   

18.
oriP is a 1.7-kb region of the Epstein-Barr virus (EBV) chromosome that supports the replication and stable maintenance of plasmids in human cells. oriP contains two essential components, called the DS and the FR, both of which contain multiple binding sites for the EBV-encoded protein, EBNA-1. The DS appears to function as the replicator of oriP, while the FR acts in conjunction with EBNA-1 to prevent the loss of plasmids from proliferating cells. Because of EBNA-1's role in stabilizing plasmids through the FR, it has not been entirely clear to what extent EBNA-1 might be required for replication from oriP per se, and a recent study has questioned whether EBNA-1 has any direct role in replication. In the present study we found that plasmids carrying oriP required EBNA-1 to replicate efficiently even when assayed only 2 days after plasmids were introduced into the cell lines 143B and 293. Significantly, using 293 cells it was demonstrated that the plasmid-retention function of EBNA-1 and the FR did not contribute significantly to the accumulation of replicated plasmids, and the DS supported efficient EBNA-1-dependent replication in the absence of the FR. The DS contains two pairs of closely spaced EBNA-1 binding sites, and a previous study had shown that both sites within either pair are required for activity. However, it was unclear from previous work what additional sequences within the DS might be required. We found that each "half" of the DS, including a pair of closely spaced EBNA-1 binding sites, had significant replicator activity when the other half had been deleted. The only significant DNA sequences that the two halves of the DS share in common, other than EBNA-1 binding sites, is a 9-bp sequence that is present twice in the "left half" and once in the "right half." These nonamer repeats, while not essential for activity, contributed significantly to the activity of each half of the DS. Two thymines occur at unique positions within EBNA-1 binding sites 1 and 4 at the DS and become sensitive to oxidation by permanganate when EBNA-1 binds, but mutation of each to the consensus base, adenine, actually improved the activity of each half of the DS slightly. In conclusion, the DS of oriP is an EBNA-1-dependent replicator, and its minimal active core appears to be simply two properly spaced EBNA-1 binding sites.  相似文献   

19.
The ability of SV40-transformed human (ataxia-telangiectasia) fibroblasts to maintain Epstein-Barr virus (EBV)-based plasmids and cosmids extrachromosomally has been investigated. Transfection of a culture of cells with two different plasmids gave rise to cell clones which were able to maintain both plasmids extrachromosomally. When an EBV-based cosmid library was transfected into the cells and an individual cell clone was isolated, the extrachromosomal DNA derived from the cosmid contained numerous deletions and rearrangements. When individual cosmids were transfected into the culture, and several cell clones were isolated, the intracellular cosmid-derived DNA again showed the presence of multiple deletions and rearrangements. We conclude that although SV40-transformed cells are able to maintain more than one different EBV-based plasmid extrachromosomally, large EBV-derived molecules are extensively rearranged. SV40-transformed human fibroblasts cannot therefore be usefully used in attempting to clone genes from EBV-based cosmid libraries.  相似文献   

20.
A Aiyar  C Tyree    B Sugden 《The EMBO journal》1998,17(21):6394-6403
Plasmids containing oriP, the plasmid origin of Epstein-Barr virus (EBV), are replicated stably in human cells that express a single viral trans-acting factor, EBNA-1. Unlike plasmids of other viruses, but akin to human chromosomes, oriP plasmids are synthesized once per cell cycle, and are partitioned faithfully to daughter cells during mitosis. Although EBNA-1 binds multiple sites within oriP, its role in DNA synthesis and partitioning has been obscure. EBNA-1 lacks enzymatic activities that are present in the origin-binding proteins of other mammalian viruses, and does not interact with human cellular proteins that provide equivalent enzymatic functions. We demonstrate that plasmids with oriP or its constituent elements are synthesized efficiently in human cells in the absence of EBNA-1. Further, we show that human cells rapidly eliminate or destroy newly synthesized plasmids, and that both EBNA-1 and the family of repeats of oriP are required for oriP plasmids to escape this catastrophic loss. These findings indicate that EBV's plasmid replicon consists of genetic elements with distinct functions, multiple cis-acting elements that facilitate DNA synthesis and viral cis/trans elements that permit retention of replicated DNA in daughter cells. They also explain historical failures to identify mammalian origins of DNA synthesis as autonomously replicating sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号