首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increased use of plant sterols as cholesterol-lowering agents warrants further research on the possible effects of plant sterols in membranes. In this study, the effects of the incorporation of cholesterol, campesterol, β-sitosterol and stigmasterol in phospholipid bilayers were investigated by differential scanning calorimetry (DSC), resonance energy transfer (RET) between trans parinaric acid (tPA) and 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-PC), and Triton X-100-induced solubilization. The phospholipids used were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), d-erythro-N-palmitoyl-sphingomyelin (PSM), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). In DSC experiments, it was demonstrated that the sterols differed in their effect on the melting temperatures of both the sterol-poor and the sterol-rich domains in DPPC and PSM bilayers. The plant sterols gave rise to lower temperatures of both transitions, when compared with cholesterol. The plant sterols also resulted in lower transition temperatures, in comparison with cholesterol, when sterol-containing DPPC and PSM bilayers were investigated by RET. In the detergent solubilization experiments, the total molar ratio between Triton X-100 and POPC at the onset of solubilization (Rt,sat) was higher for bilayers containing plant sterols, in comparison with membranes containing cholesterol. Taken together, the observations presented in this study indicate that campesterol, β-sitosterol and stigmasterol interacted less favorably than cholesterol with the phospholipids, leading to measurable differences in their domain properties.  相似文献   

2.
Most of the studies on the solubilization of model membranes by Triton X-100 (TR) involve one lipid. The aim of the present study was to evaluate the effect of the addition of cholesterol on the solubilization of bilayers made of palmitoyloleoylphosphatidylcholine (POPC) or dipalmitoylphosphatidylcholine (DPPC). Detailed investigation of the kinetics of solubilization of the cholesterol-containing bilayers by TR at different temperatures reveals that: (i) At 4 degrees C, solubilization of both systems is relatively slow. Hence, in order to prevent misleading conclusions from turbidity measurements it is important to monitor the solubilization after steady-state values of optical density (OD) are reached. (ii) Studies of the temperature-induced changes of the aggregates present in mixtures of TR, POPC and cholesterol indicate that the state of aggregation at all temperatures (including 4 degrees C) represents equilibrium. By contrast, for DPPC/cholesterol/TR mixtures "kinetic traps" may occur not only at 4 degrees C but at higher temperatures as well (e.g. 37 degrees C). (iii) The presence of cholesterol in POPC bilayers makes the bilayers more resistant to solubilization at low temperatures, especially at 4 degrees C. As a consequence, the temperature dependence of the TR concentration required for complete solubilization (Dt(sol)) is no longer a monotonically increasing function (as for POPC bilayers) but a bell-shaped function, with a minimum at about 25 degrees C. Inclusion of cholesterol in DPPC bilayers makes the bilayers more resistant to solubilization at all temperatures except 4 degrees C. In this system, we observe a bell-shaped dependence of Dt(sol) on temperature, with a minimum at 37 degrees C. (iv) Both the rate of vesicle size growth and the rate of the solubilization of POPC vesicles are not affected by the inclusion of cholesterol in the bilayers. Similarly, cholesterol did not affect significantly the rate of size growth of DPPC bilayers at all temperatures, but reduced the rate of solubilization at 4 degrees C.  相似文献   

3.
Most of the studies on the solubilization of model membranes conducted thus far involved model membranes made of liquid-crystalline phospholipids. Relatively little is known on the influence of temperature and of the phase of the lipid bilayers on their solubilization by detergents. The aim of the present study was to gain knowledge about the temperature and phase dependence of the solubilization of phospholipid bilayers by the non-ionic detergent Triton X-100 (TR). Detailed investigation of the kinetics of the solubilization of dipalmitoylphosphatidylcholine (DPPC), as well as of palmitoyloleoylphosphatidylcholine (POPC) by TR at different temperatures reveals that: (i) solubilization of DPPC is a relatively slow process, especially below Tm. This means that in order to prevent misleading conclusions it is important to monitor the solubilization after a steady state is established. (ii) Both the steady state structure and size of DPPC/TR aggregates and the kinetics of solubilization depend on temperature. (iii) The TR concentration required for solubilization of POPC bilayers is an increasing function of temperature, although no phase change of bilayers occurs in the studied temperature range. (iv) Detailed studies of the temperature-induced changes of the aggregates present in DPPC/TR or POPC/TR mixtures suggest that the state of aggregation at any temperature above 23 degrees C represents equilibrium. By contrast, for DPPC/TR mixtures at 4 degrees C all the processes are very slow, which complicates the interpretation of results obtained through the common practice of studying "rafts" by investigating detergent-resistant membranes.  相似文献   

4.
As a simple model of rafts in plant cells, the effect of stigmasterol, one of the predominant sterols in plant plasma membranes, on the phase behavior of dipalmitoylphosphatidylcholine (DPPC) multilayers has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and freeze-fracture electron microscopy (FFEM) techniques. A partial phase diagram of the binary system has been constructed. Particularly, the stigmasterol concentrations of the "left endpoint" and "right endpoint" of the three-phase line have been determined using the newly developed linear and nonlinear fitting method. They are 6.2 and 23.7 mol%, respectively. Furthermore, the resemblance and difference of phase diagrams of DPPC/stigmasterol, DPPC/cholesterol, and DPPC/ergosterol have been compared and the efficiency of these sterols in promoting the formation of the liquid-ordered domains (rafts) have also been discussed.  相似文献   

5.
Sphingomyelins (SMs) are order-imposing phospholipids in cell membranes which interact favorably with cholesterol. The hydrophobic part of SM constitutes a long-chain base with an amide-linked acyl chain, whereas the polar head group is phosphocholine. The long-chain base has a free hydroxyl group in position 3, which is an important donor/acceptor in hydrogen bonding. In newborn mammals, a SM in which a palmitic acid is esterified to the 3-OH has been reported. We have synthesized this SM analog (3O-P-PSM) and studied its properties in bilayer membranes, and also determined its interactions with cholesterol. Fully hydrated 3O-P-PSM bilayers underwent a gel-to-liquid crystalline phase transition at 55.5 °C (ΔH 8 kcal/mol), which is about 15 °C higher than the phase transition temperature of PSM. The 3O-P-PSM displayed rather poor miscibility with PSM in mixed bilayers, suggesting that the third acyl chain interfered significantly with lateral interactions. Bilayers made from 3O-P-PSM were much more resistant to detergent-induced solubilization than bilayers made from PSM. In binary bilayers, cholesterol was able to destabilize the gel phase, and order the fluid phase of 3O-P-PSM, in a concentration-dependent manner. Cholesterol was also able to form sterol-enriched ordered domains with 3O-P-PSM in fluid POPC bilayers. The interaction between cholesterol and 3O-P-PSM was not, however, as favorable as the interaction between cholesterol and PSM. It is unclear what physiological role 3O-P-PSM could play in newborn mammalian membranes. However, it is clear that 3O-P-PSM will form more highly ordered domains than PSM while still having a limited ability to interact with cholesterol.  相似文献   

6.
The typical plant sterols (sitosterol, stigmasterol and campesterol) were compared with respect to their ability to regulate membrane fluidity of soybean phosphatidylcholine (PC) vesicles. Fluidity changes were monitored by the steady-state fluorescence anisotropy with 1,6-diphenyl-1,3,5-hexatriene as a probe and assigned to a measure of the acyl chain orientational order. Sitosterol and campesterol appear to be the most suitable sterols in ordering the acyl chains of soybean lecithin bilayers, even more efficient than cholesterol, the standard of reference for sterol effects on membranes, suggesting that they play a significant role in the regulation of plant membrane properties. Stigmasterol is shown to be much less active. Cycloartenol, a biosynthetic precursor of plant sterols, increases the acyl chain order with the same efficiency as cholesterol. We also investigated the effects of two unusual sterols, 24-methylpollinastanol and 14 alpha,24-dimethylcholest-8-en-3 beta-ol, which were shown to accumulate in plants treated with fungicides belonging to two important classes, N-substituted morpholines and triazoles, respectively. These two sterols exhibit a behavior very similar to that of stigmasterol. The results are discussed in terms of sterol effects on the molecular packing of soybean PC bilayers.  相似文献   

7.
As a simple model of rafts in plant cells, the effect of stigmasterol, one of the predominant sterols in plant plasma membranes, on the phase behavior of dipalmitoylphosphatidylcholine (DPPC) multilayers has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and freeze-fracture electron microscopy (FFEM) techniques. A partial phase diagram of the binary system has been constructed. Particularly, the stigmasterol concentrations of the “left endpoint” and “right endpoint” of the three-phase line have been determined using the newly developed linear and nonlinear fitting method. They are 6.2 and 23.7 mol%, respectively. Furthermore, the resemblance and difference of phase diagrams of DPPC/stigmasterol, DPPC/cholesterol, and DPPC/ergosterol have been compared and the efficiency of these sterols in promoting the formation of the liquid-ordered domains (rafts) have also been discussed.  相似文献   

8.
The lecithins 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) have been synthesized by reacylation of the appropriate lysolecithins with fatty acid anhydrides. These lecithins have been used to make model membranes in mixtures with dipalmitoyllecithin (DPPC), and phase diagrams of the two bilayer systems have been constructed. These diagrams show that there is essentially no gel-state miscibility in the POPC-DPPC bilayers at any composition, and that SOPC-DPPC bilayers show gel-state immiscibility at DPPC concentrations of less than 50 mol%, and partial miscibility above 50 mol% DPPC. Analysis of the POPC-DPPC phase diagram on the assumption of athermal solution in the liquid-crystalline phase shows that the two lipids mix nearly randomly above the phase transition. The liquidus curve of SOPC-DPPC bilayers showed deviations from calculated ideal behaviour, which indicated that there is a small excess tendency for the formation of pairs of like molecules in SOPC-DPPC bilayers in the liquid-crystalline phase. Thus, in the liquid-crystalline phase, SOPC and DPPC do not pack quite as well as do POPC and DPPC.  相似文献   

9.
Ceramides (Cers) may exert their biological activity through changes in membrane structure and organization. To understand this mechanism, the effect of Cer on the biophysical properties of phosphatidylcholine, sphingomyelin (SM) and SM/cholesterol bilayers was determined using fluorescence probe techniques. The Cers were bovine brain Cer and synthetic Cers that contained a single acyl chain species. The phospholipids were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glyero-3-phosphocholine (DPPC) and bovine brain, egg yolk and bovine erythrocyte SM. The addition of Cer to POPC and DPPC bilayers that were in the liquid-crystalline phase resulted in a linear increase in acyl chain order and decrease in membrane polarity. The addition of Cer to DPPC and SM bilayers also resulted in a linear increase in the gel to liquid-crystalline phase transition temperature (T(M)). The magnitude of the change was dependent upon Cer lipid composition and was much higher in SM bilayers than DPPC bilayers. The addition of 33 mol% cholesterol essentially eliminated the thermal transition of SM and SM/Cer bilayers. However, there is still a linear increase in acyl chain order induced by the addition of Cer. The results are interpreted as the formation of DPPC/Cer and SM/Cer lipid complexes. SM/Cer lipid complexes have higher T(M)s than the corresponding SM because the addition of Cer reduces the repulsion between the bulky headgroup and allows closer packing of the acyl chains. The biophysical properties of a SM/Cer-rich bilayer are dependent upon the amount of cholesterol present. In a cholesterol-poor membrane, a sphingomyelinase could catalyze the isothermal conversion of a liquid-crystalline SM bilayer to a gel phase SM/Cer complex at physiological temperature.  相似文献   

10.
Wang J  Megha  London E 《Biochemistry》2004,43(4):1010-1018
The formation and stability of ordered lipid domains (rafts) in model membrane vesicles were studied using a series of sterols and steroids structurally similar to cholesterol. In one assay, insolubility in Triton X-100 was assessed in bilayers composed of sterol/steroid mixed with dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine, or a 1:1 mixture of these phospholipids. In a second assay fluorescence quenching was used to determine the degree of ordered domain formation in bilayers containing sterol/steroid and a 1:1 mixture of DPPC and a quencher-carrying phosphatidylcholine. Both methods showed that several single modifications of the cholesterol structure weaken, but do not fully abolish, the ability of sterols and steroids to promote ordered domain formation when mixed with DPPC. Some of these modifications included a shift of the double bond from the 5-6 carbons (cholesterol) to 4-5 carbons (allocholesterol), derivatization of the 3-OH (cholesterol methyl ether, cholesteryl formate), and alteration of the 3-hydroxy to a keto group (cholestanone). An oxysterol involved in atherosclerosis, 7-ketocholesterol, formed domains with DPPC that were as thermally stable as those with cholesterol although not as tightly packed as judged by fluorescence anisotropy. It was also found that 7-ketocholesterol has fluorescence quenching properties making it a useful spectroscopic probe. Lathosterol, which has a 7-8 carbon double bond in place of the 5-6 double bond of cholesterol, formed rafts with DPPC that were at least as detergent-resistant as, and even more thermally stable than, rafts containing cholesterol. Because lathosterol is an intermediate in cholesterol biosynthesis, we conclude it is unlikely that sterol biosynthesis continues past lathosterol in order to create a raft-favoring lipid.  相似文献   

11.
Cationic amphiphiles used for transfection can be incorporated into biological membranes. By differential scanning calorimetry (DSC), cholesterol solubilization in phospholipid membranes, in the absence and presence of cationic amphiphiles, was determined. Two different systems were studied: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)+cholesterol (1:3, POPC:Chol, molar ratio) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine] (POPS)+cholesterol (3:2, POPS:Chol, molar ratio), which contain cholesterol in crystallite form. For the zwitterionic lipid POPC, cationic amphiphiles were tested, up to 7 mol%, while for anionic POPS bilayers, which possibly incorporate more positive amphiphiles, the fractions used were higher, up to 23 mol%. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and DOTAP in methyl sulfate salt form (DOTAPmss) were found to cause a small decrease on the enthalpy of the cholesterol transition of pure cholesterol aggregates, possibly indicating a slight increase on the cholesterol solubilization in POPC vesicles. With the anionic system POPS:Chol, the cationic amphiphiles dramatically change the cholesterol crystal thermal transition, indicating significant changes in the cholesterol aggregates. For structural studies, phospholipids spin labeled at the 5th or 16th carbon atoms were incorporated. In POPC, at the bilayer core, the cationic amphiphiles significantly increase the bilayer packing, decreasing the membrane polarity, with the cholesterol derivative 3 beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholesterol (DC-chol) displaying a stronger effect. In POPS and POPS:Chol, DC-chol was also found to considerably increase the bilayer packing. Hence, exogenous cationic amphiphiles used to deliver nucleic acids to cells can change the bilayer packing of biological membranes and alter the structure of cholesterol crystals, which are believed to be the precursors to atherosclerotic lesions.  相似文献   

12.
The lateral organization of lipids and proteins in cell membranes is recognized as an important factor in several cellular processes. Cholesterol is thought to function as a modulator of the lateral segregation of lipids into cholesterol-poor and cholesterol-rich domains. We investigated how the affinity of cholesterol for different phospholipids, as seen in cholesterol partitioning between methyl-β-cyclodextrin and large unilamellar vesicles, was reflected in the lateral organization of lipids in complex bilayers. We especially wanted to determine how the low-Tm lipid affected the lateral structure. Partition experiments showed that cholesterol had a higher affinity for N-oleoyl-sphingomyelin (OSM) than for palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers, but the highest preference was for N-palmitoyl-sphingomyelin (PSM)-containing bilayers. Partial phase diagrams of POPC/PSM/cholesterol and OSM/PSM/cholesterol bilayers at 23°C and 37°C were used to gain insight into the lateral organization of lipids in bilayers. Analysis of phase diagrams revealed that the phospholipid composition of cholesterol-poor and cholesterol-rich domains reflected the affinity that cholesterol exhibited toward bilayers composed of different lipids. Therefore, the determined affinity of cholesterol for different phospholipid bilayers was useful in predicting the cholesterol-induced lateral segregation of lipids in complex bilayers.  相似文献   

13.
The phenomenon of detergent insolubility of bovine hippocampal membranes in Triton X-100 was monitored by estimating the presence of phospholipids in the insoluble pellet. This represents a convenient and unambiguous assay and reports the dependence of the extent of phospholipid solubilization on detergent concentration. The advantage of this approach is its ability to accurately determine the extent of detergent insolubility in natural membranes. Importantly, our results show that when suboptimal concentrations of Triton X-100 are used for solubilization, interpretations of the mechanism and extent of detergent insolubility should be made with adequate caution. At concentrations of Triton X-100 that leads to no further solubilization, ∼44% of phospholipids are left insoluble at 4 °C in bovine hippocampal membranes. Cholesterol depletion using methyl-β-cyclodextrin enhanced phospholipid solubilization at low detergent concentrations but produced no significant change in the amount of insoluble phospholipids at saturating detergent concentration. Progressive solubilization by the detergent resulted in insoluble membranes that contained lipids with higher fatty acyl chain order as reported by fluorescence polarization studies using 1,6-diphenyl-1,3,5-hexatriene (DPH). These results suggest that it is the presence of such lipids rather than their association with cholesterol that determines detergent insolubility in membranes.  相似文献   

14.
Several studies have indicated the involvement of steryl glycosides in the cellular stress response. In this work, we have compared the effect of 1-O-cholesteryl-beta-d-glucoside, 1-O-cholesteryl-beta-d-galactoside and cholesterol on the properties of glycerophospholipid and sphingolipid bilayers. The studies were performed in order to gain insight into the change in membrane properties that would follow upon the glycosylation of cholesterol in cells subjected to stress. DPH anisotropy measurements indicated that the cholesteryl glycosides (10-40 mol%) increased the order of the hydrophobic region of a POPC bilayer almost as efficiently as cholesterol. In a PSM bilayer, the cholesteryl glycosides were however shown to be much less effective compared to cholesterol in ordering the hydrocarbon chain region at temperatures above the gel to liquid-crystalline phase transition. Fluorescence quenching analysis of multicomponent lipid bilayers demonstrated that the cholesteryl glycosides, in contrast to cholesterol, were unable to stabilize ordered domains rich in PSM against temperature-induced dissociation. When the sterols were incorporated into bilayers composed of both POPC and PSM, the cholesteryl glycosides showed a higher propensity, compared to cholesterol, to influence the endothermal component representing the melting of POPC-rich domains, as determined by differential scanning calorimetry. Taken together, the results indicate that the glycosylation of cholesterol diminishes the ability of the sterol to reside in lateral domains constituted by membrane lipids having highly ordered hydrocarbon chains.  相似文献   

15.
Plant sterols differ from cholesterol in having an alkyl group at Δ-24, and, in the case of stigmasterol, also a Δ-22 double bond. The effects of 10 mol% of three plant sterols (campesterol, β -sitosterol, stigmasterol) and cholesterol on the molecular dynamics and phase behavior in multilamellar liposomes made from different phosphatidylcholine (PC) molecular species have been compared, utilizing the fluorescent probe Laurdan (2-dimethyl-amino-6-laurylnaphthalene). Laurdan reports the molecular mobility in the hydrophilic/hydrophobic interface of the membrane by determining the rate of dipolar relaxation of water molecules close to the glycerol backbone of PC. Our results showed that the Δ-24 alkyl group of plant sterols did not affect their ability to reduce molecular mobility in this region of the PC membranes. However, the plant sterols had a decreased capacity compared to cholesterol to inhibit formation of co-existing domains of gel and liquid-crystalline phases in membranes composed of equimolar dilauroyl-PC and dipalmitoyl-PC. The Δ-22 double bond present in stigmasterol decreased the ability of this sterol, compared to the other phytosterols, to reduce the molecular mobility at the hydrophobic/hydrophilic interface in membranes made of a saturated PC molecular species. However, in membranes made from 16:0/18:2-PC, a lipid species common in plant plasma membranes, stigmasterol was as efficient as other sterols in affecting the polarity and molecular mobility at the hydrophilic/hydrophobic interface of the membrane at 25°C, but was, in contrast to the other sterols, without effect at 0°C. Our results thus confirm as well as contradict the results of previous studies of the interactions between saturated PC and sterols, where other membrane regions were probed. The physiological relevance of the findings is discussed.  相似文献   

16.
A sphingomyelin chimera in which the amide-linked acyl chain was replaced with cholesterol carbamate was prepared and its properties examined. The sphingomyelin/cholesterol chimera (N-cholesterol-D-erythro-sphingomyelin) was able to form unilamellar vesicles of defined size when extruded through 200nm pore size membranes. These N-cholesteryl sphingomyelin bilayers were resistant to solubilization by Triton X-100. When N-cholesteryl sphingomyelin was added to N-palmitoyl sphingomyelin (N-palmitoyl-d-erythro-sphingomyelin) bilayers, it increased acyl chain order as determined by 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy. N-cholesteryl sphingomyelin was, however, not as good an inducer of membrane order compared to cholesterol on a molar basis. Differential scanning calorimetry studies further showed that the miscibility of N-cholesteryl sphingomyelin with N-palmitoyl-d-erythro-sphingomyelin bilayers was non-ideal, and the effect of N-cholesteryl sphingomyelin on the N-palmitoyl-d-erythro-sphingomyelin gel-fluid transition enthalpy differed from that seen with cholesterol. Together with N-palmitoyl-d-erythro-sphingomyelin, the N-cholesteryl sphingomyelin chimera was able to form sterol-enriched ordered domains in a fluid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer. N-cholesteryl sphingomyelin in the absence of N-palmitoyl-d-erythro-sphingomyelin was unable to form such sterol-enriched ordered domains in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer. However, N-cholesteryl sphingomyelin markedly increased the affinity of cholestatrienol for N-cholesteryl sphingomyelin containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers, suggesting that N-cholesteryl sphingomyelin was able to somehow stabilize sterol interaction in fluid bilayers. Based on our results, we conclude that N-cholesteryl sphingomyelin behaved more like a cholesterol than a sphingolipid in fluid bilayer membranes. Because N-cholesteryl sphingomyelin increased bilayer order, conferred resistance against detergent solubilization, and is not degradable by phospholipases A(2), it could constitute a good lipocomplex matrix for drug delivery vehicles.  相似文献   

17.
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 binding in DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner.  相似文献   

18.
The effects of ceramides with varying saturated N-linked acyl chains (C2-C14) on cholesterol displacement from sphingomyelin-rich domains and on the stability of ordered domains were studied. The bilayers examined were made from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), D-erythro-N-palmitoyl-sphingomyelin (PSM), D-erythro-N-acyl-sphingosine, and cholesterol (60:15:15:10 mol%, respectively). Cholestatrienol (CTL) or D-erythro-N-trans-parinoyl-sphingomyelin (tParSM) were used as reporter molecules (at 1 mol%) for the ordered domains, and 1-palmitoyl-2-stearoyl-(7-doxyl)-sn-glycero-3-phosphocholine (7SLPC) as a fluorescence quencher (30 mol%, replacing POPC) in the liquid-disordered phase. The results indicate that the ceramide had to have an N-linked acyl chain with at least 8 methylene units in order for it to displace cholesterol from the sphingomyelin-rich domains at the concentration used. The melting of the sphingomyelin-rich domain shifted to higher temperatures (compared to the ceramide-free control) with C2, C12 and longer chain ceramides, whereas C4-C10 ceramides led to domain melting at lower temperatures than control. This study shows that short-chain ceramides do not have the same effects on sterol- and sphingomyelin-rich domains as naturally occurring longer-chain ceramides have.  相似文献   

19.
The effect of high hydrostatic pressure on the lipid bilayer hydration, the mean order parameter, and rotational dynamics of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) cholesterol vesicles has been studied by time-resolved fluorescence spectroscopy up to 1500 bar. Whereas the degree of hydration in the lipid headgroup and interfacial region was assessed from fluorescence lifetime data using the probe 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), the corresponding information in the upper acyl chain region was estimated from its effect on the fluorescence lifetime of and 3-(diphenylhexatrienyl)propyl-trimethylammonium (TMAP-DPH). The lifetime data indicate a greater level of interfacial hydration for DPPC bilayers than for POPC bilayers, but there is no marked difference in interchain hydration of the two bilayer systems. The addition of cholesterol at levels from 30 to 50 mol% to DPPC has a greater effect on the increase of hydrophobicity in the interfacial region of the bilayer than the application of hydrostatic pressure of several hundred to 1000 bar. Although the same trend is observed in the corresponding system, POPC/30 mol% cholesterol, the observed effects are markedly less pronounced. Whereas the rotational correlation times of the fluorophores decrease in passing the pressure-induced liquid-crystalline to gel phase transition of DPPC, the wobbling diffusion coefficient remains essentially unchanged. The wobbling diffusion constant of the two fluorophores changes markedly upon incorporation of 30 mol% cholesterol, and increases at higher pressures, also in the case of POPC/30 mol% cholesterol. The observed effects are discussed in terms of changes in the rotational characteristics of the fluorophores and the phase-state of the lipid mixture. The results demonstrate the ability of cholesterol to adjust the structural and dynamic properties of membranes composed of different phospholipid components, and to efficiently regulate the motional freedom and hydrophobicity of membranes, so that they can withstand even drastic changes in environmental conditions, such as high external hydrostatic pressure.  相似文献   

20.
We investigated the difference between the molecular structures of plant sterols and stanols that affect the solubilization of cholesterol in bile salt micelles (in vitro study). First, the aqueous solubility of beta-sitosterol, beta-sitostanol, and campesterol was determined by considering the specific radioactivity by using a fairly small quantity of each radiolabeled compound. The order of their aqueous solubilities was as follows: cholesterol > campesterol > beta-sitostanol > beta-sitosterol. The maximum solubility of cholesterol and the above mentioned sterol/stanol in sodium taurodeoxycholate and sodium taurocholate solutions (single solubilizate system) was measured. Moreover, the preferential solubilization of cholesterol in bile salt solutions was systematically studied by using different types of plant sterols/stanols. The solubilization results showed that the cholesterol-lowering effect was similar for sterols and stanol. Thermodynamic analysis was applied to these experimental results. The Gibbs energy change (Delta G degrees ) for the solubilization of plant sterols/stanols showed a negative value larger than that for cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号