首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A prokallikrein was purified 1600-fold from rat pancreatic tissue in an overall yield of 40% by a simple four-stage procedure. The final and crucial step was immunoaffinity chromotography utilizing antibody raised to a very small amount of prokallikrein. Both the pure zymogen and the active kallikrein generated from it by trypsin activation are single chain species with Mr values of 38 400±300 and 35 500±400, respectively. Valine is the N-terminal amino acid residue of prokallikrein. The zymogen Was comparatively stable both to autoactivation and denaturation with respect to temperature and pH. The kallikrein produced by trypsin activation of the zymogen was similar in some of its catalytic properties to the kallikrein purified from autolyzed rat pancreas but the two species differed in their susceptibility to substrate activation.  相似文献   

2.
A prokallikrein was isolated from bovine pancreas by a multi-step procedure involving gel filtration, hydrophobic interaction and anion-exchange chromatographies. The purification was initially monitored by measurement of the kinin-releasing activity of the activated zymogen. Later, when the pure prokallikrein had been isolated, a specific radioimmunoassay for the zymogen was set up and that was employed to provide estimates of 323-fold and 28% for the overall degree of purification and percentage recovery of prokallikrein. The relative molecular weight of prokallikrein was found to be 26,900 by SDS gel electrophoresis and its isoelectric point was established as pH 4.55.  相似文献   

3.
Metabolic syndrome is a proatherosclerotic condition clustering cardiovascular risk factors, including glucose and lipid profile alterations. The pathophysiological mechanisms favoring atherosclerotic inflammation in the metabolic syndrome remain elusive. Here, we investigated the potential role of the antilipolytic drug acipimox on neutrophil- and monocyte-mediated inflammation in the metabolic syndrome. Acipimox (500 mg) was orally administered to metabolic syndrome patients (n = 11) or healthy controls (n = 8). Serum and plasma was collected before acipimox administration (time 0) as well as 2-5 h afterward to assess metabolic and hematologic parameters. In vitro, the effects of the incubation with metabolic syndrome serum were assessed on human neutrophil and monocyte migration toward the proatherosclerotic chemokine CCL3. Two to five hours after acipimox administration, a significant reduction in circulating levels of insulin and nonesterified fatty acid (NEFA) was shown in metabolic syndrome patients. At time 0 and 2 h after acipimox administration, metabolic syndrome serum increased neutrophil migration to CCL3 compared with healthy controls. No effect was shown in human monocytes. At these time points, serum-induced neutrophil migration positively correlated with serum levels of insulin and NEFA. Metabolic syndrome serum or recombinant insulin did not upregulate CCR5 expression on neutrophil surface membrane, but it increased intracellular JNK1/2 phosphorylation. Insulin immunodepletion blocked serum-induced neutrophil migration and associated JNK1/2 phosphorylation. Although mRNA expression of acipimox receptor (GPR109) was shown in human neutrophils, 5-500 μM acipimox did not affect insulin-induced neutrophil migration. In conclusion, results suggest that acipimox inhibited neutrophil proatherosclerotic functions in the metabolic syndrome through the reduction in circulating levels of insulin.  相似文献   

4.
Degradation of glomerular basement membrane by human neutrophils in vitro   总被引:7,自引:0,他引:7  
The glomerular basement membrane is susceptible to immunologic injury when immune complexes or anti-basement-membrane antibodies become lodged in its network. We have studied the digestion of glomerular basement membrane prepared from normal human kidney by isolated neutrophils. In the absence of immunoglobulin aggregates or immune complexes, there was little evidence of neutrophil adherence to the membrane, of release of lysosomal enzymes, or of digestion. However, when the basement membrane contained immunoglobin G (IgG) aggregates generated in situ by heating the membrane impregnated with IgG to 63 degrees C, electron micrographs showed neutrophils adherent to the basement-membrane surface and phagocytosis of smaller fragments. Lysosomal enzymes were detectable in the extracellular medium, and measurements of either total protein or hydroxyproline solubilized showed digestion of 80 micrograms basement membrane/h per 10(7) cells. Hydroxyproline solubilization was almost totally inhibited by phenylmethylsulphonyl fluoride, indicating that the neutrophil serine proteinases, elastase and cathepsin G are responsible for degradation. These findings provide direct evidence for the digestion of extracellular matrix by neutrophils stimulated in situ by deposited immune complexes as a contributor to inflammatory tissue damage.  相似文献   

5.
Previous studies have established that mature neutrophils from the peritoneal cavity, blood, and bone marrow of beige (Chédiak-Higashi syndrome) mice essentially lack activities of two lysosomal proteinases: elastase and cathepsin G. There are, however, significant levels of each enzyme in early neutrophil precursors in bone marrow. In the present experiments, it was found that the addition of extracts from mature beige neutrophils to extracts of normal neutrophils or to purified human neutrophil elastase and cathepsin G resulted in a significant inhibition of elastase and cathepsin G G activities. 125I-Labeled human neutrophil elastase formed high molecular mass complexes at 64 and 52 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis when added to beige neutrophil extracts. The molecular masses of the inhibitor-125I-elastase complexes suggested that the molecular masses of the inhibitors are approximately 36 and 24 kDa, respectively. These results were confirmed by gel filtration on Superose 12 under nondenaturing conditions. Cathepsin G was inhibited only by the 36-kDa component. The inhibitors formed a covalent complex with the active sites of elastase and cathepsin G. No inhibitory activity was present in mature neutrophil extracts of genetically normal mice or in extracts of bone marrow of beige mice. These results thus represent an unusual example of an enzyme deficiency state caused by the presence of excess inhibitors. Inactivation of neutrophil elastase and cathepsin G in mature circulating and tissue neutrophils may contribute to the increased susceptibility of Chédiak-Higashi patients to infection.  相似文献   

6.
A mouse IgG mAb termed P1C3 was raised against A23187-treated human peripheral blood neutrophils and has been shown to recognize an Ag with an apparent molecular mass of 19 kDa, herein named p19. This p19 Ag was weakly expressed at the cell surface of resting human peripheral blood neutrophils and monocytes, but its cell surface expression was dramatically increased upon activation of these cell types with different secretagogues, including FMLP, PMA, and the calcium ionophores A23187 and ionomycin. A large latent pool of p19 molecules became accessible by immunofluorescence flow cytometry after cell permeabilization of resting neutrophils. A practically total translocation of the intracellular pool of this p19 molecule to the plasma membrane was achieved under appropriate cell stimulation, which induced an almost total degranulation of neutrophil secretory granules. The p19 Ag was absent from platelets, PBL, as well as from the human promyelocytic cell line HL-60, the human promonocytic cell line U937, and the human lymphoid cell lines Daudi and Jurkat. The p19 Ag was also expressed by circulating and/or interstitial neutrophils and monocytes in distinct tissues examined. The mAb P1C3 was found to enhance several neutrophil responses, such as chemotaxis, cell adhesion, phagocytosis, and respiratory burst. These data indicate that the mAb P1C3 recognizes an intracellular Ag in human resting mature neutrophils and monocytes, which upon cell activation is translocated to the cell surface and is able to affect cell functionality.  相似文献   

7.
8.
CD157 is a GPI-anchored cell surface glycoprotein expressed by human peripheral blood neutrophils. Cross-linking of CD157 induces intracellular Ca2+ mobilization and re-shaping in neutrophils, thus regulating their adhesive and migratory properties. Results obtained by immunolocalization and confocal microscopy indicate that CD157 lies in close proximity to the CD11b/CD18 complex which is strongly expressed on the activated neutrophil cell membrane where it plays a predominant role in adhesion. This study analyses the physical association between CD157 and CD18 in human neutrophils by co-immunoprecipitation experiments. The anti-CD157 monoclonal antibody RF3 co-precipitates CD18, and the anti-CD18 antibody TS1/18 co-precipitates CD157 from human neutrophil lysates. These results confirm that CD157 physically interacts with CD11b/CD18 complex in human neutrophils.  相似文献   

9.
Several members of the fibroblast growth factor (FGF) family are potent endothelial cell (EC) mitogens and angiogenic factors, and their activities can be mediated by four tyrosine kinase receptors (FGFR1-4). In addition, FGFs can induce the release of inflammatory mediators by ECs and the expression of adhesion molecules at their surface, thereby favoring the recruitment and transvascular migration of inflammatory cells such as neutrophils. Neither the expression nor the biological activities that could be mediated by FGFRs have been investigated in human neutrophils. By biochemical and cytological analyses, we observed that purified circulating human neutrophils from healthy individuals expressed varying levels of FGFRs in their cytosol and at their cytoplasmic membrane. FGFR-2 was identified as the sole cell surface receptor, with FGFR-1 and -4 localizing in the cytosol and FGFR-3 being undetectable. We assessed the capacity of FGF-1 and FGF-2 to induce neutrophil chemotaxis in a modified Boyden microchamber and observed that they increase neutrophil transmigration at 10(-10) and 10(-9) M and by 1.77- and 2.34-fold, respectively, as compared with PBS-treated cells. Treatment with a selective anti-FGFR-2 antibody reduced FGF-1-mediated chemotaxis by 75% and abrogated the effect of FGF-2, while the blockade of FGFR-1 and -4 partially inhibited (15-40%) FGF-chemotactic activities. In summary, our data are the first to report the expression of FGF receptors in human neutrophils, with FGF-1 and FGF-2 promoting neutrophil chemotaxis mainly through FGFR-2 activation.  相似文献   

10.
The uncontrolled proteolytic activity in lung secretions during lung inflammatory diseases might be due to the resistance of membrane-bound proteases to inhibition. We have used a new fluorogenic neutrophil elastase substrate to measure the activity of free and membrane-bound human neutrophil elastase (HNE) in the presence of alpha1-protease inhibitor (alpha1-Pi), the main physiological inhibitor of neutrophil serine proteases in lung secretions. Fixed and unfixed neutrophils bore the same amounts of active HNE at their surface. However, the HNE bound to the surface of unfixed neutrophils was fully inhibited by stoichiometric amounts of alpha1-Pi, unlike that of fixed neutrophils. The rate of inhibition of HNE bound to the surface of unfixed neutrophils was the same as that of free HNE. In the presence of alpha1-Pi, membrane-bound elastase is almost entirely removed from the unfixed neutrophil membrane to form soluble irreversible complexes. This was confirmed by flow cytometry using an anti-HNE mAb. HNE activity rapidly reappeared at the surface of HNE-depleted cells when they were triggered with the calcium ionophore A23187, and this activity was fully inhibited by stoichiometric amounts of alpha1-Pi. HNE was not released from the cell surface by oxidized, inactive alpha1-Pi, showing that active inhibitor is required to interact with active protease from the cell surface. We conclude that HNE activity at the surface of human neutrophils is fully controlled by alpha1-Pi when the cells are in suspension. Pericellular proteolysis could be limited to zones of contact between neutrophils and subjacent protease substrates where natural inhibitors cannot penetrate.  相似文献   

11.
A plasma membrane fraction, highly enriched in 5'-nucleotidase activity, was prepared from human neutrophils by disruption of previously formed neutrophil cytoplasts (enucleated neutrophils), which were devoid of intracellular organelles. This plasma membrane fraction shows an extremely low contamination by specific and azurophilic granule markers as compared to previous reported preparations. Nevertheless, a novel tertiary granule (Mollinedo, F. and Schneider, D.L. (1984) J. Biol. Chem. 259, 7143-7150), unlike specific and azurophilic granules, fuses partially with the cell surface under the experimental conditions used for cytoplast preparation. Comparison between the external cell-surface proteins in resting neutrophils and neutrophil cytoplasts by lactoperoxidase-catalyzed iodination showed some differences both in deletion and in addition of proteins. In resting cells, iodine was incorporated into at least 13 proteins ranging in size from over 200 to 30 kDa. A 140 kDa polypeptide, representing the major labeled surface component in resting neutrophils, was absent from cytoplasts. Furthermore, high-molecular-weight proteins (110 and over 160 kDa were more exposed to iodination after cytoplast preparation. Activation of human neutrophils by N-formylmethionylleucylphenylalanine induced some alterations in the pattern of labeled cell-surface proteins, which correlated to a certain degree with those observed during cytoplast preparation.  相似文献   

12.
GPI-80 is a glycosylphosphatidylinositol (GPI)-anchored protein that is mainly expressed in human neutrophils. Previous studies using 3H9, a monoclonal antibody (mAb) against GPI-80, suggested that GPI-80 regulates leukocyte adherence and migration through Mac-1. GPI-80, which is anchored at the plasma membrane in resting neutrophils, moves into the pseudopodia and is released from activated human neutrophils. Here, we demonstrate that neutrophil activation affects GPI-80 dynamics using a new anti-GPI-80 mAb, designated 4D4, which is directed against the form of GPI-80 found on resting human neutrophils. Similar to 3H9, 4D4 influences Mac-1-dependent neutrophil adhesion. Treatment of purified GPI-80 with periodic acid and trypsin indicated that 3H9 and 4D4 recognize peptide and carbohydrate moieties, respectively. Stimulation with fMLP decreased the binding of 4D4 to GPI-80 on the neutrophil surface but increased the overall expression of GPI-80, as visualized by the 3H9 signal. Confocal laser microscopy revealed the 4D4 signal mainly on cell bodies and at a low level on pseudopodia during migration toward increasing concentrations of fMLP, whereas the 3H9 signal was observed in both areas. In addition, soluble GPI-80 released from activated neutrophils did not bind 4D4. These results suggest that there are two populations of GPI-80 that differ in the ability to bind 4D4. The 4D4-recognized form may regulate Mac-1-dependent neutrophil adhesion, and may subsequently be converted to a 4D4-unrecognized form during neutrophil activation.  相似文献   

13.
alpha1-Antitrypsin (AAT) is a major circulating serine proteinase inhibitor in humans. The anti-proteinase activity of AAT is inhibited by chemical modification. These include inter- or intramolecular polymerisation, oxidation, complex formation with target proteinases (e.g., neutrophil elastase), and/or cleavage by multi-specific proteinases. In vivo, several modified forms of AAT have been identified which stimulate biological activity in vitro unrelated to inhibition of serine proteinases. In this study we have examined the effects of native and polymerised AAT and C-36 peptide, a proteolytic cleavage product of AAT, on human neutrophil activation, in vitro. We show that the C-36 peptide displays striking concentration-dependent pro-inflammatory effects on human neutrophils, including induction of neutrophil chemotaxis, adhesion, degranulation, and superoxide generation. In contrast to C-36 peptide, native and polymerised AAT at similar and higher concentrations showed no effects on neutrophil activation. These results suggest that cleavage of AAT may not only abolish its proteinase inhibitor activity, but can also generate a powerful pro-inflammatory activator for human neutrophils.  相似文献   

14.
We have examined the role of the R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) synaptobrevin-2/vesicle-associated membrane protein (VAMP)-2 in neutrophil exocytosis. VAMP-2, localized in the membranes of specific and gelatinase-containing tertiary granules in resting human neutrophils, resulted translocated to the cell surface following neutrophil activation under experimental conditions that induced exocytosis of specific and tertiary granules. VAMP-2 was also found on the external membrane region of granules docking to the plasma membrane in activated neutrophils. Specific Abs against VAMP-2 inhibited Ca(2+) and GTP-gamma-S-induced exocytosis of CD66b-enriched specific and tertiary granules, but did not affect exocytosis of CD63-enriched azurophilic granules, in electropermeabilized neutrophils. Tetanus toxin disrupted VAMP-2 and inhibited exocytosis of tertiary and specific granules. Activation of neutrophils led to the interaction of VAMP-2 with the plasma membrane Q-SNARE syntaxin 4, and anti-syntaxin 4 Abs inhibited exocytosis of specific and tertiary granules in electropermeabilized neutrophils. Immunoelectron microscopy showed syntaxin 4 on the plasma membrane contacting with docked granules in activated neutrophils. These data indicate that VAMP-2 mediates exocytosis of specific and tertiary granules, and that Q-SNARE/R-SNARE complexes containing VAMP-2 and syntaxin 4 are involved in neutrophil exocytosis.  相似文献   

15.
We examined the biochemistry and subcellular source of new formyl peptide chemotactic receptor appearing at the human neutrophil and differentiated HL-60 (d-HL-60) cell surface after stimulation with phorbol myristate acetate (PMA). Formyl peptide receptor was analyzed by affinity labeling with formyl-norleu-leu-phe-norleu-[125I]iodotyr-lys and ethylene glycol bis(succinimidyl succinate) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometric analysis of autoradiographs. PMA, a specific granule secretagogue, increases affinity labeling of formyl peptide receptors on the neutrophil surface by 100%, and on d-HL-60, which lack specific granule markers, by 20%. Papain treatment markedly reduces surface labeling of formyl peptide receptor in both neutrophils and d-HL-60, and results in the appearance of a lower m.w. membrane-bound receptor fragment. PMA stimulation of papain-treated cells increases uncleaved surface receptor on neutrophils by 400%, and on d-HL-60 by only 45%. This newly appearing receptor is the same apparent m.w. (55,000 to 75,000 for neutrophils; 62,000 to 80,000 for d-HL-60) and yields the same papain cleavage product (Mr, 31,000 for neutrophils; Mr, 29,000 for d-HL-60) as receptor on the surface of unstimulated cells. Formyl peptide receptor detected by affinity labeling in neutrophil specific granule-enriched subcellular fractions is identical to receptor found on the surface of unstimulated cells appearing as equal amounts of two isoelectric forms (isoelectric points, 5.8 and 6.2) at Mr 55,000 to 70,000. There is twice as much receptor present in the specific granule-enriched fraction per cell equivalent compared with plasma membrane. Azurophil granules contain trace amounts of receptor. Similar analysis of neutrophils treated with papain before subcellular fractionation shows that papain cleaved receptor fragment is detectable almost exclusively in the plasma membrane-enriched fraction. Most of the affinity-labeled formyl peptide receptor present in specific granule enriched fraction is present in membranes other than plasma membrane or Golgi membrane, because specific granule-enriched fraction contains only a small amount of plasma membrane marker and an amount of Golgi membrane marker equal to that found in plasma membrane-enriched fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Y Okada  M Kawagishi  M Kusaka 《Life sciences》1990,47(15):PL65-PL70
Single injection of recombinant human granulocyte colony-stimulating factor (rhG-CSF) immediately induced a decrease in the number of circulating neutrophils in rats. This neutropenia occurred 10 minutes after the injection but disappeared 40 minutes after injection. This transient neutropenia was dose-dependently induced by rhG-CSF and also induced by repeated injections. We studied the kinetics of circulating neutrophils in transient neutropenia. rhG-CSF markedly decreased the number of 3H-diisopropylfluorophosphate (3H-DFP) labeled neutrophils in the circulation 10 minutes after injection but the labeled neutrophils recovered to near the control level 40 minutes after the injection. These results indicate that the neutrophil margination accounts for the neutropenia and the marginated neutrophils return to the circulation.  相似文献   

17.
At inflammatory sites neutrophils are stimulated to produce a variety of toxic agents, yet rarely harm the endothelium across which they migrate. We have recently found that endothelium releases adenosine which, acting via receptors on the surface of human neutrophils, inhibits generation of toxic metabolites by stimulated neutrophils but, paradoxically, promotes chemotaxis. Agents which diminish plasma membrane viscosity affect neutrophil function similarly, possibly by modulating chemoattractant receptor number or affinity. We therefore determined whether adenosine receptor agonists modulate neutrophil function by decreasing membrane viscosity and/or changing the affinity of chemoattractant (N-fMet-Leu-Phe, FMLP) receptors. Surprisingly, 5'-(N-ethylcarboxamido)adenosine (NECA, 10 microM), the most potent agonist at neutrophil adenosine receptors, increased plasma membrane viscosity, as measured by fluorescence anisotropy of the plasma membrane specific probe 1-(4-trimethylaminophenyl)-6-diphenyl-1,3,5-hexatriene (TMA-DPH), in unstimulated neutrophils from a mean microviscosity of 1.67 +/- 0.02 (S.E.) to 1.80 +/- 0.02 (p less than 0.001) while inosine (10 microM), a poor adenosine receptor agonist, had no effect (1.73 +/- 0.04, p = n.s. vs. control, p less than 0.01 vs. NECA). Adenosine receptor agonists increased plasma membrane viscosity in neutrophils with the same order of potency previously seen for inhibition of superoxide anion generation and enhancement of chemotaxis (NECA greater than adenosine = N6-phenylisopropyladenosine). The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline reversed the effect of NECA on plasma membrane viscosity. Unlike other agents which modulate plasma membrane viscosity, NECA (10 microM) did not significantly change the number or affinity of [3H]FMLP binding sites on neutrophils. In contrast to the hypothesis of Yuli et al. these results indicate that occupancy of adenosine receptors on neutrophils increases plasma membrane viscosity without affecting chemoattractant receptor display.  相似文献   

18.
Rat muscle infiltration by neutrophils after muscle activity (MA) was investigated on myeloperoxidase (MPO) concentration. MPO distribution in muscle subcellular fractions was also studied. Increase of MPO concentration in skeletal muscles was discovered after MA. Its maximum was determined within 1-5 days of the rest. This fact can be considered as an evidence of neutrophil influx in muscle tissue. The electroral MPO concentration increase in plasmalemma membrane fraction after MA was shown. In vitro MPO was able to catalyze 125I inclusion in membrane material. These results give a possibility to propose that neutrophil MPO can have a certain significance in muscle tissue damage by haloid joining to plasmalemma proteins.  相似文献   

19.
The changes in circulation and migration of mature and immature neutrophils during 12 h of hypothermia have been studied using an experimental pig model. At 29 degrees C the number of circulating neutrophils fell from 5 +/- 1.1 at 37 degrees C to 3.5 +/- 0.6 X 10(9)/l and then remained unchanged while hypothermia was maintained. The number of circulating immature neutrophils did not fall during hypothermia. During hypothermia, hydrocortisone failed to stimulate the release of mature and immature neutrophils from the bone marrow. In contrast, endotoxin caused a profound neutropenia followed by a gradual increase in the number of circulating mature neutrophils, which by 6 h, was similar to the number circulating before endotoxin administration. At 29 degrees C the number of circulating immature neutrophils also fell following endotoxin but then increased over the number circulating before endotoxin administration by approximately 10-fold. Compared with neutrophil migration at 37 degrees C, very few mature or immature neutrophils migrated to an inflammatory site during the 12 h of hypothermia (29 degrees C). Unlike hypothermia in vitro, where neutrophil function may improve with time in vivo, neutrophil function remains compromised.  相似文献   

20.
Human urinary active kallikrein and prokallikrein were separated on DEAE-cellulose and octyl-Sepharose columns and both purified to homogeneity by affinity chromatography, gel filtration and hydrophobic h.p.l.c. Prokallikrein was monitored during purification by trypsin activation followed by determination of both amidase and kininogenase activity. After trypsin activation, purified prokallikrein had a specific kininogenase activity of 39.4 micrograms of bradykinin equivalent/min per mg and amidase activity of 16.5 mumol/min per mg with D-Val-Leu-Arg-7-amino-4-trifluoromethylcoumarin. Purified active kallikrein had a specific activity of 47 micrograms of bradykinin/min per mg. The molecular mass of prokallikrein was 48 kDa on electrophoresis and 53 kDa on gel filtration whereas active kallikrein gave values of 46 kDa and 53 kDa respectively. Antisera to active and prokallikrein were obtained. In double immunodiffusion and immunoelectrophoresis, antiserum to active kallikrein reacted with active and pro-kallikrein. Antiserum to prokallikrein contained antibodies to determinants not found in active kallikrein, presumably due to the presence of the activation peptide in the proenzyme. Human prokallikrein can be activated by thermolysin, trypsin and human plasma kallikrein. Activation of 50% of the prokallikrein (1.35 microM) was achieved in 30 min with 25 nM-thermolysin, 78 nM-trypsin or 180 nM-human plasma kallikrein. Thus thermolysin was the most effective activator. Thermolysin activated prokallikrein by releasing active kallikrein with N-terminal Ile1-Val2. Thus human tissue (glandular) prokallikrein can be activated by two types of enzymes: serine proteinases, which cleave at the C-terminus of basic amino acids, and by a metalloproteinase that cleaves at the N-terminus of hydrophobic amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号