首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preincubation of Swiss 3T3 cells or human fibroblasts with purified platelet-derived growth factor (PDGF) at 4 degrees C or 37 degrees C rapidly inhibits subsequent binding of 125I-epidermal growth factor (125I-EGF). The effect does not result from competition by PDGF for binding to the EGF receptor since (a) very low concentrations of PDGF are effective, (b) cells with EGF receptors but no PDGF receptors are not affected, and (c) the inhibition persists even if the bound PDGF is eluted before incubating the cells with 125I-EGF. PDGF does not affect 125I-insulin binding nor does EGF affect 125I-PDGF binding under these conditions. Endothelial cell-derived growth factor also competes for binding to PDGF receptors and inhibits 125I-EGF binding. The inhibition demonstrated by PDGF seems to result from an increase in the Kd for 125I-EGF binding with no change in the number of EGF receptors.  相似文献   

2.
Glioma cells in culture express platelet-derived growth factor (PDGF) A- and B-chains and secrete PDGF-like activity that is mainly PDGF-AA. In this work, we show that the PDGF alpha- and beta-receptors are independently expressed in human malignant glioma cells. We also define three different receptor phenotypes that are related to the morphology of glioma cells: cells with only alpha-receptors, only beta-receptors, or with both types of receptors. By the help of Northern blot analyses, 125I-PDGF-binding experiments, and immunoprecipitations the receptors are shown to be structurally normal PDGF receptors, except for minor variations in size that probably are due to differences in glycosylation. PDGF-BB induces DNA synthesis in cells of all three receptor phenotypes, whereas PDGF-AA or PDGF-AB has this effect only on cells with alpha- or with alpha- and beta-receptors. 125I-PDGF-AB binds with high affinity and down-regulates beta-receptors only in cells where alpha-receptors are present in addition to beta-receptors. Thus, the different functional capacities of PDGF isoforms on glioma cells fit with their known receptor-binding specificities and are compatible with the hypothesis that the isoforms act by inducing dimeric receptor complexes. When data on PDGF A- and B-chains, as well as alpha- and beta-receptor expression are compiled and the pattern of receptor binding specificity is taken into account, the majority of glioma cell lines are found to have a phenotype that makes autocrine stimulation possible.  相似文献   

3.
4.
Platelet-derived growth factor (PDGF) is a 30 kDa dimer of disulfide-bonded A and B chains. Three isoforms of PDGF have been isolated (PDGF-AA, PDGF-AB and PDGF-BB). These bind with different affinities and specificities to two structurally related cell surface receptors, viz. the α-receptor and the β-receptor. The receptors are transmembrane proteins with an intracellular, ligand-stimulatable protein tyrosine kinase domain. Activation of the receptors is intimately associated with receptor dimerization, and available data suggest that PDGF is a divalent ligand such that one molecule of PDGF binds and dimerizes two receptor molecules. Stimulation of PDGF receptors leads to a cascade of cellular events, which have been shown to require an intact receptor tyrosine kinase activity. However, ligand-induced internalization and degradation of the β-receptor occur essentially independent of the receptor kinase activity. Receptor activation leads to the phosphorylation on tyrosine residues of three enzymes, probably by direct phosphorylation: phospholipase C-γ, phosphatidylinositol 3′ kinase and Raf-1. In certain cells, PDGF β-receptor expression is inducible such that cells in normal tissue in vivo do not express receptors; only in inflammatory lesions or when cells are explanted in vitro, are receptors being expressed. Transformation by the v-sis oncogene is mediated by an autocrine PDGF-like growth factor. Although both the α- and β-receptors are structurally related to the v-fms and v-kit oncogenes, it is not known if the PDGF receptors have a transforming potential. In conclusion, the finding of three isoforms of PDGF that interact with two structurally related receptors implies a finely tuned regulatory network, the role of which in cell growth and transformation remains to be clarified.  相似文献   

5.
Platelet-derived growth factor (PDGF) exerts its stimulatory effects on cell growth and motility by binding to two related protein tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic SH2-domain containing signal transduction molecules. Thereby, a number of different signaling pathways are initiated leading to cell growth, actin reorganization migration and differentiation. Recent observations suggest that extensive cross-talk occurs between different signaling pathways, and that stimulatory signals are modulated by inhibitory signals arising in parallel.  相似文献   

6.
PDGF is one of the most potent serum mitogens, and the signalling mechanism by way of its receptor tyrosine-kinase has been extensively studied since its first purification in 1979. The identification of homology between the simian sarcoma virus oncogene, v-sis, and the B-chain of PDGF, as well as the frequent over-expression of both the ligands and receptors in various tumours and stroma led to the proposal of the PDGF-mediated autocrine and paracrine hypothesis. Consistent with the important roles of PDGF in the growth and survival of cells, the expression and activity of PDGF receptors are tightly controlled by both positive and negative feedback mechanisms at different levels. The deregulation of the control system can result in serious pathological conditions such as chronic inflammation and tumours. Understanding the molecular mechanisms for the regulatory system and the signalling pathway of PDGF is essential in order to find effective therapies in the diseases where PDGF is involved.  相似文献   

7.
Vascular endothelial growth factor (VEGF-A) is a crucial stimulator of vascular cell migration and proliferation. Using bone marrow-derived human adult mesenchymal stem cells (MSCs) that did not express VEGF receptors, we provide evidence that VEGF-A can stimulate platelet-derived growth factor receptors (PDGFRs), thereby regulating MSC migration and proliferation. VEGF-A binds to both PDGFRalpha and PDGFRbeta and induces tyrosine phosphorylation that, when inhibited, results in attenuation of VEGF-A-induced MSC migration and proliferation. This mechanism was also shown to mediate human dermal fibroblast (HDF) migration. VEGF-A/PDGFR signaling has the potential to regulate vascular cell recruitment and proliferation during tissue regeneration and disease.  相似文献   

8.
Summary Altered expression of epidermal growth factor receptor (EGFR) is common in a variety of epithelial malignancies, including cervical cancer. However, the prognostic significance of EGFR expression is controversial for cervical cancer. Platelet-derived growth factor receptor (PDGFR) expression status is unknown in cervical cancer. Our results demonstrated that expression of EGFR and PDGFR was greatly enhanced in vivo and in organotypic cultures of low-grade cervical dysplastic tissues, but levels were decreased in high-grade lesions. To our knowledge, this is the first report identifying the expression of PDGFR in human epithelium. When low-grade dysplastic organotypic culture tissues were induced to differentiate more completely, EGFR expression, but not PDGFR expression, was relocalized to the basal layer as seen in normal tissues. Differentiation also induced phosphorylation of EGFR but not PDGFR. Our results suggest a role for EGFR and PDGFR during the early stages of cervical carcinogensis, and demonstrate the facility of organotypic cultures to study the role of these growth factors in the development of cervical cancer.  相似文献   

9.
In an effort to biochemically characterize PDGF receptors and their mechanism of activation, recombinant baculovirus vectors containing the cDNAs of the human alpha PDGF receptor or beta PDGF receptor were engineered. Characterization of recombinant PDGF receptor expression in infected Sf9 insect cells by immunoblot analysis with specific PDGF receptor peptide antisera revealed that the alpha and beta PDGF receptor gene products were translated as 160- and 165-kDa transmembrane proteins, respectively. Ligand binding analysis demonstrated saturable, high-affinity binding of either 125I-labeled PDGF AA or 125I-labeled PDGF BB to Sf9 cells expressing the recombinant alpha PDGF receptor. In contrast, recombinant beta PDGF receptor expressing Sf9 cells showed high-affinity binding only for PDGF BB. Analysis of the kinetics of PDGF receptor expression demonstrated that receptor number increased dramatically from 24- to 48-h postinfection. Early in infection, the PDGF receptors were present in low numbers, lacked tyrosine phosphorylation, and exhibited ligand-dependent tyrosine phosphorylation. However, with increasing time postinfection and increasing receptor number, the PDGF receptors became constitutively tyrosine-phosphorylated in serum-free culture medium. Cross-linking studies revealed that receptor activation involved ligand-independent receptor dimer formation at high receptor number. Thus, these results strongly suggest that PDGF stabilizes and increases the frequency of PDGF receptor interaction, which ultimately results in PDGF receptor activation and intracellular signaling.  相似文献   

10.
One of the immediate cellular responses to stimulation by various growth factors is the activation of a phosphatidylinositol (PI) 3-kinase. We recently cloned the 85-kDa subunit of PI 3-kinase (p85) from a lambda gt11 expression library, using the tyrosine-phosphorylated carboxy terminus of the epidermal growth factor (EGF) receptor as a probe (E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cell 65:83-90, 1991). In this study, we have examined the association of p85 with EGF and platelet-derived growth factor (PDGF) receptors and the tyrosine phosphorylation of p85 in 3T3 (HER14) cells in response to EGF and PDGF treatment. Treatment of cells with EGF or PDGF markedly increased the amount of p85 associated with EGF and PDGF receptors. Binding assays with glutathione S-transferase (GST) fusion proteins demonstrated that either Src homology region 2 (SH2) domain of p85 is sufficient for binding to EGF and PDGF receptors and that receptor tyrosine autophosphorylation is required for binding. Binding of a GST fusion protein expressing the N-terminal SH2 domain of p85 (GST-N-SH2) to EGF and PDGF receptors was half-maximally inhibited by 2 and 24 mM phosphotyrosine (P-Tyr), respectively, suggesting that the N-SH2 domain interacts more stably with PDGF receptors than with EGF receptors. The amount of receptor-p85 complex detected in HER14 cells treated with EGF or PDGF. Growth factor treatment also increased the amount of p85 found in anti-PDGF-treated HER14 cells, suggesting that the vast majority of p85 in the anti-P-Tyr fraction is receptor associated but not phosphorylated on tyrosine residues. Only upon transient overexpression of p85 and PDGF receptor did p85 become tyrosine phosphorylated. These are consistent with the hypothesis that p85 functions as an adaptor molecule that targets PI 3-kinase to activated growth factor receptors.  相似文献   

11.
The platelet-derived growth factor.   总被引:82,自引:0,他引:82  
R Ross  A Vogel 《Cell》1978,14(2):203-210
  相似文献   

12.
The platelet-derived growth factor (PDGF) family comprises disulfide-bonded dimeric isoforms and plays a key role in the proliferation and migration of mesenchymal cells. Traditionally, it consists of homo- and heterodimers of A and B polypeptide chains that occur as long (AL and BL) or short (AS and BS) isoforms. Short isoforms lack the basic C-terminal extension that mediates binding to heparin. In the present study, we show that certain PDGF isoforms bind in a specific manner to glycosaminoglycans (GAGs). Experiments performed with wild-type and mutant Chinese hamster ovary cells deficient in the synthesis of GAGs revealed that PDGF long isoforms bind to heparan sulfate and chondroitin sulfate, while PDGF short isoforms only bind to heparan sulfate. This was confirmed by digestion of cell surface GAGs with heparitinase and chondroitinase ABC and by incubation with sodium chloride to prevent GAG sulfation. Furthermore, exogenous GAGs inhibited the binding of long isoforms to the cell membrane more efficiently than that of short isoforms. Additionally, we performed surface plasmon resonance experiments to study the inhibition of PDGF isoforms binding to low molecular weight heparin by GAGs. These experiments showed that PDGF-AAL and PDGF-BBS isoforms bound to GAGs with the highest affinity. In conclusion, PDGF activity at the cell surface may depend on the expression of various cellular GAG species.  相似文献   

13.
Fat-storing cells and endothelial cells of the liver sinusoids play important roles in the biosynthesis and degradation of hyaluronan (HYA). These cells were isolated from rat liver by a simple and rapid procedure involving: (1) cell separation by centrifugation on a Nycodenz gradient, after dispersion of the liver cells by collagenase perfusion; (2) further purification of the cells by centrifugation on a discontinuous Percoll gradient; and (3) culturing of the cells, taking advantage of the different time that seeded cells need for attachment to plastic surfaces. We have determined the effects of two isoforms of platelet-derived growth factor (PDGF), PDGF-BB and PDGF-AA, on HYA production by the original fat-storing cells, as well as by fat-storing cells which had changed in vitro to myofibroblast-like cells. PDGF-BB was found to stimulate HYA synthesis in both types of cells with a maximal response equal to that obtained with 10% fetal calf serum. PDGF-AA had no stimulatory effect on HYA production. Fat-storing cells and their modified myofibroblast-like phenotype bound specifically to 125I-PDGF-BB, but not to 125I-PDGF-AA, indicating that they had PDGF beta-receptors, but not alpha-receptors. In contrast, liver endothelial cells were found to have PDGF alpha-receptors, but not beta-receptors.  相似文献   

14.
Pretreatment of Balbc-3T3 cells with platelet-derived growth factor (PDGF) has been shown to decrease binding sites for 125I-labelled epidermal growth factor (EGF) (1,2,3). Agents which elevate cellular cyclic AMP concentrations enhance this ability, and the change in EGF binding is inversely proportional to the elevation of cyclic AMP. In quiescent density arrested cells, the sensitivity of cells to down regulation of EGF receptors by PDGF is proportional to the cyclic AMP content of the cultures in three different cell lines. Agents which elevate cyclic AMP and which potentiate PDGF mediated heterologous down regulation of EGF receptors are able, like cholera toxin (3), to stimulate cells to synthesize DNA in defined medium in the absence of EGF. Down regulation of EGF receptors by PDGF in combination with agents elevating cyclic AMP effectively mimics the action of EGF.  相似文献   

15.
Receptor tyrosine kinases (RTKs) direct diverse cellular and developmental responses by stimulating a relatively small number of overlapping signaling pathways. Specificity may be determined by RTK expression patterns or by differential activation of individual signaling pathways. To address this issue we generated knock-in mice in which the extracellular domain of the mouse platelet-derived growth factor alpha receptor (PDGFalphaR) is fused to the cytosolic domain of Drosophila Torso (alpha(Tor)) or the mouse fibroblast growth factor receptor 1 (alpha(FR)). alpha(Tor) homozygous embryos exhibit significant rescue of neural crest and angiogenesis defects normally found in PDGFalphaR-null embryos yet fail to rescue skeletal or extraembryonic defects. This phenotype was associated with the ability of alpha(Tor) to stimulate the mitogen-activated protein (MAP) kinase pathway to near wild-type levels but failure to completely activate other pathways, such as phosphatidylinositol (PI) 3-kinase. The alpha(FR) chimeric receptor fails to rescue any aspect of the PDGFalphaR-null phenotype. Instead, alpha(FR) expression leads to a gain-of-function phenotype highlighted by ectopic bone development. The alpha(FR) phenotype was associated with a failure to limit MAP kinase signaling and to engage significant PI3-kinase response. These results suggest that precise regulation of divergent downstream signaling pathways is critical for specification of RTK function.  相似文献   

16.
The cell surface pool of metabolically labeled platelet-derived growth factor (PDGF) receptors in BALB/c3T3 fibroblasts was studied using an antiphosphotyrosine antibody. Exposure of intact cells to PDGF stimulates autophosphorylation of surface PDGF receptors and allowed immunoaffinity purification of only PDGF-activated receptors. Pulse-chase experiments demonstrated appearance of newly synthesized receptors in a surface activatable pool within 30-45 min of synthesis. In the absence of exogenous PDGF, the apparent half-life of this pool was 2 h. The presence of both N- and O-linked oligosaccharide chains on cell surface PDGF receptors was demonstrated. Enzymatic removal of the N-linked oligosaccharide chains reduced the receptor's apparent Mr by approximately 40 kDa and removal of O-linked oligosaccharide caused approximately a 7-kDa reduction. Activation of receptor tyrosine autophosphorylation by PDGF did not require either processing of high-mannose N-linked oligosaccharides to complex forms or the presence of sialic acid on receptor oligosaccharide chains. Tryptic cleavage of PDGF-activated surface receptors in intact cells yielded two discrete phosphotyrosine-containing fragments of 107 and 85 kDa. Cleveland digest patterns from each fragment indicate that both are derived from the intact PDGF receptor. These data indicate that PDGF receptors are synthesized and turn over rapidly in the absence of ligand. Partial characterization of the extracellular domain oligosaccharide contribution to receptor function and trypsin susceptibility is provided.  相似文献   

17.
The effects of hepatocyte growth factor (HGF) on intracellular Ca2+ mobilization were studied using fura-2-loaded single rat hepatocytes. Hepatocytes microperfused with different amounts of HGF responded with a rapid concentration-dependent rise in the cytosolic free Ca2+ concentration with a maximum increase of 142% at 80 ng/ml of HGF. The lag period of the Ca2+ response was decreased with increasing HGF concentrations, being 64 +/- 12 s, 42 +/- 6 s, and 14 +/- 2 s, respectively, with 8, 20, and 80 ng/ml of HGF. The detailed pattern of Ca2+ transients, however, was variable. Out of 16 cells tested using 20 ng/ml of HGF, 68% showed sustained oscillatory responses, whereas other cells showed a sustained increase in the cytosolic-free Ca2+ upon exposure to HGF, which was dependent on the presence of extracellular Ca2+. HGF also induced Ca2+ entry across the plasma membrane. Mobilization of Ca2+ by HGF was accompanied by a rapid accumulation of inositol 1,4,5-trisphosphate (Ins 1,4,5-P3). The effects of HGF and epidermal growth factor (EGF) were comparable and partly additive for Ins 1,4,5-P3 production and for the sustained phase of Ca2+ mobilization. Preincubation of cells with 10 microM of genistein to inhibit protein tyrosine kinases abolished the HGF-induced Ca2+ response and also inhibited HGF-induced Ins 1,4,5-P3 production in rat liver cells. These data indicate that early events in the signal transduction pathways mediated by HGF and EGF have in common the requirements for tyrosine kinase activity, Ins 1,4,5-P3 production, and Ca2+ mobilization.  相似文献   

18.
19.
We determined the temporal relationship between the formation of inositol phosphates and increase in cytosolic [Ca2+] elicited by bombesin, vasopressin and platelet-derived growth factor (PDGF) in quiescent Swiss 3T3 cells. These responses were measured under identical conditions. Bombesin caused a rapid increase in inositol 1,4,5-trisphosphate which coincided with the increase in cytosolic [Ca2+]. This was followed by a slower but marked increase in inositol 1,3,4-trisphosphate and inositol-bisphosphate. Vasopressin elicited a similar sequence of events. In sharp contrast, highly purified porcine PDGF induced increases in cytosolic [Ca2+] and inositol 1,4,5-trisphosphate that were temporally uncoupled: detectable inositol polyphosphate formation occurred after Ca2+ mobilization from intracellular stores. The same temporal dissociation was observed when a recombinant v-sis product was used instead of porcine PDGF. However, PDGF was as effective as bombesin in stimulating the formation of inositol phosphates after 5-10 min of incubation. The data suggest that PDGF increases cytosolic [Ca2+] via a different signal transduction pathway from that utilized by bombesin and vasopressin. These findings have important implications for understanding the signal transduction pathway activated by PDGF.  相似文献   

20.
Highly purified platelet-derived growth factor (PDGF) or recombinant PDGF stimulate DNA synthesis in quiescent Swiss 3T3 cells. The dose-response curves for the natural and recombinant factors were similar, with half-maximal responses at 2-3 ng/ml and maximal responses at approx. 10 ng/ml. Over this dose range, both natural and recombinant PDGF stimulated a pronounced accumulation of [3H]inositol phosphates in cells labelled for 72 h with [3H]inositol. In addition, mitogenic concentrations of PDGF stimulated the release of 45Ca2+ from cells prelabelled with the radioisotope. However, in comparison with the response to the peptide mitogens bombesin and vasopressin, a pronounced lag was evident in both the generation of inositol phosphates and the stimulation of 45Ca2+ efflux in response to PDGF. Furthermore, although the bombesin-stimulated efflux of 45Ca2+ was independent of extracellular Ca2+, the PDGF-stimulated efflux was markedly inhibited by chelation of external Ca2+ by using EGTA. Neither the stimulation of formation of inositol phosphates nor the stimulation of 45Ca2+ efflux in response to PDGF were affected by tumour-promoting phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (TPA). In contrast, TPA inhibited phosphoinositide hydrolysis and 45Ca2+ efflux stimulated by either bombesin or vasopressin. Furthermore, whereas formation of inositol phosphates in response to both vasopressin and bombesin was increased in cells in which protein kinase C had been down-modulated by prolonged exposure to phorbol esters, the response to PDGF was decreased in these cells. These results suggest that, in Swiss 3T3 cells, PDGF receptors are coupled to phosphoinositidase activation by a mechanism that does not exhibit protein kinase C-mediated negative-feedback control and which appears to be fundamentally different from the coupling mechanism utilized by the receptors for bombesin and vasopressin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号