首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Mammalian glycogen phosphorylases comprise a family of isozymes that are expressed selectively in a variety of cell types. As an initial step towards understanding the molecular processes that regulate the differential expression of the phosphorylase family, we have begun a quantitative examination of isozyme expression in vivo. In this paper, we report quantitative estimates of the amounts of the muscle (M) isozyme and its mRNA in adult rat tissues. Quantitative estimates of the amount of M-phosphorylase were obtained by an analysis involving electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose filters and sequential treatment with M-isozyme specific antibody and radioactively- labeled protein A. M-phosphorylase mRNA amounts were determined by an analysis involving transfer of RNA from agarose gels to nitrocellulose filters and subsequent hybridization with radioactively labelled rat M-phosphorylase cDNA. These studies indicate that M-phosphorylase is present in all tissues tested with the possible exception of liver. These are skeletal muscle, heart, brain, stomach, lung, kidney, spleen and testis. Quantitation of M-phosphorylase amounts indicate that there is a wide spectrum of variation (over 1000-fold range) in the relative amounts of the M-isozymes in these tissues. Relative mRNA levels parallel isozyme levels indicating that the major control of expression of this isozyme is governed by mRNA accumulation.  相似文献   

3.
Monoclonal antibodies to three phospholipase C isozymes from bovine brain   总被引:29,自引:0,他引:29  
Murine hybridoma cell lines secreting antibodies against the three bovine isozymes of phosphoinositide-specific phospholipase C (PLC) were established: 6, 23, and 12 lines were obtained for PLC-I (150 kDa), PLC-II (145 kDa), and PLC-III (85 kDa), respectively. The antibodies were purified from ascites fluid, and their properties were studied in detail. All the antibodies cross-reacted with their corresponding PLC enzymes, but not with the other two isozymes, suggesting that the three enzymes contain very different antigenic determinants. The six antibodies elicited by bovine PLC-I also cross-reacted with human and rat enzyme, whereas three each from anti-PLC-II antibodies and anti-PLC-III antibodies did not react with the enzymes from different species. Each antibody exerts different effects on the phosphatidylinositol-hydrolyzing activity of PLC. The most inhibitory antibody for either isozyme PLC-I or PLC-II exhibits 80% inhibition, whereas no more than 20% inhibition was observed for the anti-PLC-III antibodies. Purified PLC-I frequently contains catalytically active 140- and 100-kDa forms and an inactive 41-kDa protein in addition to the intact 150-kDa form, probably due to its high sensitivity to an unidentified endogenous protease. The five anti-PLC-I antibodies which bind to the denatured 150-kDa polypeptide also recognized the 140-kDa form, whereas only three cross-reacted with the 100-kDa form, and the remaining two bound to the 41-kDa protein. Competitive binding studies with intact PLC enzymes and Western blot experiments with proteolytic digests revealed that the 6 anti-PLC-I, 23 anti-PLC-II, and 12 anti-PLC-III antibodies bind at least five, six, and seven different epitopes on PLC-I, PLC-II, and PLC-III, respectively. The fact that these monoclonal antibodies bind to different epitopes on the same enzyme allowed one to develop a highly specific and sensitive tandem radioimmunoassay for quantitating PLC-I, PLC-II, and PLC-III. The principle of the assay is that binding of an 125I-labeled antibody to the antigen immobilized by another antibody at a distinctive binding site is proportional to the amount of antigen present. By using this method, PLC-I, PLC-II, and PLC-III could be measured quantitatively in the presence of other proteins, detergents, lipids, polyanions, and metal ions, all of which greatly affect the activity of PLC enzymes.  相似文献   

4.
5.
6.
In a number of cell lines, epidermal growth factor (EGF) rapidly stimulates the breakdown of inositol phospholipids. Phosphatidylinositol-specific phospholipase C (PLC), therefore, plays an important role in this biological response to EGF, but the mechanism by which EGF-receptor complexes modulate the activation of PLC is not understood. We have previously suggested that tyrosine phosphorylation of PLC or an unknown PLC-associated protein by the EGF receptor is involved in the activation process (Wahl, M. I., Daniel, T. O., and Carpenter, G. (1988) Science 241, 968-970) and have recently shown by immunoprecipitation that the addition of EGF to 32P-labeled cells increases tyrosine and serine phosphorylation of PLC-II (Wahl, M. I., Nishibe, S., Suh, P.-G., Rhee, S. G., and Carpenter, G. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1568-1572). In this communication we demonstrate that PLC-II (Mr = 145,000) purified from bovine brain can be phosphorylated in vitro in an EGF-dependent manner by the tyrosine kinase activity of the purified EGF receptor. While PLC-II is an efficient phosphorylation substrate for the purified EGF receptor, PLC-I is a poor substrate and PLC-III is not phosphorylated to any detectable extent. Though all three PLC isozymes possess typical tyrosine phosphorylation sequences, the EGF receptor is surprisingly selective in vitro for the phosphorylation of PLC-II. High performance liquid chromatography comparison of tryptic phosphotyrosyl peptides from PLC-II phosphorylated in vivo and in vitro indicated a similar pattern of multiple tyrosine phosphorylation sites. These findings show that the EGF receptor can directly phosphorylate PLC-II in an efficient and selective manner.  相似文献   

7.
Distribution of AMP-deaminase isozymes in rat tissues   总被引:8,自引:0,他引:8  
1. The distribution of AMP deaminase isozymes in rat tissues was analyzed by electrophoresis on cellulose acetate membrane, by chromatography on phosphocellulose column, and by the application of immunological technique employing specific antisera against three parental AMP deaminases (isozymes A, B and C). Skeletal muscle extracts and diaphragm extracts contain a single identical isozyme, isozyme A. The major isozyme species of liver, kidney and testes are also identical and they are isozyme B. Heart extracts contains isozyme C exclusively. Extracts of brain, lung and spleen contain five isozymes, presumably a complete set of five B-C hybrids. 2. Developmental patterns of AMP deaminase isozyme were studied. In early postnatal life, extracts of heart, liver, kidney and lung contain five isozymes similar to those observed in adult brain. During postnatal development, a shift to isozyme C occurs in heart, whereas a shift to isozyme B occurs in liver and kidney. Five isozymes in lung remain throughout development. In brain a shift of B to five isozymes is observed during development. Isozyme A is the predominant form in muscle throughout postnatal development. 3. AMP deaminase in the regenerating liver was analyzed, but the data indicated that there was no change of isozyme distribution during hepatic regeneration.  相似文献   

8.
Carboxypeptidase H is a putative post-translational processing enzyme which removes basic amino acid residues from intermediates during protein hormone biosynthesis. A 2.2-kilobase pair cDNA was shown to contain the complete amino acid sequence of rat carboxypeptidase H. The deduced amino acid sequence revealed that the enzyme was synthesized as preprocarboxypeptidase H, a precursor form of 476 amino acid residues. Preprocarboxypeptidase H contained a putative hydrophobic signal peptide and a short propeptide which contained 5 adjacent Arg residues at its C terminus. Northern blot analysis identified a single carboxypeptidase H mRNA of approximately 2.3 kilobases in brain, pituitary, and heart, as well as in mouse AtT20 cells. No carboxypeptidase H mRNA was detected in rat liver, spleen, kidney, lung, and mammary gland. Sequence analysis of cDNAs obtained from different rat tissues suggested that a single mRNA encodes an identical carboxypeptidase in several tissues. Treatment of AtT20 cells with dexamethasone decreased the levels of both carboxypeptidase H and preproopiomelanocortin (POMC) mRNAs by approximately 30%. Exposure of the dexamethasone-treated cells to corticotropin-releasing factor effected a 2- to 3-fold increase in the carboxypeptidase H and POMC mRNA levels relative to those of dexamethasone-treated cells exposed to control medium. This suggests that the mRNA levels of POMC and one of its putative post-translational processing enzymes, carboxypeptidase H, are co-regulated by corticotropin-releasing factor and steroid hormones.  相似文献   

9.
Expression of phospholipase C isozymes by murine B lymphocytes   总被引:5,自引:0,他引:5  
Cross-linking of membrane (m) Ig, the B cell receptor for Ag, activates protein tyrosine phosphorylation and hydrolysis of phosphotidylinositol 4,5-bisphosphate. The latter signal transduction pathway is an important mediator of antigen receptor engagement. The initial event in this pathway is the activation of phospholipase C (PLC). The identity of the isozyme of PLC used in B cells and the mechanism by which it becomes activated are currently unknown. The cDNA encoding five different isozymes have been cloned. As a first step in identifying the isozyme of PLC that is coupled to mIgM, murine cDNA fragments for the five cloned PLC isozymes were generated by the polymerase chain reaction (PCR), cloned, and used to screen a panel of B cell lines representing different stages of development for PLC mRNA expression. All the B cell lines tested expressed high levels of PLC alpha and PLC gamma 2 mRNA, whereas PLC beta and PLC delta mRNA expression were undetectable by both Northern blot and PCR analysis. PLC gamma 1 had a more complicated pattern of mRNA expression. PLC gamma 1 mRNA expression was lower than that observed for PLC alpha or PLC gamma 2 mRNA and varied widely among different cell lines. The pattern of PLC gamma 1 mRNA expression did not correlate with the developmental stage of the cell lines. The pattern of PLC gamma 1 protein expression in the panel of B cell lines correlated with the pattern of PLC gamma 1 mRNA expression. PLC gamma 1 expression was very low in several B cell lines, despite the fact that these cell lines show mIgM-stimulatable PLC activity. The variable and in some cases very low expression of PLC gamma 1 suggests that it may not be the form of PLC that is activated by mIgM. In contrast, PLC alpha and PLC gamma 2 were abundantly expressed in all B cell lines tested. This observation is consistent with the possibility that PLC alpha or PLC gamma 2 is activated by mIgM.  相似文献   

10.
Manzano A  Pérez JX  Nadal M  Estivill X  Lange A  Bartrons R 《Gene》1999,229(1-2):83-89
6-Phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2/FBPase-2) is a bifunctional enzyme responsible for the synthesis and breakdown of Fru-2,6-P2, a key metabolite in the regulation of glycolysis. Several genes encode distinct PFK-2/FBPase-2 isozymes that differ in their tissue distribution and enzyme regulation. In this paper, we present the isolation of a cDNA from a human testis cDNA library that encodes a PFK-2/FBPase-2 isozyme. Sequencing data show an open reading frame of 1407 nucleotides that codifies for a protein of 469 amino acids. This has a calculated molecular weight of 54kDa and 97% similarity with rat testis PFK-2/FBPase-2, with complete conservation of the amino acid residues involved in the catalytic mechanism. Fluorescence in-situ hybridization (FISH) localized testis PFK-2/FBPase-2 gene (PFKFB4) in human chromosome 3 at bands p21-p22. A Northern blot analysis of different rat tissues showed the presence of a 2.4-kb mRNA expressed specifically in testis. In mammalian COS-1 cells, the human testis cDNA drives expression of an isozyme with a molecular weight of 55kDa. This isozyme shows clear PFK-2 activity. Taken together, these results provide evidence for a new PFK-2/FBPase-2 gene coding for a human testis isozyme.  相似文献   

11.
Diacylglycerol (DAG) is one of the important second messengers, which serves as an activator of protein kinase C (PKC). DAG kinase (DGK) phosphorylates DAG to generate phosphatidic acid, thus DGK is considered to be a regulator of PKC activity through attenuation of DAG. Recent studies have revealed molecular structures of several DGK isozymes from mammalian species, and showed that most of the isozymes are expressed in the brain in various amounts. We have cloned four DGK isozyme cDNAs from rat brain library (DGK alpha, -beta, -gamma, and -zeta) (previously also designated DGK-I, -II, -III, and -IV, respectively) and examined their mRNA expressions in rat brain by in situ hybridization histochemistry. Interestingly, it is revealed that the mRNA for each isozyme is expressed in a distinct pattern in the brain; DGK alpha is expressed in oligodendrocytes, glial cells that form myelin; DGK beta in neurons of the caudate-putamen; DGK gamma predominantly in the cerebellar Purkinje cells; and DGK zeta in the cerebellar and cerebral cortices. Molecular diversity and distinct expression patterns of DGK isozymes suggest a physiological importance for the enzyme in brain function. Furthermore, functional implications of these DGK isozymes are briefly discussed.  相似文献   

12.
We previously reported the isolation of a cDNA encoding the liver-specific isozyme of rat S-adenosylmethionine synthetase from a lambda gt11 rat liver cDNA library. Using this cDNA as a probe, we have isolated and sequenced cDNA clones for the rat kidney S-adenosylmethionine synthetase (extrahepatic isoenzyme) from a lambda gt11 rat kidney cDNA library. The complete coding sequence of this enzyme mRNA was obtained from two overlapping cDNA clones. The amino acid sequence deduced from the cDNAs indicates that this enzyme contains 395 amino acids and has a molecular mass of 43,715 Da. The predicted amino acid sequence of this protein shares 85% similarity with that of rat liver S-adenosylmethionine synthetase. This result suggests that kidney and liver isoenzymes may have originated from a common ancestral gene. In addition, comparison of known S-adenosylmethionine synthetase sequences among different species also shows that these proteins have a high degree of similarity. The distribution of kidney- and liver-type S-adenosylmethionine synthetase mRNAs in kidney, liver, brain, and testis were examined by RNA blot hybridization analysis with probes specific for the respective mRNAs. A 3.4-kilobase (kb) mRNA species hybridizable with a probe for kidney S-adenosylmethionine synthetase was found in all tissues examined except for liver, while a 3.4-kb mRNA species hybridizable with a probe for liver S-adenosylmethionine synthetase was only present in the liver. The 3.4-kb kidney-type isozyme mRNA showed the same molecular size as the liver-type isozyme mRNA. Thus, kidney- and liver-type S-adenosylmethionine synthetase isozyme mRNAs were expressed in various tissues with different tissue specificities.  相似文献   

13.
14.
Two isozymes of phosphoinositide-specific phospholipase C were isolated and purified from salt-washed rabbit brain membranes. The membranes were extensively washed with isotonic, hypertonic and hypotonic buffers prior to solubilization with sodium cholate. Two isozymes (PLC-IV and PLC-beta m) were purified by a combination of DEAE-Sephacel, AH-Sepharose, heparin-Sepharose, AcA-34 gel filtration and mono-Q FPLC chromatographies. The major activity (PLC-beta m) was purified to homogeneity and had an estimated molecular weight of 155,000 on sodium-dodecyl sulfate-polyacrylamide gels (SDS-PAGE). This isozyme was immunologically identified as PLC-beta, an isozyme previously characterized in bovine brain cytosol and 2 M KCl membrane extracts. A second isozyme, PLC-IV, was immunologically distinct from PLC-beta and PLC-gamma and was purified to a stage where three protein bands (Mr 66,000, 61,000 and 54,000) on SDS-PAGE correlated with enzyme activity. The catalytic properties of the isozymes were studied and found to be very similar. The specific activities for PIP2 were greater than those obtained when PI was used. Both PLC-IV and PLC-beta m were Ca2(+)-dependent; near maximal stimulation for PI and PIP2 hydrolysis was observed at 0.5 microM free Ca2+. Sodium pyrophosphate and sodium fluoride stimulated phospholipase C activity of both isozymes. Polyclonal antibodies raised against PLC-beta m were able to inhibit carbachol and GTP gamma S stimulated phospholipase C activity in 2 M KCl washed rabbit cortical membranes. This suggests that in rabbit brain muscarinic cholinergic stimulation regulates PLC-beta m.  相似文献   

15.
We previously reported (Ryu, S. H., Cho, K. S., Lee, K. Y., Suh, P. G., and Rhee, S. G. (1986) Biochem. Biophys. Res. Commun. 141, 137-144) that cytosolic fractions of bovine brain contain two phosphoinositide-specific phospholipase C (PLC), PLC-I and PLC-II. In this paper purification procedures and properties of these two forms of enzyme are presented. The two enzymes exhibit similar substrate specificity. Both PLC-I and PLC-II catalyze the hydrolysis of phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Yet, they respond differently to activators such as Ca2+ and nucleotides and to inhibitory divalent metal ions such as Hg2+ and Cd2+. In addition, they are immunologically distinct as evidenced by the fact that monoclonal antibodies directed against either enzyme do not cross-react with the other. Their activities are Ca2+ concentration-dependent. PIP and PIP2 are better substrates than PI for both PLC-I and PLC-II when the concentration of Ca2+ is in the micromolar range. Study of the effect of nucleotides, such as GTP, guanosine 5'-(3-O-thio)triphosphate, guanyl-5'-yl imidodiphosphate, and ATP, on the activities of both isozymes with PIP2 as substrate revealed that (i) in the absence of Ca2+, PLC-I activity is enhanced by 400% by either GTP or ATP. In the presence of Ca2+ (a condition in which PLC-I exhibits much higher activity), the activation factor by nucleotides is diminished to approximately 140%. (ii) without Ca2+, PLC-II activity is too low to measure with or without added nucleotides. The effect of nucleotides on PLC-II activity is trivial in the presence of Ca2+. In addition, studies on the effect of metal ions on PI hydrolysis showed that the activities of both PLC-I and PLC-II are not affected by 50 microM of Mg2+, Mn2+, Ca2+, or Ni2+. However, Hg2+, Zn2+, and Cu2+ inhibited both PLC-I and PLC-II, with PLC-II exhibiting much higher sensitivity to these metal ions than PLC-I. For example, the value of I0.5 for Hg2+ inhibition is 0.2 microM for PLC-II and 1 microM for PLC-I. Cd2+ selectively inhibits PLC-II with a I0.5 value of 5 microM. Most of these metal ions' inhibition can be overcome by either dithiothreitol or EDTA.  相似文献   

16.
Multiple roles of phosphoinositide-specific phospholipase C isozymes   总被引:1,自引:0,他引:1  
Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-beta, -gamma, -delta, -epsilon, -zeta and -eta. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme.  相似文献   

17.
E Cayanis  O Greengard  C Iliescu 《Enzyme》1980,25(6):382-386
The isozyme pattern and total activity of adenylate kinase were studied in normal adult and fetal human and rat tissues using starch gel electrophoresis. Three adenylate kinase isoenzymes were identified in human tissues. Although normal adult lung exhibited higher adenylate kinase activity than did its fetal or neoplastic variant, isozyme patterns in the three types of tissues were indistinguishable from each other and from that in fetal human liver. The pattern of these three isozymes in rat lung (as in spleen) also did not change between fetal and adult life. However, adult kidney and heart of this species did appear to contain isozymes not present in fetal life. Brain (both adult and fetal) was striking different from all the other tissues in that it contained only one adenylate kinase isozyme. The total adenylate kinase activity per gram of adult rat liver, kidney and lung was significantly higher than in the cognate fetal organs, whereas that in brain or spleen did not change with age. The activity in adult heart (similar to the fetal one) was higher than in any other tissue examined.  相似文献   

18.
19.
By the use of cloned cDNAs for protein kinase C isozymes alpha, beta I, beta II, gamma, and those for novel protein kinase C, epsilon and zeta, the expression of the corresponding mRNA species was examined in various mouse tissues, human lymphoid cell lines, and mouse cell lines of neuronal origin. In adult brain, mRNAs for all the isozymes of PKC family are expressed. However, the expression of these mRNA species in brain is low at birth. A similar pattern of expression was also observed for beta I/beta II mRNAs in spleen. These expression patterns are in clear contrast to that for beta I/beta II mRNAs in thymus where the mRNAs are expressed at birth and the levels of expression decrease with age. Human lymphoid cell lines express large amounts of PKC beta mRNAs in addition to PKC alpha. Further, nPKC epsilon mRNA is expressed in some of these cell lines. On the other hand, all the mouse cell lines of neuronal origin tested express nPKC epsilon and zeta in addition to PKC alpha. In a mouse neuroblast cell line, Neuro 2a, down modulation of mRNAs for both PKC alpha and nPKC epsilon was observed in association with in vitro differentiation.  相似文献   

20.
Normal tissues of DBA, CBA, CC57W, C3H, Balb/c, SHR mice and F1 hybrids CC57W/DBA appeared to differ in the ratios of mitochondrial and supernatant NADP-dependent isocitrate dehydrogenase (IDH). Tested inbred mice strains CC57W, C3H, SHR, Balb/c contain allelic form Idh-1a of supernatant IDH gene Idh-1, whereas allelic form Idh-1b is characteristic of mice strains DBA and CBA. In tumors IDH isozymes have the same mobility as do isozymes of homologous normal tissues; but their activity is lower. A high variability of each isozyme activity in the isozyme spectrum is revealed in various tissues of F1 hybrids CC57W/DBA. Allelic forms of gene Idh-1 were used as markers of normal and tumor cells for the experimental model: transplantation of sarcoma 37 (Idh-1a/Idh-1a) to subcutaneous tissue of the mouse strain DBA (Idh-1b/Idh-1b). It enables us to reveal isozymes of stromal cell in tumor IDH isozyme spectrum. The results indicate that the relation of normal and tumor isozymes vary in different tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号