首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-illumination of cucumber leaf discs at a chilling temperature in low-irradiance white light resulted in accelerated re-reduction of P700(+) [the special Chl pair in the photosystem I (PSI) reaction centre] when the far-red measuring light was turned off. Measurements (in +/- methyl viologen or +/- DCMU conditions) of the re-reduction half time suggest that accelerated re-reduction of P700(+) appeared to be predominantly due to charge recombination and only partly due to reductants sustained by previous cyclic electron flow around PSI. Apparently, charge recombination in PSI was greatly enhanced by inhibition of forward, linear electron flow. Inhibition of PSII electron transport was observed to occur to a lesser extent than that of PSI, but only if the measurement of PSII functionality was free from complications due to downstream accumulation of electrons in pools. We suggest that promotion of controlled charge recombination and cyclic electron flow round PSI during chilling of leaves in the light may partly prevent further damage to both photosystems.  相似文献   

2.
We investigated the effect of moderate Cu2+ and Cd2+ stress by applying chlorophyll (Chl) fluorescence and P700 absorbance measurements to monitor the photosynthetic electron transport activity of 3-week-old Pisum sativum L. cv. Petit Proven?al plants grown in a modified Hoagland solution containing 50 ??M CuSO4 or 5 ??M CdCl2. Both heavy metals caused a slight inhibition in PSII photochemistry as indicated by the decrease in the effective quantum efficiency of PSII (??PSII), the maximum electron transport capacity (ETRmax), and the maximum quantum yield for electron transport (??). PSI photochemistry was also affected by these heavy metals. Cu2+ and Cd2+ decreased the quantum efficiency of PSI (??PSI) as well as the number of electrons in the intersystem chain, and the Cu2+ treatment significantly reduced the number of electrons from stromal donors available for PSI. These results indicate that PSII and PSI photochemistry of pea plants are both sensitive to moderate Cu2+ and Cd2+ stress, which in turn is easily detected and monitored by Chl fluorescence and P700 absorbance measurements. Therefore, monitoring the photochemistry of pea plants with these noninvasive, yet sensitive techniques offers a promising strategy to study heavy metal toxicity in the environment.  相似文献   

3.
Chloroplasts in bundle sheath cells (BSC) of maize perform photosystem I (PSI)-mediated production of ATP. In this study, the participation of ascorbate (Asc) as an electron donor to PSI in light-induced electron transport in isolated maize BSC was demonstrated. It was found that Asc, at physiological concentrations, rapidly reduced photooxidized reaction center chlorophyll of PSI (P700). The rate of Asc donation of electrons to P700+ reached rates of 50-100 microequivalents (mg Chl)(-1) h(-1) at 70-80 mM ascorbate with methyl viologen as an electron acceptor. Electron transport supported by Asc was coupled with membrane energization, as demonstrated by the light-induced formation of a trans-thylakoid electric field measured by the electrochromic shift of carotenoids. The possible physiological function of Asc-dependent electron transport in bundle sheath chloroplasts of maize, as an electron donor for linear electron flow versus sustaining cyclic electron transport, is discussed.  相似文献   

4.
Non-photochemical quenching (NPQ) of Chl fluorescence is a mechanism for dissipating excess photon energy and is dependent on the formation of a DeltapH across the thylakoid membranes. The role of cyclic electron flow around photosystem I (PSI) (CEF-PSI) in the formation of this DeltapH was elucidated by studying the relationships between O2-evolution rate [V(O2)], quantum yield of both PSII and PSI [Phi(PSII) and Phi(PSI)], and Chl fluorescence parameters measured simultaneously in intact leaves of tobacco plants in CO2-saturated air. Although increases in light intensity raised V(O2) and the relative electron fluxes through both PSII and PSI [Phi(PSII) x PFD and Phi(PSI) x PFD] only Phi(PSI) x PFD continued to increase after V(O2) and Phi(PSII) x PFD became light saturated. These results revealed the activity of an electron transport reaction in PSI not related to photosynthetic linear electron flow (LEF), namely CEF-PSI. NPQ of Chl fluorescence drastically increased after Phi(PSII) x PFD became light saturated and the values of NPQ correlated positively with the relative activity of CEF-PSI. At low temperatures, the light-saturation point of Phi(PSII) x PFD was lower than that of Phi(PSI) x PFD and NPQ was high. On the other hand, at high temperatures, the light-dependence curves of Phi(PSII) x PFD and Phi(PSI) x PFD corresponded completely and NPQ was not induced. These results indicate that limitation of LEF induced CEF-PSI, which, in turn, helped to dissipate excess photon energy by driving NPQ of Chl fluorescence.  相似文献   

5.
Abstract. The half time (t1/2) of the reduction of P-700+ in the millisecond time frame is known to be limited by the reaction between plastoquinol and the cytochrome cytb6f complex. This is considered to be the rate limiting reaction of thylakoid electron transport and measurements of it provide a means of analysing how thylakoid election transport is regulated in vivo. The half time for the reduction of photochemically oxidized P-700 has been measured in vivo using absorbance changes around 820 nm. The results showed that t1/2 is independent of irradiance and decreases as photosynthetic induction progresses. Even with a constant t1/2 the quantum efficiency of PSI declined as irradiance increased. The significance of the concept of photosynthetic control of electron transport is discussed in the light of these observations.  相似文献   

6.
We tested the hypothesis that plants grown under high light intensity (HL-plants) had a large activity of cyclic electron flow around PSI (CEF-PSI) compared with plants grown under low light (LL-plants). To evaluate the activity of CEF-PSI, the relationships between photosynthesis rate, quantum yields of both PSII and PSI, and Chl fluorescence parameters were analyzed simultaneously in intact leaves of tobacco plants which had been grown under different light intensities (150 and 1,100 micromol photons m(-2) s(-1), respectively) and with different amounts of nutrients supplied. HL-plants showed a larger value of non-photochemical quenching (NPQ) of Chl fluorescence at the limited activity of photosynthetic linear electron flow. Furthermore, HL-plants had a larger activity of CEF-PSI than LL-plants. These results suggested that HL-plants dissipated the excess photon energy through NPQ by enhancing the ability of CEF-PSI to induce acidification of the thylakoid lumen.  相似文献   

7.
The quantum efficiencies of photosystems I and II (PSI and PSII), [NADP]/[NADPH] ratios, and the activities of chloroplastic fructose-1,6-bisphosphatase and NADP-malate dehydrogenase were measured in intact pea (Pisum sativum L.) leaves in air following the transition from darkness to 750 microeinsteins per square meter per second irradiance. PSII efficiency declined from a low value to a minimum within the first 10 to 15 seconds of irradiance, after which it increased progressively to the steady-state value. The resistance of electron flow between the photosystems was high at this time, but it was not the principal factor limiting electron flow. Oxidation of P700 was restricted by acceptor side processes for approximately the first 60 seconds of illumination. Once the acceptor side limitation was relieved, the oxidation state of P700 was used to estimate the quantum efficiency of electron transport by PSI. This was observed to increase progressively with time. The quantum efficiencies of both photosystems increased in parallel, consistent with a predominant role for noncyclic electron transport. Fructose-1,6-bisphosphatase activity increased in an approximately sigmoidal fashion with time of irradiance, paralleling the changes in the quantum efficiencies of the photosystems. In contrast, the activation of NADP-malate dehydrogenase did not show a lag period but increased with time, reaching a maximum value at about 50 seconds of illumination, after which it declined. The NADP pool was not extensively reduced during the first 10 seconds of illumination, but became so subsequently. It remained in the reduced state until about 60 seconds of illumination and then became relatively oxidized. The empirical relationship between NADP-malate dehydrogenase activity and the reduction state of the NADP pool supports the suggestion that NADP-malate dehydrogenase activity is a useful estimate of the reduction state of the stroma.  相似文献   

8.
Furutani  Riu  Ohnishi  Miho  Mori  Yuki  Wada  Shinya  Miyake  Chikahiro 《Journal of plant research》2022,135(4):565-577

It is still a controversial issue how the electron transport reaction is carried out around photosystem I (PSI) in the photosynthetic electron transport chain. The measurable component in PSI is the oxidized P700, the reaction center chlorophyll in PSI, as the absorbance changes at 820–830 nm. Previously, the quantum yield at PSI [Y(I)] has been estimated as the existence probability of the photo-oxidizable P700 by applying the saturated-pulse illumination (SP; 10,000–20,000 µmol photons m?2 s?1). The electron transport rate (ETR) at PSI has been estimated from the Y(I) value, which was larger than the reaction rate at PSII, evaluated as the quantum yield of PSII, especially under stress-conditions such as CO2-limited and high light intensity conditions. Therefore, it has been considered that the extra electron flow at PSI was enhanced at the stress condition and played an important role in dealing with the excessive light energy. However, some pieces of evidence were reported that the excessive electron flow at PSI would be ignorable from other aspects. In the present research, we confirmed that the Y(I) value estimated by the SP method could be easily misestimated by the limitation of the electron donation to PSI. Moreover, we estimated the quantitative turnover rate of P700+ by the light-to-dark transition. However, the turnover rate of P700 was much slower than the ETR at PSII. It is still hard to quantitatively estimate the ETR at PSI by the current techniques.

  相似文献   

9.
Wolfgang Haehnel 《BBA》1982,682(2):245-257
Signal I, the EPR signal of P-700, induced by long flashes as well as the rate of linear electron transport are investigated at partial inhibition of electron transport in chloroplasts. Inhibition of plastoquinol oxidation by dibromothymoquinone and bathophenanthroline, inhibition of plastocyanin by KCN and HgCl2, and inhibition by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide are used to study a possible electron exchange between electron-transport chains after plastoquinone. (1) At partial inhibition of plastocyanin the reduction kinetics of P-700+ show a fast component comparable to that in control chloroplasts and a new slow component. The slow component indicates P-700+ which is not accessible to residual active plastocyanin under these conditions. We conclude that P-700 is reduced via complexed plastocyanin. (2) The rate of linear electron transport at continuous illumination decreases immediately when increasing amounts of plastocyanin are inhibited by KCN incubation. This is not consistent with an oxidation of cytochrome f by a mobile pool of plastocyanin with respect to the reaction rates of plastocyanin being more than an order of magnitude faster than the rate-limiting step of linear electron transport. It is evidence for a complex between the cytochrome b6 - f complex and plastocyanin. The number of these complexes with active plastocyanin is concluded to control the rate-limiting plastoquinol oxidation. (3) Partial inhibition of the electron transfer between plastoquinone and cytochrome f by dibromothymoquinone and bathophenanthroline causes decelerated monophasic reduction of total P-700+. The P-700 kinetics indicate an electron transfer from the cytochrome b6 - f complex to more than ten Photosystem I reaction center complexes. This cooperation is concluded to occur by lateral diffusion of both complexes in the membrane. (4) The proposed functional organization of electron transport from plastoquinone to P-700 in situ is supported by further kinetic details and is discussed in terms of the spatial distribution of the electron carriers in the thylakoid membrane.  相似文献   

10.
Limitations in photosystem function and photosynthetic electron flow were investigated during leaf senescence in two field-grown plants, i.e., Euphorbia dendroides L. and Morus alba L., a summer- and winter-deciduous, shrub and tree, respectively. Analysis of fast chlorophyll (Chl) a fluorescence transients and post-illumination fluorescence yield increase were used to assess photosynthetic properties at various stages of senescence, the latter judged from the extent of Chl loss. In both plants, the yield of primary photochemistry of PSII and the content of PSI remained quite stable up to the last stages of senescence, when leaves were almost yellow. However, the potential for linear electron flow along PSII was limited much earlier, especially in E. dendroides, by an apparent inactivation of the oxygen-evolving complex and a lower efficiency of electron transfer to intermediate carriers. On the contrary, the corresponding efficiency of electron transfer from intermediate carriers to final acceptors of PSI was increased. In addition, cyclic electron flow around PSI was accelerated with the progress of senescence in E. dendroides, while a corresponding trend in M. alba was not statistically significant. However, there was no decrease in PSI activity even at the last stages of senescence. We argue that a switch to cyclic electron flow around PSI during leaf senescence may have the dual role of replenishing the ATP and maintaining a satisfactory nonphotochemical energy quenching, since both are limited by hindered linear electron transfer.  相似文献   

11.
Cold-induced inhibition of CO(2) assimilation in maize (Zea mays L.) is associated with a persistent depression of the photochemical efficiency of PSII. However, very limited information is available on PSI photochemistry and PSI-dependent electron flow in cold-stressed maize. The extent of the absorbance change (ΔA(820)) used for in vivo quantitative estimation of photooxidizable P700(+) indicated a 32% lower steady-state oxidation level of the PSI reaction center P700 (P700(+)) in cold-stressed compared with control maize leaves. This was accompanied by a 2-fold faster re-reduction rate of P700(+) in the dark, indicating a higher capacity for cyclic electron flow (CEF) around PSI in cold-stressed maize leaves. Furthermore, the increased PSI-dependent CEF(s) was associated with a much higher stromal electron pool size and 56% lower capacity for state transitions compared with control plants. To examine NADP(H) dehydrogenase (NDH)- and ferredoxin:plastoquinone oxidoreductase (FQR)-dependent CEF in vivo, the post-illumination transient increase of F(o)' was measured in the presence of electron transport inhibitors. The results indicate that under optimal growth conditions the relatively low CEF in the maize mesophyll cells is mostly due to the NDH-dependent pathway. However, the increased CEF in cold-stressed plants appears to originate from the up-regulated FQR pathway. The physiological role of PSI down-regulation, the increased capacity for CEF and the shift of preferred CEF mode in modulating the photosynthetic electron fluxes and distribution of excitation light energy in maize plants under cold stress conditions are discussed.  相似文献   

12.
The photosynthetic responses of wheat (Triticum aestivum L.) leaves to different levels of drought stress were analyzed in potted plants cultivated in growth chamber under moderate light. Low-to-medium drought stress was induced by limiting irrigation, maintaining 20 % of soil water holding capacity for 14 days followed by 3 days without water supply to induce severe stress. Measurements of CO2 exchange and photosystem II (PSII) yield (by chlorophyll fluorescence) were followed by simultaneous measurements of yield of PSI (by P700 absorbance changes) and that of PSII. Drought stress gradually decreased PSII electron transport, but the capacity for nonphotochemical quenching increased more slowly until there was a large decrease in leaf relative water content (where the photosynthetic rate had decreased by half or more). We identified a substantial part of PSII electron transport, which was not used by carbon assimilation or by photorespiration, which clearly indicates activities of alternative electron sinks. Decreasing the fraction of light absorbed by PSII and increasing the fraction absorbed by PSI with increasing drought stress (rather than assuming equal absorption by the two photosystems) support a proposed function of PSI cyclic electron flow to generate a proton-motive force to activate nonphotochemical dissipation of energy, and it is consistent with the observed accumulation of oxidized P700 which causes a decrease in PSI electron acceptors. Our results support the roles of alternative electron sinks (either from PSII or PSI) and cyclic electron flow in photoprotection of PSII and PSI in drought stress conditions. In future studies on plant stress, analyses of the partitioning of absorbed energy between photosystems are needed for interpreting flux through linear electron flow, PSI cyclic electron flow, along with alternative electron sinks.  相似文献   

13.
Most Chl a in PSI complexes was removed without any loss of P700 by ether treatment, yielding antenna-depleted P700-Chl a protein complexes (CP1s) with a Chl a/P700 ratio of 12. On addition of about 60 molecules of Chl b per P700 with phosphatidylglycerol, about 20 molecules of Chl b per P700 were bound to the complexes. The ratio of the bound Chl b to the added Chl b was about one-third, irrespective of the amount of Chl b added. The same partition ratio was obtained on reconstitution with Chl a, suggesting that the binding affinity of Chl b for the Chl a-binding sites is similar to that of Chl a. The relative quantum efficiency of P700 photooxidation, determined by the increase in its initial rate, increased in proportion to the increase in number of bound Chl b molecules. The degree of the increase was the same as expected if the bound Chl b had the same antenna activity as the bound Chl a. The bound Chl b emitted fluorescence with a peak at 660 nm, and its yield was as high as the Chl a remaining in the complexes. However, the excitation spectrum of the Chl a fluorescence, detected at 680 nm, was almost the same as the absorption spectrum of the Chl b-bound complexes, indicating efficient energy transfer of the bound Chl b to Chl a. These results suggest that Chl b primarily occupies the Chl a-binding sites close to the reaction center region, acting as an efficient antenna for P700.  相似文献   

14.
Kinetics of the redox reactions in the reaction center (P700) of photosystem I (PSI) of the cyanobacterium Synechocystis sp. PCC 6803 have been studied by EPR spectroscopy. The redox kinetics were recorded based on accumulation of the EPRI signal when the final signal was the sum of individual signals produced in response to illumination of the cells. After prolonged (more than 3 sec) dark intervals between illuminations, the kinetic curve of the EPR signal from P700+ was multiphasic. After a sharp increase in the signal amplitude at the beginning of illumination (phase I), the amplitude rapidly (for 0.1-0.2 sec) decreased (phase II). Then the signal amplitude gradually increased (phase III) until the steady rate of electron transfer was established. With short-term (1 sec) dark intervals between the flashes and also in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), the kinetics of the light-induced increase in the EPR signal from P700+ were monophasic. Inhibition with iodoacetamide of electron transport on the acceptor side of PSI under anaerobic conditions or an increase in the amount of respiration substrates on addition of glucose into a suspension of DCMU-treated wild-type cells increased the level of P700 reduction in phase III. The findings suggest that the kinetic curve of the EPR signal from P700+ is determined by both the electron entrance onto P700+ on the donor side of PSI and activity of electron acceptors of PSI.  相似文献   

15.
Barth C  Krause GH 《Planta》2002,216(2):273-279
Nicotiana tabacum L. wild-type plants and transformants (DeltandhCKJ), deficient in functional NAD(P)H dehydrogenase (NDH), were subjected to high light at 20 degrees C and 4 degrees C for 2 h to examine a possible role of NDH-mediated cyclic electron flow in protecting photosystems I and II from photoinhibition. Photochemical activity of photosystem I (PSI) was assessed by means of P700 absorbance changes at 810 nm. In addition, potential photosystem II (PSII) efficiency was determined by measuring the 'dark-adapted' ratio of variable to maximum chlorophyll fluorescence, F(v)/ F(m). Both photosystems were more susceptible to photoinhibition at 4 degrees C than at 20 degrees C. However, the degree of photoinhibition was not less in the wild type than in the NDH-deficient plants. To evaluate the efficiency of P700 oxidation in far-red light, a saturation constant, K(s), was determined, representing the far-red irradiance at which half of the maximum P700 absorbance change was reached. In photoinhibited leaves, a decrease in the efficiency of P700 oxidation (increase in K(s)) was observed. The increase in K(s) was more pronounced at 4 degrees C than at 20 degrees C, but not significantly different between wild-type and DeltandhCKJ plants. Re-reduction kinetics of oxidised P700 in the dark were accelerated to a similar extent in photoinhibited samples of both genotypes and at the two temperatures tested. The data indicate that NDH-mediated cyclic electron flow does not protect PSI against short-term light stress. It is proposed that the observed increase in K(s) represents a protective mechanism that is based on accelerated charge recombination in PSI and facilitates thermal dissipation of excessive light energy.  相似文献   

16.
We hypothesized that cyclic electron flow around photosystem I (CEF-PSI) participates in the induction of non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence when the rate of photosynthetic linear electron flow (LEF) is electron-acceptor limited. To test this hypothesis, the relationships among photosynthesis rate, electron fluxes through both PSI and PSII [Je(PSI) and Je(PSII)] and Chl fluorescence parameters were analyzed simultaneously in intact leaves of tobacco plants at several light intensities and partial pressures of ambient CO2 (Ca). At low light intensities, decreasing Ca lowered the photosynthesis rate, but Je(PSI) and Je(PSII) remained constant. Je(PSI) was larger than Je(PSII), indicating the existence of CEF-PSI. Increasing the light intensity enhanced photosynthesis and both Je(PSI) and Je (PSII). Je(PSI)/Je(PSII) also increased at high light and at high light and low Ca combined, showing a strong, positive relationship with NPQ of Chl fluorescence. These results indicated that CEF-PSI contributed to the dissipation of photon energy in excess of that consumed by photosynthesis by driving NPQ of Chl fluorescence. The main physiological function of CEF-PSI in photosynthesis of higher plants is discussed.  相似文献   

17.
Bundle sheath chloroplasts of NADP-malic enzyme (NADP-ME) type C4 species have a high demand for ATP, while being deficient in linear electron flow and oxidation of water by photosystem II (PSII). To evaluate electron donors to photosystem I (PSI) and possible pathways of cyclic electron flow (CEF1) in isolated bundle sheath strands of maize (Zea mays L.), an NADP-ME species, light-induced redox kinetics of the reaction center chlorophyll of PSI (P700) were followed under aerobic conditions. Donors of electrons to CEF1 are needed to compensate for electrons lost from the cycle. When stromal electron donors to CEF1 are generated during pre-illumination with actinic light (AL), they retard the subsequent rate of oxidation of P700 by far-red light. Ascorbate was more effective than malate in generating stromal electron donors by AL. The generation of stromal donors by ascorbate was inhibited by DCMU, showing ascorbate donates electrons to the oxidizing side of PSII. The inhibitors of NADPH dehydrogenase (NDH), amytal and rotenone, accelerated the oxidation rate of P700 by far-red light after AL, indicating donation of electrons to the intersystem from stromal donors via NDH. These inhibitors, however, did not affect the steady-state level of P700+ under AL, which represents a balance of input and output of electrons in P700. In contrast, antimycin A, the inhibitor of the ferredoxin-plastoquinone reductase-dependent CEF1, substantially lowered the level of P700+ under AL. Thus, the primary pathway of ATP generation by CEF1 may be through ferredoxin-plastoquinone, while function of CEF1 via NDH may be restricted by low levels of ferredoxin-NADP reductase. NDH may contribute to redox poising of CEF1, or function to generate ATP in linear electron flow to O2 via PSI, utilizing NADPH generated from malate by chloroplastic NADP-ME.  相似文献   

18.
This paper summarized our present view on the mechanism of cyclic electron flow in C3 plants. We propose that cyclic and linear pathways are in competition for the reoxidation of the soluble primary PSI acceptor, Ferredoxin (Fd), that freely diffuses in the stromal compartment. In the linear mode, Fd binds ferredoxin-NADP-reductase and electrons are transferred to NADP+ and then to the Benson and Calvin cycle. In the cyclic mode, Fd binds a site localized on the stromal side of the cytochrome b6f complex and electrons are transferred to P700 via a mechanism derived from the Q-cycle. In dark-adapted leaves, the cyclic flow operates at maximum rate, owing to the partial inactivation of the Benson and Calvin cycle. For increasing time of illumination, the activation of the Benson and Calvin cycle, and thus, that of the linear flow, is associated with a subsequent decrease in the rate of the cyclic flow. Under steady-state conditions of illumination, the contribution of cyclic flow to PSI turnover increases as a function of the light intensity (from 0 to approximately 50% for weak to saturating light, respectively). Lack of CO2 is associated with an increase in the efficiency of the cyclic flow. ATP concentration could be one of the parameters that control the transition between linear and cyclic modes.  相似文献   

19.
Photosynthetic characteristics in rice (Oryza sativa L.) leaves were examined after treatment with low temperature (15 degrees C) and high irradiance (1,500 micromol quanta m(-2) s(-1)). Decreases in quantum efficiencies in PSII (PhiPSII) and PSI (PhiPSI) and in the rate of CO2 assimilation were observed with a decrease in the maximal quantum efficiency of PSII (F(v)/F(m)) by simultaneous measurements of Chl fluorescence, P700+ absorbance and gas exchange. The decreases in PhiPSII were most highly correlated with those in CO2 assimilation. Although the initial (the activity immediately measured upon extraction) and total (the activity following pre-incubation with CO2 and Mg2+) activities of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) decreased slightly, the maximal activity (the activity following treatment with SO4(2-)) of Rubisco remained almost constant. These results indicate that the decrease in CO2 assimilation rate with the decreasing F(v)/F(m) was not caused by a decrease in Rubisco activity but rather by a decrease in RuBP regeneration capacity which resulted from the decrease in the rate of the linear electron transport. On the other hand, the decrease in PhiPSI was very small and the ratio of PhiPSI to PhiPSII increased. The de-epoxidation state of xanthophyll cycle pigments also increased. Thus, the cyclic electron transport around PSI occurred in photoinhibited leaves.  相似文献   

20.
The light-response curves of P700 oxidation and time-resolved kinetics of P700+ dark re-reduction were studied in barley leaves using absorbance changes at 820 nm. Leaves were exposed to 45 °C and treated with either diuron or diuron plus methyl viologen (MV) to prevent linear electron flow from PS II to PSI and ferredoxin-dependent cyclic electron flow around PSI. Under those conditions, P700+ could accept electrons solely from soluble stromal reductants. P700 was oxidized under weak far-red light in leaves treated with diuron plus MV, while identical illumination was nearly ineffective in diuron-treated leaves in the absence of MV. When heat-exposed leaves were briefly illuminated with strong far-red light, which completely oxidized P700, the kinetics of P700+ dark reduction was fitted by a single exponential term with half-time of about 40 ms. However, two first-order kinetic components of electron flow to P700+ (fast and slow) were found after prolonged leaf irradiation. The light-induced modulation of the kinetics of P700+ dark reduction was reversed following dark adaptation. The fast component (half time of 80–90 ms) was 1.5 larger than the slow one (half time of about 1 s). No kinetic competition occurred between two pathways of electron donation to P700+ from stromal reductants. This suggests the presence of two different populations of PSI. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号