首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regional abundance of C4 grasses is strongly controlled by temperature, however, the role of precipitation is less clear. Progress in elucidating the direct effects of photosynthetic pathway on these climate relationships is hindered by the significant genetic divergence between major C3 and C4 grass lineages. We addressed this problem by examining seasonal climate responses of photosynthesis in Alloteropsis semialata , a unique grass species with both C3 and C4 subspecies. Experimental manipulation of rainfall in a common garden in South Africa tested the hypotheses that: (1) photosynthesis is greater in the C4 than C3 subspecies under high summer temperatures, but this pattern is reversed at low winter temperatures; and (2) the photosynthetic advantage of C4 plants is enhanced during drought events. Measurements of leaf gas exchange over 2 years showed a significant photosynthetic advantage for the C4 subspecies under irrigated conditions from spring through autumn. However, the C4 leaves were killed by winter frost, while photosynthesis continued in the C3 plants. Unexpectedly, the C4 subspecies also lost its photosynthetic advantage during natural drought events, despite greater water-use efficiency under irrigated conditions. This study highlights previously unrecognized roles for climatic extremes in determining the ecological success of C3 and C4 grasses.  相似文献   

2.
Abstract. Only a small proportion of elevated CO2 studies on crops have taken place in the field. They generally confirm results obtained in controlled environments: CO2 increases photosynthesis, dry matter production and yield, substantially in C3 species, but less in C4, it decreases stomatal conductance and transpiration in C3 and C4 species and greatly improves water-use efficiency in all plants. The increased productivity of crops with CO2 enrichment is also related to the greater leaf area produced. Stimulation of yield is due more to an increase in the number of yield-forming structures than in their size. There is little evidence of a consistent effect of CO2 on partitioning of dry matter between organs or on their chemical composition, except for tubers. Work has concentrated on a few crops (largely soybean) and more is needed on crops for which there are few data (e.g. rice). Field studies on the effects of elevated CO2 in combination with temperature, water and nutrition are essential; they should be related to the development and improvement of mechanistic crop models, and designed to test their predictions.  相似文献   

3.
Seven C3 crop and three C3 weed species were grown from seed at 360 and at 700 cm3 m–3 carbon dioxide concentrations in a controlled environment chamber to compare dry mass, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic acclimation at ambient and elevated carbon dioxide. The dry mass at the final harvest at elevated carbon dioxide relative to that at ambient carbon dioxide was highly correlated with the RGR at the lower carbon dioxide concentration. This relationship could be quite common, because it does not require that species differ in the response of RGR or photosynthesis to elevated carbon dioxide, and holds even when species differ moderately in these responses. RGR was also measured for a limited period at the end of the experiment to determine relationships with leaf gas exchange measured at this time. Relative increases in RGR at elevated carbon dioxide at this time were more highly correlated with the relative increase in NAR at elevated carbon dioxide than with the response of LAR. The amount of acclimation of photosynthesis was a good predictor of the relative increase in NAR at elevated carbon dioxide, and the long-term increase in photosynthesis in the growth environment. No differences between crops and weeds or between cool and warm climate species were found in the responses of growth or photosynthetic acclimation to elevated carbon dioxide.  相似文献   

4.
The distribution pattern of C3 and C4 grasses was studied in eight sites located between 350 m and 2100 m along an altitudinal gradient in Central Argentina. Of 139 taxa fifty-nine are C3 and eighty C4. Species of the C3 tribes (Stipeae, Poeae, Meliceae, Aveneae, Bromeae and Triticeae) and C3 Paniceae species increase in number at higher elevations; only one C3 species was found below 650 m. C4 Aristideae, Pappophoreae, Eragrostideae, Cynodonteae, Andropogoneae and Paniceae increase at lower altitudes. The floristic crossover point is at about 1500 m; the ground cover cross-over point is at about 1000 m. Analysis of the relationships between % C4 species along the gradient and nine climatic and environmental variables showed the highest correlation with July mean temperature, but all temperature variables show highly significant correlations with % C4. Correlation with annual rainfall is lower but also significant. These results are consistent with previous research showing the relative importance of C4 grasses as temperature increases. C3 species make a high contribution to relative grass coverage below the C3/C4 floristic crossover point but are rare below 1000 m.  相似文献   

5.
A rising global population and demand for protein-rich diets are increasing pressure to maximize agricultural productivity. Rising atmospheric [CO2] is altering global temperature and precipitation patterns, which challenges agricultural productivity. While rising [CO2] provides a unique opportunity to increase the productivity of C3 crops, average yield stimulation observed to date is well below potential gains. Thus, there is room for improving productivity. However, only a fraction of available germplasm of crops has been tested for CO2 responsiveness. Yield is a complex phenotypic trait determined by the interactions of a genotype with the environment. Selection of promising genotypes and characterization of response mechanisms will only be effective if crop improvement and systems biology approaches are closely linked to production environments, that is, on the farm within major growing regions. Free air CO2 enrichment (FACE) experiments can provide the platform upon which to conduct genetic screening and elucidate the inheritance and mechanisms that underlie genotypic differences in productivity under elevated [CO2]. We propose a new generation of large-scale, low-cost per unit area FACE experiments to identify the most CO2-responsive genotypes and provide starting lines for future breeding programmes. This is necessary if we are to realize the potential for yield gains in the future.  相似文献   

6.
We studied the effects on the phenology, growth and reproduction of 19 Mediterranean species, of elevating the atmospheric CO2 concentration ([CO2]) to twice-ambient. Intact monoliths were taken from an old-field and put, during a six month growing season, into growth chambers in which external climatic conditions were mimicked and [CO2] was regulated. Fruit set time was significantly changed in six species under elevated [CO2] and leaf and branch senescence accelerated in most species. Grasses had fewer leaves and legumes were more branched at peak production under elevated [CO2] than under ambient. Plant seed number was not significantly changed under elevated [CO2], whereas the reproductive effort of grasses was significantly depressed. Reproductive and vegetative characteristics showed related responses to [CO2], as species with enhanced biomass had a hastened fruit set time, a higher number of fruits per plant and a higher reproductive biomass under elevated [CO2] than under ambient conditions, while species with depressed biomass had a delayed fruit set time, a lower number of fruits per plant and a lower reproductive biomass. Our results also show a high interspecific variability in [CO2] response, but some trends emerged at the family level: the production of vegetative and reproductive modules were depressed in grasses and slightly stimulated in legumes.  相似文献   

7.
Physiological responses of Agropyron desertorum and Pseudoroegneria spicata , two common cold desert perennial tussock grass species of the North American Great Basin, were evaluated during and after a period of imposed drought in a pot study. The timing and the pattern of response of leaf water potential (Ψ1), stomatal conductance (gs), and root growth were strikingly similar in both species during and after drought. The severity of stress influenced the magnitude of Ψ1 and gs, but had little effect on the timing of these responses. Although drought inhibited total root length in prestressed plants, within 4 days after relief of drought both species showed similar increases in root growth which exceeded those of the control. Despite similarities in their root growth responses to increased soil water availability, the two grasses differed in their capacity to restore N uptake following drought. By 14 days after rewatering, N uptake in the prestressed Agropyron had recovered to levels of control plants, although both root biomass and root lenght were much less than those of the controls. This is attributed to elevated root uptake kinetics. Restoration of N uptake by prestressed Pseudoregneria was much less effective during the same period.  相似文献   

8.
A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar ( Populus ) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO2 concentrations ([CO2]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO2]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO2] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO2] to above-ground pools, as fine root biomass declined and its [CO2] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO2] during the 6 yr experiment. However, elevated [CO2] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO2] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.  相似文献   

9.
Projections of future climate change include a strong likelihood of a doubling of current atmospheric carbon dioxide concentration ([ CO 2]) and possible shifts in precipitation patterns. Drought stress is a major environmental limitation for crop growth and yield and is common in rainfed rice production systems. This study was conducted to determine the growth and grain yield responses of rice to drought stress under [CO2] enrichment. Rice (cv. IR-72) was grown to maturity in eight naturally sunlit, plant growth chambers in atmospheric carbon dioxide concentrations [CO2] of 350 and 700 μmol CO2 mol–1 air. In both [CO2], water management treatments included continuously flooded (CF) controls, flood water removed and drought stress imposed at panicle initiation (PI), anthesis (ANT), and both panicle initiation and anthesis (PI & ANT). The [CO2] enrichment increased growth, panicles plant–1 and grain yield. Drought accelerated leaf senescence, reduced leaf area and above-ground biomass and delayed crop ontogeny. The [CO2] enrichment allowed 1–2 days more growth during drought stress cycles. Grain yields of the PI and PI & ANT droughts were similar to the CF control treatments while the ANT drought treatment sharply reduced growth, grain yield and individual grain mass. We conclude that in the absence of air temperature increases, future global increases in [CO2] should promote rice growth and yield while providing a modest reduction of near 10% in water use and so increase drought avoidance.  相似文献   

10.
To investigate if Eucalyptus species have responded to industrial-age climate change, and how they may respond to a future climate, we measured growth and physiology of fast- ( E. saligna ) and slow-growing ( E. sideroxylon ) seedlings exposed to preindustrial (290), current (400) or projected (650 μL L−1) CO2 concentration ([CO2]) and to current or projected (current +4 °C) temperature. To evaluate maximum potential treatment responses, plants were grown with nonlimiting soil moisture. We found that: (1) E. sideroxylon responded more strongly to elevated [CO2] than to elevated temperature, while E. saligna responded similarly to elevated [CO2] and elevated temperature; (2) the transition from preindustrial to current [CO2] did not enhance eucalypt plant growth under ambient temperature, despite enhancing photosynthesis; (3) the transition from current to future [CO2] stimulated both photosynthesis and growth of eucalypts, independent of temperature; and (4) warming enhanced eucalypt growth, independent of future [CO2], despite not affecting photosynthesis. These results suggest large potential carbon sequestration by eucalypts in a future world, and highlight the need to evaluate how future water availability may affect such responses.  相似文献   

11.
C4 grasses constitute the main component of savannas and are pervasive in other dry tropical ecosystems where they serve as the main diet for grazing animals. Among potential factors driving C4 evolution of grasses, the interaction between grasses and grazers has not been investigated. To evaluate if increased grazing pressure may have selected for higher leaf silica production as the grasses diverged, we reconstructed the phylogeny of all 800 genera of the grass family with both molecular (combined multiplastid DNA regions) and morphological characters. Using molecular clocks, we also calculated the age and number of origins of C4 clades and found that shifts from C3 to C4 photosynthesis occurred at least 12 times starting 30.9 million years ago and found evidence that the most severe drop in atmospheric carbon dioxide in the late Oligocene (between 33 and 30 million years ago) matches the first origin of C4 photosynthesis in Chloridoideae. By combining fossil and phylogenetic data for ungulates and implementing a randomization procedure, our results showed that the appearance of C4 grass clades and ungulate adaptations to C4-dominated habitats match significantly in time. An increase of leaf epidermal density of silica bodies was found to correspond to postulated shifts in diversification rates in the late Miocene [24 significant shifts in diversification ( P <0.05) were detected between 23 and 3.7 million years ago]. For aristidoid and chloridoid grasses, increased grazing pressure may have selected for a higher leaf epidermal silica production in the late Miocene.  相似文献   

12.
Carbon isotope ratio of leaf dry matter, δ 13C, was measured on species occurring within Baiyin desert community, consisting of valley, slope and ridge microhabitats, and within Shandan desert community, consisting of Gobi desert and seasonal flooded creek microhabitats, in Northwest China. δ 13C of C3 species increased with a decrease in soil water availability, suggesting that water-use efficiency (WUE) increased with decreasing soil moisture, whereas for all C4 species, δ 13C tended to decrease with decreasing soil water availability, suggesting that WUE also increased with decreasing soil moisture. Above results indicated that water-use pattern was conservative under drought for C4 and C3 plants. In this present study, C4 species' occurrences within different microhabitats were investigated and C4 plants were observed to be absent and/or scarce within relatively lower soil moisture microhabitats, whereas they occurred and/or even had a high abundance within relatively higher soil moisture microhabitats, suggesting limited moisture available was a key factor of limiting C4 distribution in arid region of Northwest China.  相似文献   

13.
Vibeke Holter 《Ecography》1984,7(2):165-170
Nitrogen fixation activity was determined for Lotus tenuis. Medicago lupulina and Trifolium pratense . The three species grew in clones in grassland in an area reclaimed from brackish water in the 1940s. The N2[C2H2]-fixation was measured in soil cores throughout 1974 and 1975. From cores taken in dense and uniform stands of the species, the yearly N2[C2H2]-fixation at maximum cover was estimated. L. tenuis fixed about 4 g N m−2 yr−1 (area with max. cover 130%), i.e. 30–56% of its requirement. Both M. lupulina and T. pratense fixed about 7 g N m−2 yr−1 (maximum cover 37% and 80%) i.e. 67% of their N-requirement. Average N2[C2H2]-fixation for the whole area was 0.4 g N m−2 yr−1, considerably less than the N-addition through rainfall.  相似文献   

14.
Seeds of cherry ( Prunus avium ) were germinated and grown for two growing seasons in ambient (∼350 μmol mol−1) or elevated (ambient+∼350 μmol mol−1) CO2 mole fractions in six open-top chambers. The seedlings were fertilized once a week, following Ingestad principles in order to supply mineral nutrients at free-access rates. In the first growing season gradual drought was imposed on rapidly growing cherry seedlings by withholding water for a 6-wk drying cycle. In the second growing season, the rapid onset of drought was imposed at the height of the growing season on the seedlings which had already experienced drought in the first growing season. Elevated [CO2] significantly increased total dry-mass production in both water regimes, but did not ameliorate the growth response to drought of the cherry seedlings subjected to two sequential drying cycles. Water loss did not differ in either well watered or droughted seedlings between elevated and ambient [CO2]; consequently whole-plant water- use efficiency (the ratio of total dry mass produced to total water consumption) was significantly increased. Similar patterns of carbon allocation between shoot and root were found in elevated and ambient [CO2] when the seedlings were the same size. Thus, elevated [CO2] did not improve drought tolerance, but it accelerated ontogenetic development irrespective of water status.  相似文献   

15.
The CO2-concentrating mechanism present in C4 plants decreases the oxygenase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and, consequently, photorespiratory rates in air. Under drought conditions, the intercellular CO2 concentration may decrease and cause photorespiration to increase. The C4 grasses Paspalum dilatatum Poiret, Cynodon dactylon (L.) Pers. and Zoysia japonica Steudel were grown in soil and drought was imposed by ceasing to provide water. Net CO2 assimilation ( A ) and stomatal conductance to water vapour decreased with leaf dehydration. Decreased carbon and increased oxygen isotope composition were also observed under drought. The response of A to CO2 suggested that the compensation point was zero in all species irrespective of the extent of drought stress. A slight decrease of A as O2 concentration increased above 10% provided evidence for slow photorespiratory gas exchanges. Analysis of amino acids contained in the leaves, particularly the decrease of glycine after 30 s in darkness, supported the presence of slow photorespiration rates, but these were slightly faster in Cynodon dactylon than in Paspalum dilatatum and Zoysia japonica . Although the contents of glycine and serine increased with dehydration and mechanistic modelling of C4 photosynthesis suggested slightly increased photorespiration rates in proportion to photosynthesis, the results provide evidence that photorespiration remained slow under drought conditions.  相似文献   

16.
Stomatal conductance ( g s) and photosynthetic rate ( A ) were measured in young beech ( Fagus sylvatica ), chestnut ( Castanea sativa ) and oak ( Quercus robur ) growing in ambient or CO2-enriched air. In oak, g s was consistently reduced in elevated CO2. However, in beech and chestnut, the stomata of trees growing in elevated CO2 failed to close normally in response to increased leaf-to-air vapour pressure deficit (LAVPD). Consequently, while g s was reduced in elevated CO2 on days with low LAVPD, on warm sunny days (with correspondingly high LAVPD) g s was unchanged or even slightly higher in elevated CO2. Furthermore, during drought, g s of beech and chestnut was unresponsive to [CO2], over a wide range of ambient LAVPD, whereas in oak g s was reduced by an average of 50% in elevated CO2. Stimulation of A by elevated CO2 in beech and chestnut was restricted to days with high irradiance, and was greatest in beech during drought. Hence, most of the additional carbon gain in elevated CO2 was made at the expense of water economy, at precisely those times (drought, high evaporative demand) when water conservation was most important. Such effects could have serious consequences for drought tolerance, growth and, ultimately, survival as atmospheric [CO2] increases.  相似文献   

17.
Abstract. There have been seven studies of canopy photosynthesis of plants grown in elevated atmospheric CO2: three of seed crops, two of forage crops and two of native plant ecosystems. Growth in elevated CO2 increased canopy photosynthesis in all cases. The relative effect of CO2 was correlated with increasing temperature: the least stimulation occurred in tundra vegetation grown at an average temperature near 10°C and the greatest in rice grown at 43°C. In soybean, effects of CO2 were greater during leaf expansion and pod fill than at other stages of crop maturation. In the longest running experiment with elevated CO2 treatment to date, monospecific stands of a C3 sedge, Scirpus olneyi (Grey), and a C4 grass, Spartina patens (Ait.) Muhl., have been exposed to twice normal ambient CO2 concentrations for four growing seasons, in open top chambers on a Chesapeake Bay salt marsh. Net ecosystem CO2 exchange per unit green biomass (NCEb) increased by an average of 48% throughout the growing season of 1988, the second year of treatment. Elevated CO2 increased net ecosystem carbon assimilation by 88% in the Scirpus olneyi community and 40% in the Spartina patens community.  相似文献   

18.
Measurement of stable isotopes in plant dry matter is a useful phenotypic tool for speeding up breeding advance in C3 crops exposed to different water regimes. However, the situation in C4 crops is far from resolved, since their photosynthetic metabolism precludes (at least in maize) the use of carbon isotope discrimination. This paper investigates the use of oxygen isotope enrichment (Δ18O) as a new secondary trait for yield potential and drought resistance in maize ( Zea mays L). A set of tropical maize hybrids developed by the International Maize and Wheat Improvement Center was grown under three contrasting water regimes in field conditions. Water regimes clearly affected plant growth and yield. In accordance with the current theory, a decrease in water input was translated into large decreases in stomatal conductance and increases in leaf temperature together with concomitant 18O enrichment of plant matter (leaves and kernels). In addition, kernel Δ18O correlated negatively with grain yield under well-watered and intermediate water stress conditions, while it correlated positively under severe water stress conditions. Therefore, genotypes showing lower kernel Δ18O under well-watered and intermediate water stress had higher yields in these environments, while the opposite trend was found under severe water stress conditions. This illustrates the usefulness of Δ18O for selecting the genotypes best suited to differing water conditions.  相似文献   

19.
For cacti with persistent, relatively large leaves, most shoot CO2 uptake under well-watered conditions occurs by the leaves using the C3 pathway. For three species in the primitive subfamily Pereskioideae, droughts of 7 or 14 days decreased leaf daytime net CO2 uptake by an average of 49 and 88%, respectively; these species always had a net CO2 release at night by the leaves and both at night and during the day by the stems. For three leafy species in subfamily Opuntioideae, 7 and 14 days of drought reduced leaf daytime net CO2 uptake by 90 and 100%, respectively. Although drought reduced the total CO2 uptake over 24 h, the average percentage occurring at night by the leaves of these species increased from 5% under wet conditions to 71% after 7 days of drought to 99% after 14 days of drought. For two of the three species of Opuntioideae, 7 days of drought caused the small net CO2 uptake by the sterns to shift from the daytime to the nighttime, while for the third species drought caused a reduction of its stem nocturnal net CO2 uptake. Thus, shifts from predominantly daytime to predominantly nighttime net CO2 uptake can be induced by drought for the leaves and the stems of leafy cacti in subfamily Opuntioideae, indicating a high degree of biochemical versatility.  相似文献   

20.
Methods of estimating the mesophyll conductance (gm) to the movement of CO2 from the substomatal airspace to the site of fixation are expensive or rely upon numerous assumptions. It is proposed that, for C3 species, measurement of the response of photosynthesis to [O2] at limiting [CO2], combined with a standard biochemical model of photosynthesis, can provide an estimate of gm. This method was used to determine whether gm changed with [CO2] and with water stress in soybean leaves. The value of gm estimated using the O2 response method agreed with values obtained using other methods. The gm was unchanged over the tested range of substomatal [CO2]. Water stress, which decreased stomatal conductance (gs) by about 80%, did not affect gm, while the model parameter VCmax was reduced by about 25%. Leaves with gs reduced by about 90% had gm values reduced by about 50%, while VCmax was reduced by about 64%. It is concluded that gm in C3 species can be conveniently estimated using the response of photosynthesis to [O2] at limiting [CO2], and that gm in soybean was much less sensitive to water stress than gs, and was somewhat less sensitive to water stress than VCmax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号