首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the role of ras-related rab proteins in transport from the ER to the Golgi complex in vivo using a vaccinia recombinant T7 RNA polymerase virus to express site-directed rab mutants. These mutations are within highly conserved domains involved in guanine nucleotide binding and hydrolysis found in ras and all members of the ras superfamily. Substitutions in the GTP-binding domains of rab1a and rab1b (equivalent to the ras 17N and 116I mutants) resulted in proteins which were potent trans dominant inhibitors of vesicular stomatitis virus glycoprotein (VSV-G protein) transport between the ER and cis Golgi complex. Immunofluorescence analysis indicated that expression of rab1b121I prevented delivery of VSV-G protein to the Golgi stack, which resulted in VSV-G protein accumulation in pre-Golgi punctate structures. Mutants in guanine nucleotide exchange or hydrolysis of the rab2 protein were also strong trans dominant transport inhibitors. Analogous mutations in rab3a, rab5, rab6, and H-ras did not inhibit processing of VSV-G to the complex, sialic acid containing form diagnostic of transport to the trans Golgi compartment. We suggest that at least three members of the rab family (rab1a, rab1b, and rab2) use GTP hydrolysis to regulate components of the transport machinery involved in vesicle traffic between early compartments of the secretory pathway.  相似文献   

2.
ralGDS family members interact with the effector loop of ras p21.   总被引:24,自引:13,他引:11       下载免费PDF全文
Using a yeast two-hybrid system, we identified a novel protein which interacts with ras p21. This protein shares 69% amino acid homology with ral guanine nucleotide dissociation stimulator (ralGDS), a GDP/GTP exchange protein for ral p24. We designated this protein RGL, for ralGDS-like. Using the yeast two-hybrid system, we found that an effector loop mutant of ras p21 was defective in interacting with the ras p21-interacting domain of RGL, suggesting that this domain binds to ras p21 through the effector loop of ras p21. Since ralGDS contained a region highly homologous with the ras p21-interacting domain of RGL, we examined whether ralGDS could interact with ras p21. In the yeast two-hybrid system, ralGDS failed to interact with an effector loop mutant of ras p21. In insect cells, ralGDS made a complex with v-ras p21 but not with a dominant negative mutant of ras p21. ralGDS interacted with the GTP-bound form of ras p21 but not with the GDP-bound form in vitro. ralGDS inhibited both the GTPase-activating activity of the neurofibromatosis gene product (NF1) for ras p21 and the interaction of Raf with ras p21 in vitro. These results demonstrate that ralGDS specifically interacts with the active form of ras p21 and that ralGDS can compete with NF1 and Raf for binding to the effector loop of ras p21. Therefore, ralGDS family members may be effector proteins of ras p21 or may inhibit interactions between ras p21 and its effectors.  相似文献   

3.
Amino acid sequence homology between the GTPase Activating Protein (GAP) and the GTP-binding regulatory protein, Gs alpha, suggests that a specific region of GAP primary structure (residues 891-898) may be involved in its stimulation of p21ras GTP hydrolytic activity (McCormick, F. [1989] Nature 340, 678-679). A peptide, designated p891, corresponding to GAP residues 891-906 (M891RTRVVSGFVFLRLIC906) was synthesized and tested for its ability to inhibit GAP-stimulated p21ras GTPase activity. At a concentration of 25 microM, p891 inhibited GAP activity approximately 50%. Unexpectedly, p891 also stimulated GTP binding to p21N-ras independent of GAP. This stimulation correlated with an enhancement of p21N-ras.GDP dissociation; an approximate 15-fold increase in the presence of 10 microM p891. In contrast, dissociation of the p21N-ras.GTP gamma S complex was unaffected by 10 microM p891. The p21N-ras.GDP complex was unresponsive to 100 microM mastoparan, a peptide toxin shown previously to accelerate GDP dissociation from the guanine nucleotide regulatory proteins, Gi and Go. p21H-ras, as well as the two p21H-ras effector mutants, Ala-38, and Ala-35, Leu-36, also exhibited increased rates of GDP dissociation in the presence of p891. Also tested were three ras-related GTP-binding proteins; rap, G25K and rac. The rap.-GDP complex was unaffected by 10 microM p891. Dissociation of the G25K- and rac.GDP complexes were enhanced slightly; approximately 1.3- and 1.8-fold over control, respectively. Thus, the inhibitory effect of p891 on GAP stimulation of p21ras suggests that amino acids within the region 891-906 of GAP may be essential for interaction with p21ras. In addition, p891 independently affects the nucleotide exchange properties of p21ras.  相似文献   

4.
The protein products of the mammalian ras genes, p21ras, are regulatory guanine nucleotide binding proteins that are involved in the control of cell proliferation, though the exact biochemical processes regulated are unknown. Recently a cytoplasmic protein has been identified that interacts with and increases the GTPase activity of p21ras. It has been shown that this GTPase-activating protein, or GAP, interacts with the effector domain of ras, leading us and others to propose that GAP may be the target for regulation by p21ras. It has become apparent that ras is part of a much larger family of proteins, and at least 15 ras-related genes have now been identified in the mammalian genome. Each encodes a small (about 21 kDa) guanine nucleotide binding protein, but the functions of none of these regulatory molecules are known. We report here that mammalian cytoplasmic extracts contain GAP-like activity toward the products of two other ras-related genes, R-ras and rho. It appears that p23R-ras interacts with the same 125-kDa GAP protein as p21ras whereas p21rho interacts with a distinct 29-kDa protein, rho GAP.  相似文献   

5.
The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cells. Here we have investigated the role of Mg(2+) cofactor in the guanine nucleotide binding and hydrolysis processes of the Rho family members, Cdc42, Rac1, and RhoA. Differing from Ras and Rab proteins, which require Mg(2+) for GDP and GTP binding, the Rho GTPases bind the nucleotides in the presence or absence of Mg(2+) similarly, with dissociation constants in the submicromolar concentration. The presence of Mg(2+), however, resulted in a marked decrease in the intrinsic dissociation rates of the nucleotides. The catalytic activity of the guanine nucleotide exchange factors (GEFs) appeared to be negatively regulated by free Mg(2+), and GEF binding to Rho GTPase resulted in a 10-fold decrease in affinity for Mg(2+), suggesting that one role of GEF is to displace bound Mg(2+) from the Rho proteins. The GDP dissociation rates of the GTPases could be further stimulated by GEF upon removal of bound Mg(2+), indicating that the GEF-catalyzed nucleotide exchange involves a Mg(2+)-independent as well as a Mg(2+)-dependent mechanism. Although Mg(2+) is not absolutely required for GTP hydrolysis by the Rho GTPases, the divalent ion apparently participates in the GTPase reaction, since the intrinsic GTP hydrolysis rates were enhanced 4-10-fold upon binding to Mg(2+), and k(cat) values of the Rho GTPase-activating protein (RhoGAP)-catalyzed reactions were significantly increased when Mg(2+) was present. Furthermore, the p50RhoGAP specificity for Cdc42 was lost in the absence of Mg(2+) cofactor. These studies directly demonstrate a role of Mg(2+) in regulating the kinetics of nucleotide binding and hydrolysis and in the GEF- and GAP-catalyzed reactions of Rho family GTPases. The results suggest that GEF facilitates nucleotide exchange by destabilizing both bound nucleotide and Mg(2+), whereas RhoGAP utilizes the Mg(2+) cofactor to achieve high catalytic efficiency and specificity.  相似文献   

6.
Rap2b is a ras-related GTP-binding protein isolated from a human platelet cDNA library. It shares 90% similarity to the previously described rap2a and is closely related to rap1a (Krev-1, smgp21), which has been shown to possess reversion of transformation activity in Kirsten ras transformed 3T3 cells. In this study we have partially purified a protein from bovine brain membranes which stimulates the GTPase activity of rap2b. This rap2b GTPase-activating protein (GAP) activity is not immunoreactive with antibodies specific for rap1 GAP or ras GAP, yet displays limited GTPase stimulatory activity toward rap1. This result differs from the previously described rap1 GAP which is highly specific for rap1. When the rap2 GAP activity is analyzed by coomassie staining, an enrichment of a approximately 55 kDa protein is observed providing further evidence of a distinct rap2 GAP.  相似文献   

7.
The simian ralA cDNA was inserted in a ptac expression vector, and high amounts of soluble ral protein were expressed in Escherichia coli. The purified p24ral contains 1 mol of bound nucleotide/mol of protein that can be exchanged against external nucleotide. The ral protein exchanges GDP with a t 1/2 of 90 min at 37 degrees C in the presence of Mg2+, and has a low GTPase activity (0.07 min-1 at 37 degrees C). We have also studied its affinity for various guanine nucleotides and analogs. NMR measurements show that the three-dimensional environment around the nucleotide is similar in p21ras and p24ral. In addition to these studies on the wild-type ral protein, we used in vitro mutagenesis to introduce substitutions corresponding to the Val12, Val12 + Thr59, and Leu61 substitutions of p21ras. These mutant ral proteins display altered nucleotide exchange kinetics and GTPase activities, however, the effects of the substitutions are less pronounced than in the ras proteins. p24ralVal12 + Thr59 autophosphorylates on the substituted Thr, as a side reaction of the GTP hydrolysis, but the rate is much lower than those of the Thr59 mutants of p21ras. These results show that ras and ral proteins have similar structures and biochemical properties. Significant differences are found, however, in the contribution of the Mg2+ ion to GDP binding, in the rate of the GTPase reaction and in the sensitivity of these two proteins to substitutions around the phosphate-binding site, suggesting that the various "small G-proteins" of the ras family perform different functions.  相似文献   

8.
The rap1/Krev-1 gene encodes a ras-related protein that suppresses transformation by ras oncogenes. We have purified an 88 kd GTPase activating protein (GAP), specific for the rap1/Krev-1 gene product, from bovine brain. Based on partial amino acid sequences obtained from this protein, a 3.3 kb cDNA was isolated from a human brain library. Expression of the cDNA in insect Sf9 cells resulted in high level production of an 85-95 kd rap1GAP that specifically stimulated the GTPase activity of p21rap1. The complete deduced amino acid sequence is not homologous to any known protein sequences, including GAPs specific for p21ras. Northern and Western blotting analysis indicate that rap1GAP is not ubiquitously expressed and appears most abundant in fetal tissues and certain tumor cell lines, particularly the Wilms' kidney tumor, SK-NEP-1, and the melanoma, SK-MEL-3, cell lines.  相似文献   

9.
The human rap2 gene encodes a 183 amino acid protein that shares 46% identity with the K-ras p21. Its cDNA was engineered and inserted into the bacterial expression vector ptac; this allowed the production of high levels of soluble recombinant protein in Escherichia coli that was purified to near homogeneity. The rap2 protein binds GTP and exhibits a low intrinsic GTPase activity (rate constant of 0.5 x 10(-2) min-1). It exchanges its bound GDP with a half-life of 18 min at 37 degrees C in the presence of 10 mM Mg2+. Under the same conditions, the dissociation of bound GTP was at least 25-fold slower showing that the rap2 protein has a much higher affinity for GTP than GDP. The contribution of individual domains of the protein to its biochemical activities was investigated by site-directed mutagenesis. Substitution of Val for Gly at position 12 results in a 2-fold decrease in the GDP dissociation rate constant and GTPase activity. Replacement of the Ser at position 17 by Asn severely impairs the GTP binding ability of the protein and points to an important role of this residue in the coordination of Mg2+. Mutation of Thr-35 to Ala results in a decreased affinity for GTP and a reduction (3-fold) of the GTPase activity. Finally, substitution of Thr-145 by Ile leads to an imperfect binding of guanyl nucleotides as exemplified by an increase in their dissociation rate constants and reduction of the GTPase activity of the protein. These properties of the normal and mutant rap2 proteins are compared with those of ras p21 carrying similar substitutions and are discussed in relation to the structural models proposed for ras p21.  相似文献   

10.
Polyclonal antibodies were generated against a synthetic peptide corresponding to the C-terminal (amino acids 192-204) region of ralA and ralB GTP-binding proteins. The ralA and ralB antibodies recognized a 27 kDa protein in the human platelet particulate fraction. Incubation of ralA antibodies with ralB immunizing peptide and ralB antibodies with ralA immunizing peptide prior to Western blotting did not abolish the ability of antibodies to recognize the 27 kDa protein in human platelet particulate fraction. However, when antibodies were incubated with the respective immunizing peptide prior to Western blotting, the 27 kDa human platelet protein was no longer recognized by the antibodies. Incubation of nitrocellulose blots containing polypeptides separated using SDS-PAGE with [-32P]GTP demonstrated the presence of GTP-binding proteins of molecular mass between 23-27 kDa in rat platelets and the various tissues tested. Analysis using subtype specific antibodies demonstrated that both ralA and ralB GTP-binding proteins were expressed in rat platelets and the various tissues tested. The protein recognized by the ralA and ralB antibodies in rat tissues and platelets had mobility on SDS-PAGE identical to that of the human platelet ral protein. Varying amounts of these proteins were detected in all the tissues tested except white muscle which contained very low level of ralB protein. The widespread distribution of ralA and ralB GTP-binding proteins suggests that they may participate in a common pathway in mammalian cells and tissues.  相似文献   

11.
Wang L  Zhu K  Zheng Y 《Biochemistry》2004,43(46):14584-14593
Activation of many Rho family GTPase pathways involves the signaling module consisting of the Dbl-like guanine nucleotide exchange factors (GEFs), the Rho GTPases, and the Rho GTPase specific effectors. The current biochemical model postulates that the GEF-stimulated GDP/GTP exchange of Rho GTPases leads to the active Rho-GTP species, and subsequently the active Rho GTPases interact with and activate the effectors. Here we report an unexpected finding that the Dbl oncoprotein, Cdc42 GTPase, and PAK1 can form a complex through their minimum functional motifs, i.e., the Dbl-homolgy (DH) and Pleckstrin-homology domains of Dbl, Cdc42, and the PBD domain of PAK1. The Dbl-Cdc42-PAK1 complex is sensitive to the nucleotide-binding state of Cdc42 since either dominant negative or constitutively active Cdc42 readily disrupts the ternary binding interaction. The complex formation depends on the interactions between the DH domain of Dbl and Cdc42 and between Cdc42 and the PBD domain of PAK1 and can be reconstituted in vitro by using the purified components. Furthermore, the Dbl-Cdc42-PAK1 ternary complex is active in generating signaling output through the activated PAK1 kinase in the complex. The GEF-Rho-effector ternary intermediate is also found in other Dbl-like GEF, Rho GTPase, and effector interactions. Finally, PAK1, through the PDB domain, is able to accelerate the GEF-induced GTP loading onto Cdc42. These results suggest that signal transduction through Cdc42 and possibly other Rho family GTPases could involve tightly coupled guanine nucleotide exchange and effector activation mechanisms and that Rho GTPase effector may have a feedback regulatory role in the Rho GTPase activation.  相似文献   

12.
Members of the rab/YPT1/SEC4 gene family of small molecular weight GTPases play key roles in the regulation of vesicular traffic between compartments of the exocytic pathway. Using immunoelectron microscopy, we demonstrate that a dominant negative rab1a mutant, rab1a(N124I), defective for guanine nucleotide binding in vitro, leads to the accumulation of vesicular stomatitis virus glycoprotein (VSV-G) in numerous pre-cis-Golgi vesicles and vesicular-tubular clusters containing rab1 and beta-COP, a subunit of the coatomer complex. Similar to previous observations (Balch et al. 1994. Cell. 76:841-852), VSV-G was concentrated nearly 5-10-fold in vesicular carriers that accumulate in the presence of the rab1a(N124I) mutant. VSV-G containing vesicles and vesicular-tubular clusters were also found to accumulate in the presence of a rab1a effector domain peptide mimetic that inhibits endoplasmic reticulum to Golgi transport, as well as in the absence of Ca2+. These results suggest that the combined action of a Ca(2+)-dependent protein and conformational changes associated with the GTPase cycle of rab1 are essential for a late targeting/fusion step controlling the delivery of vesicles to Golgi compartments.  相似文献   

13.
《The Journal of cell biology》1995,130(5):1051-1061
Small GTPases of the rab family are involved in the regulation of vesicular transport. It is believed that cycling between the GTP- and GDP-bound forms, and accessory factors regulating this cycling are crucial for rab function. However, an essential role for rab nucleotide exchange factors has not yet been demonstrated. In this report we show the requirement of nucleotide exchange factor activity for Ypt1 GTPase mediated protein transport. The Ypt1 protein, a member of the rab family, plays a role in targeting vesicles to the acceptor compartment and is essential for the first two steps of the yeast secretory pathway. We use two YPT1 dominant mutations that contain alterations in a highly conserved GTP-binding domain, N121I and D124N. YPT1-D124N is a novel mutation that encodes a protein with nucleotide specificity modified from guanine to xanthine. This provides a tool for the study of an individual rab GTPase in crude extracts: a xanthosine triphosphate (XTP)-dependent conditional dominant mutation. Both mutations confer growth inhibition and a block in protein secretion when expressed in vivo. The purified mutant proteins do not bind either GDP or GTP. Moreover, they completely inhibit the ability of the exchange factor to stimulate nucleotide exchange for wild type Ypt1 protein, and are potent inhibitors of ER to Golgi transport in vitro at the vesicle targeting step. The inhibitory effects of the Ypt1-D124N mutant protein on both nucleotide exchange activity and protein transport in vitro can be relieved by XTP, indicating that it is the nucleotide-free form of the mutant protein that is inhibitory. These results suggest that the dominant mutant proteins inhibit protein transport by sequestering the exchange factor from the wild type Ypt1 protein, and that this factor has an essential role in vesicular transport.  相似文献   

14.
The small GTP-binding protein rap2A exhibits a high level of identity with rap1 and ras proteins (60% and 46%, respectively). Nevertheless, its intrinsic GTPase activity is not stimulated by ras-GAP, and unlike the rap1A protein, it cannot compete with ras proteins for their interaction with ras-GAP. In addition, rap1-GAPm that is highly active on the GTPase activity of the rap1A product, also stimulates the GTPase activity of the rap2A protein but with a 30-40-fold lower efficiency. An activity that greatly stimulated the GTPase activity of the rap2 protein (rap2-GAP) was found in bovine brain cytosol and purified. However, it copurified with the cytosolic form of rap1-GAP and was more efficient at stimulating the GTPase activity of the rap1 protein; this 55 kD polypeptide, that is recognized by an antibody raised against rap1-GAPm, likely represents a degraded and soluble form of the full size 89 kD molecule. In bovine brain membranes, a weak GAP activity toward the rap2A protein was also detected; however, it was also attributable to the membrane-associated rap1-GAPm. Thus, it appears that a single rap-GAP protein, complete or degraded, is able to stimulate the GTPase activity of both rap1 and rap2 proteins.  相似文献   

15.
Ras GTPases cycle between inactive GDP-bound and active GTP-bound states to modulate a diverse array of processes involved in cellular growth control. The activity of Ras is up-regulated by cellular agents, including both protein (guanine nucleotide exchange factors) and redox-active agents (nitric oxide (NO) and superoxide anion radical (O2*). We have recently elucidated the mechanism by which NO promotes guanine nucleotide dissociation of redox-active NKCD motif-containing Ras and Ras-related GTPases. In this study, we show that guanine nucleotide dissociation is enhanced upon exposure of the redox-active GTPases, Ras and Rap1A, to O2* and provide evidence for the efficient guanine nucleotide reassociation in the presence of the radical quenching agent ascorbate to complete guanine nucleotide exchange. In vivo, guanine nucleotide reassociation is necessary to populate Ras in its biologically active GTP-bound form after the dissociation of GDP. We further show that treatment of the redox-active GTPases with O2* releases GDP in form of an unstable the oxygenated GDP adduct, putatively assigned as 5-oxo-GDP. 5-Oxo-GDP was not produced from either the C118S or the F28L Ras variants upon the treatment of O2*, supporting the involvement of residues Cys118 and Phe28 in O2*-mediated Ras guanine nucleotide dissociation. These results indicate that the mechanism of O2*-mediated Ras guanine nucleotide dissociation is similar to that of NO/O2-mediated Ras guanine nucleotide dissociation.  相似文献   

16.
Many lines of evidence indicate the importance of the Rho family guanine nucleotide triphosphatases (GTPases) in directing axon extension and guidance. The signaling networks that involve these proteins regulate actin cytoskeletal dynamics in navigating neuronal growth cones. However, the intricate patterns that regulate Rho GTPase activation and signaling are not yet fully defined. Activity and subcellular localization of the Rho GTPases are regulated by post-translational modification. The addition of a geranylgeranyl group to the carboxy (C-) terminus targets Rho GTPases to the plasma membrane and promotes their activation by facilitating interaction with guanine nucleotide exchange factors and allowing sequestering by association with guanine dissociation inhibitors. However, it is unclear how these modifications affect neurite extension or how subcellular localization alters signaling from the classical Rho GTPases (RhoA, Rac1, and Cdc42). Here, we review recent data addressing this issue and propose that Rho GTPase geranylgeranylation regulates outgrowth.  相似文献   

17.
Novel regulatory proteins for smg p21A and -B, ras p21-like GTP-binding proteins (G proteins) having the same putative effector domain as ras p21s, were purified to near homogeneity from bovine brain cytosol and characterized. These regulatory proteins, designated as GDP dissociation stimulator (GDS) 1 and -2, stimulated the dissociation of both [3H]GDP and [35S] guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) from smg p21s to the same extent. smg p21 GDS1 and -2 also stimulated the binding of [35S]GTP gamma S to the GDP-bound form of smg p21s but not that to the guanine nucleotide-free form. These actions of smg p21 GDS1 and -2 were specific for smg p21s and inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, rhoB p20, and smg p25A. Neither smg p21 GDS1 nor -2 stimulated the GTPase activity of smg p21s and by itself showed [35S]GTP gamma S-binding or GTPase activity. smg p21 GDS1 and -2 showed very similar physical and kinetic properties and were indistinguishable by peptide map analysis. The Mr values of smg p21 GDS1 and -2 were estimated to be about 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from the S values, indicating that smg p21 GDS1 and -2 are composed of a single polypeptide without a subunit structure. smg p21 GDS1 and -2 were distinguishable from GTPase activating proteins (GAPs) for the ras and rho proteins, and smg p21B, and GDP dissociation inhibitors for smg p25A and the rho proteins previously identified in bovine brain cytosol. These results indicate that bovine brain contains regulatory proteins for smg p21s that stimulate the dissociation of GDP from and thereby the subsequent binding of GTP to smg p21s in addition to smg p21 GAP. It is likely that the conversion from the GDP-bound inactive form of smg p21s to the GTP-bound active form is regulated by smg p21 GDS and that its reverse reaction is regulated by smg p21 GAP.  相似文献   

18.
Rab proteins are a family of ˜25kD ras-related GTPases which are associated with distinct intracellular membranes where they control vesicle traffic between intracellular compartments. The late-endosomal rab protein rab71–207, (lacking only the C-terminal lipids of the native molecule) and three C-terminal truncated constructs rab71–202, rab71–197and rab71–182were purified using an E. coli expression system. The C-terminal tail region of rab proteins is of special interest because it is thought to target rab proteins to particular intracellular membranes. A comparison of TOCSY-NMR spectra from intact rab71–207and the tail-less construct rab71–182suggested that much of the C-terminal tail is flexible in solution. The GTP hydrolysis, and GDP association and dissociation rates for all the truncated and intact constructs were similar, showing that the tail region of rab71–207has little influence on the hydrolysis and exchange rates of the nucleotide. © 1997 Wiley-Liss, Inc.  相似文献   

19.
T cell stimulation via the TCR complex (TCR/CD3 complex) results in activation of the guanine nucleotide binding proteins encoded by the ras protooncogenes (p21ras). In the present study we show that the activation state of p21ras in T lymphocytes can also be controlled by triggering of the CD2 Ag. The activation state of p21ras is controlled by GTP levels on p21ras. In T cells stimulation of protein kinase C is able to induce an accumulation of "active" p21ras-GTP complexes due to an inhibitory effect of protein kinase C stimulation on the intrinsic GTPase activity of p21ras. The regulatory effect of protein kinase C on p21ras GTPase activity appears to be mediated via regulation of GAP, the GTPase activating protein of p21ras. In the present report, we demonstrate that the TCR/CD3 complex and the CD2 Ag control the accumulation of p21ras-GTP complexes via a regulatory effect on p21ras GTPase activity. The TCR/CD3 complex and CD2 Ag are also able to control the cellular activity of GAP. These data demonstrate that p21ras is part of the signal transduction responses controlled by the CD2 Ag, and reveal that the TCR/CD3 complex and CD2 Ag control the activation state of p21ras via a similar mechanism.  相似文献   

20.
S Jones  G Jedd  R A Kahn  A Franzusoff  F Bartolini  N Segev 《Genetics》1999,152(4):1543-1556
Two families of GTPases, Arfs and Ypt/rabs, are key regulators of vesicular transport. While Arf proteins are implicated in vesicle budding from the donor compartment, Ypt/rab proteins are involved in the targeting of vesicles to the acceptor compartment. Recently, we have shown a role for Ypt31/32p in exit from the yeast trans-Golgi, suggesting a possible function for Ypt/rab proteins in vesicle budding as well. Here we report the identification of a new member of the Sec7-domain family, SYT1, as a high-copy suppressor of a ypt31/32 mutation. Several proteins that belong to the Sec7-domain family, including the yeast Gea1p, have recently been shown to stimulate nucleotide exchange by Arf GTPases. Nucleotide exchange by Arf GTPases, the switch from the GDP- to the GTP-bound form, is thought to be crucial for their function. Sec7p itself has an important role in the yeast secretory pathway. However, its mechanism of action is not yet understood. We show that all members of the Sec7-domain family exhibit distinct genetic interactions with the YPT genes. Biochemical assays demonstrate that, although the homology between the members of the Sec7-domain family is relatively low (20-35%) and limited to a small domain, they all can act as guanine nucleotide exchange factors (GEFs) for Arf proteins, but not for Ypt GTPases. The Sec7-domain of Sec7p is sufficient for this activity. Interestingly, the Sec7 domain activity is inhibited by brefeldin A (BFA), a fungal metabolite that inhibits some of the Arf-GEFs, indicating that this domain is a target for BFA. These results demonstrate that the ability to act as Arf-GEFs is a general property of all Sec7-domain proteins in yeast. The genetic interactions observed between Arf GEFs and Ypt GTPases suggest the existence of a Ypt-Arf GTPase cascade in the secretory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号