首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human bone marrow cells collected from ribs of patients undergoing thoracotomy had low or no natural killer (NK) cell activity against K562 in a 4-hour chromium release assay. In vitro overnight treatment with interferon or interleukin 2 of bone marrow cells resulted in no induction or augmentation of NK cell activity. In the presence of adherent bone marrow cells interferon was unable to enhance NK cell activity of blood lymphocytes, although the baseline level of NK cell activity was not suppressed. These results suggest that adherent bone marrow cells regulate the development of active NK cells and that bone marrow components do not provide a favorable environment for the functional differentiation of NK cells.  相似文献   

2.
Bone marrow cells cultured for 5-6 days generate cytotoxic activity against a number of natural killer (NK)-susceptible tumor cells. In this study, these bone marrow cytotoxic cells were compared to cells with NK activity obtained either from spleen cells activated in vitro with interferon (IFN-alpha/beta) or mitogen or from peritoneal exudate cells (PEC) obtained 4 days after bacillus Calmette-Guerin (BCG) infection. Splenic and PEC cytotoxic cells were shown to be Thy 1.2+, NK 1.1+, Asialo GM+1, Lyt 1.2-, Lyt 2.2-. In contrast, bone marrow cytotoxic cells were Thy 1.2+, NK 1.1-, Lyt 1.2-, Lyt 2.2- and expressed low levels of Asialo GM1 antigen (Asialo GM +/- 1). Precursor cells for bone marrow cytotoxic activity were shown to be Thy 1.2-, NK 1.1-, Lyt 1.2-, Lyt 2.2- but also expressed low levels of Asialo GM1 antigen (Asialo GM +/- 1). Cytotoxic activity for both bone marrow and spleen cells peaked in the low-density fractions of discontinuous Percoll density gradients. The cytotoxic activity of these bone marrow cells was augmented by pretreatment with IFN (-alpha/beta, -gamma) or soluble factors (IFN free) from activated EL-4 thymoma cells. Surprisingly, the ability of bone marrow cells to generate high levels of cytotoxic activity following in vitro culture appeared to be associated primarily with mice which were of the H-2b haplotype.  相似文献   

3.
Lymphocytes that inhibit hematopoiesis may have a pathogenic role in some forms of bone marrow failure, and lymphocyte-mediated suppression may also be important in the normal regulation of bone marrow function. We have investigated the mechanism of in vitro suppression of hematopoiesis by T cells by using the methylcellulose colony culture system. Total peripheral blood T cells and separated subpopulations of helper (OKT4+) and suppressor (OKT8+) cells that have been stimulated by exposure to lectin suppress autologous colony formation by bone marrow myeloid (CFU-C) and erythroid (BFU-E) progenitor cells. Medium conditioned by these cells is also inhibitory, indicating that the suppressor activity is a soluble factor. A strong correlation existed for the concentration of interferon and the degree of hematopoietic suppressor activity in these supernatants; both activities peaked at days 3 to 5 of incubation and had sharply declined by day 7. Interferon production was enhanced by exposure of lymphocytes to sheep red blood cells during the rosetting procedure. Specific antiserum and a monoclonal antibody directed against gamma-(immune) interferon abrogated the inhibitory activity for hematopoiesis produced by lectin-stimulated T cells; an antiserum to alpha-interferon was generally much less effective in neutralizing activity. We infer from these results that gamma-interferon is the mediator of hematopoietic suppression generated by lectin-treated T-cells.  相似文献   

4.
G Egert  L Kanz  G W L?hr  A A Fauser 《Blut》1990,60(5):282-286
Studies have shown that recombinant human alpha interferon (rIFN alpha) inhibits the growth of colonies of multipotential stem cells from human bone marrow. This report demonstrates that rIFN alpha inhibits the growth of such colonies from the bone marrow of patients with chronic myelogenous leukemia (CML) to a greater extent than from bone marrow of healthy individuals. It also shows that T lymphocyte colonies subcloned with interleukin 2 (IL-2) from CML mixed colonies were inhibited more by rIFN alpha than were similar colonies subcultured from normal mixed colonies. The report demonstrates that the Ph' chromosome is present in such T cell colonies subcultured from CML mixed colonies. When mixed colonies were grown from CML bone marrow in the presence of rIFN alpha, Ph' negative colonies were observed, whereas no such Ph' negative mixed colonies grew from a similar number of bone marrow cells incubated without rIFN alpha. These observations confirm that T lymphocytes derived from bone marrow stem cells are from the CML clone, and that the inhibition of growth of Ph' positive colonies, by rIFN alpha permits the growth of residual normal stem cells. The disappearance of the Ph-chromosome in subclones of T lymphocytes supports the notion of nonclonal hematopoiesis in patients with CML.  相似文献   

5.
6.
Megakaryopoiesis is associated with inflammatory reactions. To investigate the role of interferon regulatory factors (IRFs) in inflammation-associated megakaryopoiesis, mouse bone marrow hematopoietic stem cells (HSCs) were analyzed. IFN-γ treatment induced IRF-2 expression as well as the expression of CD41 and IRF-1 in HSCs. An in vitro clonogenic assay showed that IRF-2- but not IRF-1-overexpressing cells increased the number of megakaryocytic colonies. IRF-2 transfection up-regulated CD41 promoter activity in hematopoietic cell lines. The number of CD41-positive bone marrow cells increased in mice injected with IRF-2-expressing bone marrow cells. These findings suggest that IRF-2 plays an important role in megakaryopoiesis in inflammatory states.  相似文献   

7.
The development of the graft-versus-host reaction (GVHR) in the F1(1CBA X C57BL/6 hybrid mice after the transplantation of spleen cells from the C57BL/6 parent donor resulted in a strong inhibition of the serum interferon production induced by the intraperitoneal injection of the Newcastle disease virus. In vitro with the mouse bone marrow cells during the development of the GVHR the interferon response was first reduced and then disappeared completely. The described phenomenon could therefore serve as an index of the development of the GVHR.  相似文献   

8.
Summary A 76-year-old woman with acute myelogenous leukemia with approximately 65% myeloblasts on bone marrow examination was treated daily with a combination of 4 megaU of leukocyte interferon IM and 1,000 mg cimetidine PO. During therapy there was a gradual decrease of bone marrow myeloblasts down to 9% and a normalization of peripheral white blood cells. The treatment was discontinued after 6 weeks because of increasing fatigue and anorexia. The general condition improved greatly during the following weeks and the patient entered complete remission, which has continued for 6 months so far. In the course of therapy there was a gradual appearance of antibodies showing a selective binding capacity to autochthonous leukemic cells with no tendency to increased binding to remission cells. The aim of this report is to stimulate a further evaluation of this form of therapy in additional AML patients whenever this might be justified as an alternative to conventional chemotherapy.  相似文献   

9.
We have previously reported that mouse bone marrow (BM) cells stimulated with alloantigen produce cytotoxic effector T-cell activity and produce interferon (IFN-)alpha/beta. In this report we show evidence suggesting that interleukin 2 (IL-2) may play a role in this IFN-alpha/beta production by alloantigen-stimulated BM cells. Alloantigen-induced IFN production by bone marrow cells was completely inhibited when cultures were supplemented with antisera to IL-2. Cell-free supernatants obtained at 2 days from cultures containing C57BL/6 BM cells and irradiated DBA/2J spleen cells were also shown to contain low levels of IL-2 activity and induced significant IFN production in fresh BM cells. Different IL-2 preparations were tested for their ability to induce IFN-alpha/beta production in mouse BM cells. Mouse BM cells cultured with recombinant human IL-2 or highly purified mouse IL-2 produced high levels of IFN-alpha/beta activity after 2-3 days of culture with significant IFN activity being detected as early as 24 hr of culture. IL-2-induced IFN-alpha/beta production was partially resistant to irradiation. In contrast, irradiated (2000 rad) bone marrow cells failed to produce any IFN when cultured with alloantigen in the absence of IL-2. T-cell-depleted BM cells or BM cells obtained from C57BL/10 nude mice produced high levels of IFN-alpha/beta following stimulation with IL-2. In addition, bone marrow cells depleted of Ia+, Qa 5+, or Asialo GM+1 cells produced IFN in response to IL-2. Thus, neither T cells nor NK cells are required for IL-2-induced IFN-alpha/beta production by BM cells. The action of IL-2 on bone marrow cells to induce IFN production was mediated by the classical IL-2 receptor, since monoclonal antibodies to the IL-2 receptor present on T cells blocked this response and since bone marrow cells depleted of IL-2 receptor-bearing cells failed to produce IFN when cultured with IL-2. These results suggest that non-T cells resident in the BM have receptors for IL-2 and can produce IFN-alpha/beta upon stimulation by IL-2. Since IFN has been shown to affect different aspects of hematopoiesis, the production of IFN by BM cells stimulated by IL-2 may be important in the control of hematopoiesis. In addition, IL-2-induced IFN production may play a role in graft-versus-host disease.  相似文献   

10.
The authors studied the influence of the serum obtained at various periods after the administration of interferon inductors (New castle disease virus, amino ethylisothiouronium, E. coli endotoxin) on the rate of rejection of the skin or cell transplant of mice C3H and CBA, and also CC57Br. The allogenous skin transplant perished more rapidly; there was also an acceleration of elimination of allogenous lymphoid cells, suppression of colony formation by the cells of allogenous bone marrow in the spleen of the irradiated recipient in administration of the serum obtained at the period of maximal content of interferon induced by the Newcastle disease virus and by amino ethylisothiouronium. The cytotoxic activity of lymphocytes of mice CC57Br against the allogenous target cells rose in the presence of these sera. The serum containing interferon induced with E. coli endotoxin failed to influence the rate of the allotransplant rejection and did not increase the cytotoxic activity of lymphocytes.  相似文献   

11.
Summary In vitro growth and differentiation of granulocyte-macrophage progenitor cells (GM-CFU-C) requires colony-stimulating factors (CSF), and an in vivo role for CSF has also been proposed. Prostaglandins of the E series (PGE) have been reported to serve as negative feedback regulators of myelopoiesis. Here, we report evidence of augmented CSF secretion by mouse peritoneal Mo (macrophages) and bone marrow cells in vitro upon stimulation with various biological response modifiers (BRMs). Optimal induction of CSF secretion occurred after in vitro treatment of peritoneal Mo and mononuclear bone marrow cells with 50 g/ml poly ICLC (polyriboinosinic-polycytidylic acid poly-L-lysine), 5 g/ml lipopolysaccharide (LPS), or 500 U/ml interferon (IFN,) for 2 days. The in vitro stimulation of CSF secretion was paralleled by an increase in PGE secretion by Mo and bone marrow cells. The PGE secretion could, however, be selectively blocked by preincubating the cells for 3 h with indomethacin (10–7 Mol) leaving CFS production intact. In vivo treatment of mice with either maleic anhydride divinyl ether copolymer (MVE-2; 25 mg/kg) or poly ICLC (2 mg/kg) significantly increased levels of CSF in serum, as well as in culture supernatants of in vivo-treated peritoneal Mo and bone marrow cells. The increase in serum CSF levels and in secretion of CSF by peritoneal Mo and bone marrow cells was followed by a dose-dependent increase in GM-CFU-C, in nucleated bone marrow cells, and in peripheral blood leukocytes. The same BRMs also stimulated the secretion of PGE by in vivo-activated peritoneal Mo, but not by bone marrow cells. Pretreatment of the mice with indomethacin (4 mg/kg) almost completely suppressed PGE secretion by peritoneal Mo, but did not change the CSF secretion by peritoneal Mo or bone marrow cells and had no significant effect on bone marrow cellularity. Therefore, MVE-2 and poly ICLC, in addition to their immunomodulatory activity, can also have stimulatory effects on myelopoiesis, presumably mediated through secretion of CSFs. Protection and/or restoration of bone marrow function could thus either provide the opportunity for more extensive chemotherapy or could increase the number of Mo effector cells available for activation against tumor targets.  相似文献   

12.
The effect of recombinant alpha interferon (INF) to the colony stimulating factor (CSF) production was examined with in vitro culture of the bone marrow of patients with chronic granulocytic leukaemia (CGL). It could be found that addition of interferon into a suspension of preincubated phytohaemagglutinin (PHA) lymphocytes from peripheral blood represents an inhibity factor for colony and cluster formation in autologic human marrow cultures.  相似文献   

13.
The transplanted limb contains bone marrow tissue. The hematopoietic cells contained in the bone of the graft normally differentiate after transplantation and can be released to the recipient. The cells migrate to the recipient bone marrow cavities and lymphoid organs. This causes the immune reaction between the donor and the recipient, which develops not only in the graft itself but also in the recipient immune organs where donor bone marrow cells home. The purpose of this study was to investigate the process of migration of the hematopoietic cells from the donor limb to the recipient bone marrow cavities and lymphoid tissues. The questions the authors asked were: what is the rate of release of bone marrow cells from the transplanted bone, where do the released bone marrow cells home in the recipient, how fast are donor bone marrow cells rejected by the recipient, and can some bone marrow cells homing in the recipient tissues survive and create a state of microchimerism. Experiments were performed on Brown Norway and Lewis inbred rat strains (n = 30). Limb donors received intravenous chromium-51-labeled bone marrow cells. Twenty-four hours later, the limb with homing labeled bone marrow cells was transplanted to an allogeneic or syngeneic recipient. The rate of radioactivity of bone marrow cells released from the graft and homing in recipient tissues was measured after another 24 hours. To eliminate factors adversely affecting homing such as the "crowding effect" and allogeneic elimination of bone marrow cells by natural killer cells, total body irradiation and antiasialo-GM1 antiserum were applied to recipients before limb transplantation. In rats surviving with the limb grafts for 7 and 30 days, homing of donor bone marrow cells was studied by specific labeling of donor cells and flow cytometry as well as by detecting donor male Y chromosome. The authors found that transplantation of the limb with bone marrow in its natural spatial relationship with stromal cells and blood perfusion brings about immediate but low-rate release of bone marrow cells and their migration to recipient bone marrow and lymphoid tissues. Large portions of allogeneic bone marrow cells are rapidly destroyed in the mechanism of allogeneic elimination by radioresistant but antiasialo-GM1-sensitive natural killer cells. Some transplanted bone marrow cells remain in the recipient's tissues and create a state of cellular and DNA microchimerism. A low number of physiologically released donor bone marrow cells do not seem to adversely affect the clinical outcome of limb grafting. Quite the opposite, a slight prolongation of the graft survival time was observed.  相似文献   

14.
We have previously reported that mouse bone marrow cells produce high levels of interferon-alpha/beta (IFN-alpha/beta) after 5 to 6 days of in vitro culture with irradiated allogenic spleen cells. The current study was initiated to determine whether or not T cells are important for alloantigen-induced IFN-alpha/beta production by mouse bone marrow cells. Bone marrow cells and spleen cells were obtained from C57BL/6 mice. These cells were treated with different monoclonal antisera and complement, and then were cultured 5 to 6 days with irradiated DBA spleen cells. The results from these experiments indicated that optimal IFN-alpha/beta production by alloantigen-stimulated bone marrow cells required Lyt-1+2+ T cells. In addition, when bone marrow cells obtained from nu/nu B10 mice were cultured with alloantigen, only low levels of IFN were produced when compared with IFN production by bone marrow cells obtained from normal littermate B10 mice. The addition of nylon wool-enriched splenic T cells to cultures containing bone marrow cells and alloantigen resulted in an augmentation of IFN-alpha/beta production by three-fold to fivefold. Furthermore, bone marrow cells obtained from alloantigen-immunized mice produced much higher levels of IFN-alpha/beta and in a shorter period of time (2 to 3 days) when compared with bone marrow cells obtained from control or non-immunized mice. Cyclosporin A (CsA) has been shown to inhibit predominantly T cell-dependent responses. The effect of CsA on IFN production by alloantigen-stimulated bone marrow and spleen cells was investigated. The addition of CsA at concentrations as low as 0.1 micrograms/ml inhibited not only IFN-gamma production by alloantigen-stimulated spleen cells, but also IFN-alpha/beta production by alloantigen-stimulated bone marrow cells. In contrast, IFN-alpha/beta production by Newcastle disease virus-infected spleen cells, bone marrow cells, or L cells was not inhibited by the addition of CsA (1 microgram/ml). Thus, the ability of bone marrow cells to produce high levels of IFN-alpha/beta after in vitro culture with alloantigen is dependent upon T cells resident in the bone marrow. IFN-alpha/beta production by alloantigen-stimulated bone marrow cells may play a major role in the pathogenesis associated with graft-vs-host disease and in T cell regulation of hematopoiesis.  相似文献   

15.
Linked unresponsiveness operates to induce specific unresponsiveness to fully mismatched vascularized allografts in recipients pretreated with anti-CD4 antibody and syngeneic bone marrow cells expressing a single donor MHC class I alloantigen. The aim of the study was to evaluate early post transplant cytokine expression in allografts where linked unresponsiveness was required for long term graft survival. CBA (H2(k)) mice were pretreated with CBK (H2(k)+K(b)) bone marrow cells under the cover of anti-CD4 antibody 28 days before transplantation of a CBK or a C57BL/10 (H2(b)) cardiac allograft. In both cases graft survival was prolonged (MST=100 days). Intragraft expression for interferon (IFN)-gamma, interleukin (IL)-2, IL-4, IL-10, IL-12(p40), IL-18, iNOS, transforming growth factor (TGF)-beta(1) and C-beta was determined on day 1.5, 3, 7 and 14 after transplantation. Whereas rejecting allografts displayed a sharp peak in IFN-gamma, IL-2, IL-4 and IL-10 expression, non-rejecting allografts were characterized by an initial TGF-beta(1) and IFN-gamma production. An increasing IL-4 expression towards day 14 was a unique feature of linked unresponsiveness. All non-rejecting allografts were characterized by an increasing IL-12(p40) production towards day 14. In summary, the early cytokine expression pattern in allografts after bone marrow induced operational tolerance is influenced by the quantity of donor alloantigens expressed on the graft as well as on the bone marrow inoculum.  相似文献   

16.
The clonal nature of FCFC-derived stromal colonies was tested by chromosomal analysis in mixed cultures of CBA and CBAT6T6 bone marrow cells depleted of macrophages and myeloid cells. Inoculation of the bone marrow cell suspensions in flasks coated with poly-l-lysine has revealed practically no stromal aggregates among the explanted cells. The coincidence of karyotypes within the stromal colonies in the mixed cultures proved that the FCFC-derived colonies were cell clones. It was shown by indirect immunofluorescence with antibodies to type 1 collagen that the mouse bone marrow FCFC-derived colonies consisted of stromal fibroblasts. The cloning efficiency of the bone marrow FCFS depends on the explantation density of cells; a stable colony-forming efficiency could be reached only in the presence of feeder cells (irradiated bone marrow). In the bone marrow cells suspensions obtained by trypsinization the amount of FCFC is markedly higher than in the suspensions of mechanically disaggregated bone marrow cells.  相似文献   

17.
Mouse bone marrow cells grown in medium enriched with L cell conditioned medium (LCM) as a source of colony stimulating factor (CSF) yield populations of adherent macrophages which are quite sensitive to induction of interferon (IFN) by viral and nonviral inducers. We examined the role of LCM in the sensitivity of marrow macrophage cultures to IFN induction. Removal of LCM from the cultures for as little as 3 hours markedly reduced the IFN titers induced by a double stranded ribopolynucleotide (poly I:C) or a lipopolysaccharide (LPS), while induction by Newcastle disease virus (NDV) was unaffected. Addition of anti-CSF serum to LCM medium also reduced IFN titers in response to polyI:C but had no effect on NDV induction. The inhibitory effect of anit-CSF indicates that the LCM requirement is at least partially related to the colony stimulating activity of the medium. We postulate that CSF regulates the initial interaction of macrophages with polyI:C or LPS rather than the synthesis and secretion of interferon by the phagocytes. Nearly complete restoration of IFN induction with polyI:C was obtained when LCM deprived cultures were reincubated with LCM medium previously conditioned by marrow cultures.  相似文献   

18.
19.
Two separate clones of recombinant leukocyte interferon (IFLrA and IFLrD) inhibited the cloning efficiency in soft agar of the human leukemia cell lines HL-60 and KG-1. Inhibition of the growth in agar of normal human bone marrow myeloid progenitors was also observed, but this required considerably higher concentrations. IFLrA and IFLrD also inhibited the growth of HL-60 and KG-1 cells in suspension culture. This antiproliferative effect did not appear to be due to induction of maturation of these cells. Our results suggest that homogeneous preparations of interferon may be capable of exerting selective antiproliferative effects on malignant human myeloid progenitor cells in comparison to their normal counterparts.  相似文献   

20.
We investigated the effects of interferon gamma (IFN-gamma) on the growth of murine hematopoietic progenitors. IFN-gamma inhibited granulocyte colony-stimulating factor (G-CSF)- and interleukin-3 (IL-3)-dependent colony growth by granulocyte-macrophage (GM) progenitors derived from the bone marrow cells of normal mice. However, the number of IL-3-dependent GM colonies formed by the bone marrow cells of 5-fluorouracil (5-FU)-treated mice was not influenced by the addition of IFN-gamma. Replating experiments suggested that IFN-gamma suppressed GM colony growth directly and that it exerted an inhibitory effect on the proliferation, but not on the commitment, of GM progenitors. In contrast, IFN-gamma failed to suppress colony growth by mast cell progenitors. Erythroid and megakaryocytic progenitors exhibited different responses to IFN-gamma depending on mouse strains. These results suggest that potent negative regulators are not always inhibitors of hematopoietic progenitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号