首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Oxidatively damaged thymine, 5-formyluracil (5-fU), was incorporated into a predetermined site of double-stranded shuttle vectors. The nucleotide sequences in which the modified base was incorporated were 5′-CFTAAG-3′ and 5′-CTFAAG-3′ (F represents 5-fU), the recognition site for the restriction enzyme AflII (5′-CTTAAG-3′). The 5-fU was incorporated into a template strand of either the leading or lagging strand of DNA replication. The modified DNAs were transfected into simian COS-7 cells, and the DNAs replicated in the cells were recovered and were analyzed after the second transfection into Escherichia coli. The 5-fU did not block DNA replication in mammalian cells. The 5-fU residues were weakly mutagenic, and their mutation frequencies in double-stranded vectors were 0.01–0.04%. The T → G and T → A transversions were the mutations found most frequently, suggesting the formation of 5-fU·C and 5-fU·T base pairs, respectively. This is the first report that clearly shows the induction of transversion mutations by an oxidized pyrimidine base in DNA in mammalian cells.  相似文献   

2.
We have analyzed the hemoglobins of a young German patient with β-thalassemia intermedia and of his immediate family and included in these studies an evaluation of possible nucleotide changes in the β-globin through sequencing of amplified DNA. One chromosome of the propositus and one of his father's carried the GTGGGG mutation at codon 126 leading to the synthesis of Hb Dhoburi or α2β2126(H4)Val→Gly; this variant is slightly unstable and is associated with mild thalassemic features. His second chromosome and one of his mother's had the common IVS-I-5 (G→C) mutation that leads to a rather severe β+-thalassemia and the GTGATG mutation at codon 18, resulting in the replacement of a valine residue by a methionine residue. This newly discovered β-chain variant, named Hb Baden, was present for only 2–3% in both the patient and his mother. This low amount results from a decreased splicing of RNA at the donor splice-site of the first intron that is nearly completely deactivated by the IVS-I-5 (G→C) thalassemic mutation. The chromosome with the codon 18 (GTGATG) and the IVS-I-5 (G→C) mutations has thus far been found only in this German family; analysis of 51 chromosomes from patients with the IVS-I-5 (G→C) mutation living in different countries failed to detect the codon 18 (GTGATG) change.  相似文献   

3.
4.
Folate deficiency and maternal smoking are strong risk factors for placental abruption. We assessed whether the reduced folate carrier [NM_194255.1: c.80A→G (i.e., p.His27Arg)] (RFC-1) polymorphism was associated with placental abruption, and evaluated if maternal smoking modified the association between plasma folate and abruption. Data were derived from the New Jersey-Placental Abruption Study—a multicenter, case-control study of placental abruption (2002–2007). Maternal DNA was assayed for the RFC-1 c.80A→G polymorphism using a PCR-dependent diagnostic test. Maternal folate (nmol/l) was assessed from maternal plasma, collected immediately following delivery. Due to assay limitations, folate levels at ≥60 nmol/l were truncated at 60 nmol/l. Therefore, case–control differences in folate were assessed from censored log-normal regression models following adjustment for potential confounders. Distribution of the mutant allele (G) of the RFC-1 c.80A→G polymorphism was similar between cases (52.3%; n = 196) and controls (50.5%; n = 191), as was the homozygous mutant (G/G) genotype (OR 1.1, 95% CI 0.6–2.2). In a sub-sample of 136 cases and 140 controls, maternal plasma folate levels (mean ± standard error) corrected for assay detection limits were similar between placental abruption cases (63.6 ± 5.1 nmol/l) and controls (58.3 ± 4.7 nmol/l; P = 0.270), and maternal smoking did not modify this relationship (interaction P = 0.169). We did not detect any association between the RFC-1 c.80A→G polymorphism and placental abruption, nor was an association between plasma folate and abruption risk evident. These findings may be the consequence of high prevalence of prenatal multivitamin and folate supplementation in this population (over 80%). It is therefore not surprising that folate deficiency may be rare and that the RFC-1 c.80A→G polymorphism is less biologically significant for placental abruption.  相似文献   

5.
6.
人SOX9基因同时参与胚胎骨骼形成和睾丸发育调控.对一例多发畸形的早产女性胎儿进行SRY基因扩增和SOX9基因突变分析,发现其具有男性特异性SRY基因,且SOX9基因发生R178L(G→T)的突变,提示该病例为SOX9基因突变导致的广泛性先天发育不良合并常染色体男一女性性反转.该突变此前未见报道,这也是中国人群中首次报道致病性SOX9基因突变。  相似文献   

7.
Two different glucans (PS-I, water-soluble; and PS-II, water-insoluble) were isolated from the alkaline extract of fruit bodies of an edible mushroom Calocybe indica. On the basis of acid hydrolysis, methylation analysis, periodate oxidation, and NMR analysis ((1)H, (13)C, DEPT-135, TOCSY, DQF-COSY, NOESY, ROESY, HMQC, and HMBC), the structure of the repeating unit of these polysaccharides were established as: PS-I: →6)-β-D-Glcp-(1→6)-β-D-glcp-(1→6)-)-β-D-Glcp-(1→ α-D=Glcp (Water-soluble glucan). PS-II: →3)-β-D-Glcp-(1→3)-β-D-glcp-(1→3)-)-β-D-Glcp-(1→3)-β-D-Glcp-(1→ β-D-Glcp (Water-insoluble glucan, Calocyban).  相似文献   

8.

Background

Emerging evidence showed that VEGF gene polymorphisms are involved in the regulation of VEGF protein expression, thus increasing an individual''s susceptibility to preeclampsia (PE); but individually published results are inconclusive. The aim of this meta-analysis was to investigate the associations between VEGF gene polymorphisms and PE risk.

Methods

A systematic literature search of MEDLINE, Embase, Web of Science, and CNKI (Chinese National Knowledge Infrastructure) databases was conducted. Statistical analyses were performed using STATA 12.0 software and Review manager 5.1. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations.

Results

According to the inclusion criteria, 11 case-control studies were finally included in this meta-analysis. A total of 1,069 PE cases and 1,315 controls were included in this study. Our meta-analysis indicated that VEGF +936C/T (T vs. C, OR = 1.52, 95%CI = 1.08–2.12) or −634G/C polymorphism (C vs. G, OR = 1.24, 95% CI = 1.03–1.50) was associated with the risk of PE, whereas there was no association between −2578C/A (A vs. C, OR = 0.98, 95%CI = 0.82–1.16) or −1154G/A (A vs. G, OR = 1.30, 95%CI = 0.94–1.78) polymorphism and PE risk in our study.

Conclusion

Our meta-analysis suggested that VEGF −2578C/A or −1154G/A polymorphism had no association with PE risk in all examined patients, whereas there was an association between VEGF +936C/T or −634G/C polymorphism and risk of PE.  相似文献   

9.
Abstract

Parallel-stranded (ps) DNA hairpins with alternating d(A-isoG)/d(T·C) (designated as ps-t1) and d(A·G)/d(T·m5isoC) (ps-t2) sequences were studied by means of UV, CD and fluorescence spectroscopy. The thermostability of d(A·G)/d(T·m5isoC) sequence was close to that of aps d(G·A)/d(T·C). The stability of the ps d(A·isoG)/d(T·C) sequence was even higher than that of a related anti-parallel-stranded (aps) d(G·A)/d(T·C) sequence, being unique for ps DNAs studied so far.  相似文献   

10.
Apolipoprotein A1 (ApoA1) is the major apoprotein constituent of high-density lipoprotein that can play important roles in tumor invasion and metastasis. In the current report, we evaluated the role of the functional ApoA1 polymorphisms (−75 G/A and +83 C/T) as genetic markers for breast cancer susceptibility and prognosis. We used the polymerase chain reaction and restriction enzyme digestion (RFLP-PCR) to characterize the variations of the ApoA1 gene in 295 unrelated Tunisian patients with breast carcinoma and 197 healthy control subjects. No association was found between the +83 C/T genetic variation in ApoA1 gene and the risk of breast cancer occurrence. The presence of the (+83) T allele appeared however to be associated with an increased risk of lymph node metastasis occurrence (OR = 2.94; P = 0.01). Furthermore, a positive association was found between ApoA1 −75 A allele carriers and breast cancer risk (OR = 1.57; P = 0.02). Regarding prognostic indicators, a significant association was found between ApoA1 (−75) A allele carriers and the premenopausal status of breast cancer patients (OR = 1.73; P = 0.03). Additionally, the presence of the −75 A allele was correlated with the oestrogen receptor status among premenopausal women (OR = 2.45; P = 0.02). This is the first report on the studies of ApoA1 single nucleotide polymorphisms (SNPs) in breast carcinomas. Our data suggest that these genetic variations of ApoA1 may represent a marker for the increased risk of breast cancer.  相似文献   

11.
Recently, we found three novel missense mutations, G484A (Asp162Asn), G667A (Gly223Arg), and G808A (Val270Met), present in a Lewis-negative allele (le484,667,808) from an African (Xhosa) population. To define the relative contribution of each of the three mutations in the le484,667,808 allele for inactivation of the FUT3-encoded enzyme, we made chimeric FUT3 containing each of the three mutations. A transient expression study indicated that COS7 cells transfected with the FUT3 construct containing the G484A mutation expressed the Lewis antigen and had about 20% enzyme activity as compared with COS7 cells transfected with the wild type FUT3 allele, whereas COS7 cells transfected with the FUT3 construct containing either the G667A mutation or the G808A mutation did not express the Lewis antigen and showed no detectable (1,3/1,4)fucosyltransferase activity. These results suggest that the G667A and/or the G808A missense mutations of FUT3 alleles are responsible for the inactivation of the FUT3-encoded enzyme.  相似文献   

12.
Stable complexes among G proteins and effectors are an emerging concept in cell signaling. The prototypical Gβγ effector G protein-activated K+ channel (GIRK; Kir3) physically interacts with Gβγ but also with Gαi/o. Whether and how Gαi/o subunits regulate GIRK in vivo is unclear. We studied triple interactions among GIRK subunits 1 and 2, Gαi3 and Gβγ. We used in vitro protein interaction assays and in vivo intramolecular Förster resonance energy transfer (i-FRET) between fluorophores attached to N and C termini of either GIRK1 or GIRK2 subunit. We demonstrate, for the first time, that Gβγ and Gαi3 distinctly and interdependently alter the conformational states of the heterotetrameric GIRK1/2 channel. Biochemical experiments show that Gβγ greatly enhances the binding of GIRK1 subunit to Gαi3GDP and, unexpectedly, to Gαi3GTP. i-FRET showed that both Gαi3 and Gβγ induced distinct conformational changes in GIRK1 and GIRK2. Moreover, GIRK1 and GIRK2 subunits assumed unique, distinct conformations when coexpressed with a “constitutively active” Gαi3 mutant and Gβγ together. These conformations differ from those assumed by GIRK1 or GIRK2 after separate coexpression of either Gαi3 or Gβγ. Both biochemical and i-FRET data suggest that GIRK acts as the nucleator of the GIRK-Gα-Gβγ signaling complex and mediates allosteric interactions between GαiGTP and Gβγ. Our findings imply that Gαi/o and the Gαiβγ heterotrimer can regulate a Gβγ effector both before and after activation by neurotransmitters.  相似文献   

13.
A (13, 14)--glucan 4-glucanohydrolase [(13, 14)--glucanase, EC 3.2.1.73] was purified to homogeneity from extracts of germinated wheat grain. The enzyme, which was identified as an endohydrolase on the basis of oligosaccharide products released from a (13, 14)--glucan substrate, has an apparent pI of 8.2 and an apparent molecular mass of 30 kDa. Western blot analyses with specific monoclonal antibodies indicated that the enzyme is related to (13, 14)--glucanase isoenzyme EI from barley. The complete primary structure of the wheat (13, 14)--glucanase has been deduced from nucleotide sequence analysis of cDNAs isolated from a library prepared using poly(A)+ RNA from gibberellic acid-treated wheat aleurone layers. One cDNA, designated LW2, is 1426 nucleotide pairs in length and encodes a 306 amino acid enzyme, together with a NH2-terminal signal peptide of 28 amino acid residues. The mature polypeptide encoded by this cDNA has a molecular mass of 32085 and a predicted pI of 8.1. The other cDNA, designated LW1, carries a 109 nucleotide pair sequence at its 5 end that is characteristic of plant introns and therefore appears to have been synthesized from an incompletely processed mRNA. Comparison of the coding and 3-untranslated regions of the two cDNAs reveals 31 nucleotide substitutions, but none of these result in amino acid substitutions. Thus, the cDNAs encode enzymes with identical primary structures, but their corresponding mRNAs may have originated from homeologous chromosomes in the hexaploid wheat genome.  相似文献   

14.
A structural study of the cell wall polysaccharides of Myrmecia biatorellae, the symbiotic algal partner of the lichenized fungus Lobaria linita was carried out. It produced a rhamnogalactofuranan, with a (1→6)-β-d-galactofuranose in the main-chain, substituted at O-2 by single units of β-d-Galf, α-l-Rhap or by side chains of 2-O-linked β-d-Galf units. The structure of the polysaccharide was established by chemical and NMR spectroscopic analysis, and is new among natural polysaccharides. Moreover, in a preliminary study, this polysaccharide increased the lethality of mice submitted to polymicrobial sepsis induced by cecal ligation and puncture, probably due to the presence of galactofuranose, which have been shown to be highy immunogenic in mammals.  相似文献   

15.

Background and Objective

Conflicting data have been reported on the association between tumor necrosis factor (TNF) –308G>A and nitric oxide synthase 3 (NOS3) +894G>T polymorphisms and migraine. We performed a meta-analysis of case-control studies to evaluate whether the TNF –308G>A and NOS3 +894G>T polymorphisms confer genetic susceptibility to migraine.

Method

We performed an updated meta-analysis for TNF –308G>A and a meta-analysis for NOS3 +894G>T based on studies published up to July 2014. We calculated study specific odds ratios (OR) and 95% confidence intervals (95% CI) assuming allele contrast, dominant model, recessive model, and co-dominant model as pooled effect estimates.

Results

Eleven studies in 6682 migraineurs and 22591 controls for TNF –308G>A and six studies in 1055 migraineurs and 877 controls for NOS3 +894G>T were included in the analysis. Neither indicated overall associations between gene polymorphisms and migraine risk. Subgroup analyses suggested that the “A” allele of the TNF –308G>A variant increases the risk of migraine among non-Caucasians (dominant model: pooled OR = 1.82; 95% CI 1.15 – 2.87). The risk of migraine with aura (MA) was increased among both Caucasians and non-Caucasians. Subgroup analyses suggested that the “T” allele of the NOS3 +894G>T variant increases the risk of migraine among non-Caucasians (co-dominant model: pooled OR = 2.10; 95% CI 1.14 – 3.88).

Conclusions

Our findings appear to support the hypothesis that the TNF –308G>A polymorphism may act as a genetic susceptibility factor for migraine among non-Caucasians and that the NOS3 +894G>T polymorphism may modulate the risk of migraine among non-Caucasians.  相似文献   

16.
A girl, who died at 14 years of age from a rapidly progressive mitochondrial myopathy, was found to be heteroplasmic for a mutation in the mitochondrial tRNALeu(UUR) gene at position 3251. A large proportion of muscle fibres contained accumulations of abnormal mitochondria but no cytochrome c oxidase deficient fibres were present. Polarographic and enzymatic measurements on isolated muscle mitochondria revealed a profound isolated complex I deficiency. A high percentage of mutant mtDNA was found in muscle (94%), fibroblasts (93%), brain (90%), liver (80%), and heart (79%). The family was not available for investigation. For genotype to phenotype correlation studies, we investigated the proportion of mutated mtDNA in single muscle fibres of normal appearance and muscle fibres with accumulations of mitochondria. The proportion of mutant mtDNA was 28% (range < 0.3%–86%) in normal-appearing fibres and 61% (range 15%–88%) in abnormal fibres. The difference in the proportion of mutant mtDNA was highly significant (P < 0.001) between the two groups of fibres.  相似文献   

17.
Immunogold labeling was used to study the distribution of (1 → 3)-β-glucans and (1 → 3, 1 → 4)-β-glucans in the rice grain during cellularization of the endosperm. At approximately 3–5 d after pollination the syncytial endosperm is converted into a cellular tissue by three developmentally distinct types of wall. The initial free-growing anticlinal walls, which compartmentalize the syncytium into open-ended alveoli, are formed in the absence of mitosis and phragmoplasts. This stage is followed by unidirectional (centripetal) growth of the anticlinal walls mediated by adventitious phragmoplasts that form between adjacent interphase nuclei. Finally, the periclinal walls that divide the alveoli are formed in association with centripetally expanding interzonal phragmoplasts following karyokinesis. The second and third types of wall are formed alternately until the endosperm is cellular throughout. All three types of wall that cellularize the endosperm contain (1 → 3)-β-glucans but not (1 → 3, 1 → 4)-β-glucans, whereas cell walls in the surrounding maternal tissues contain considerable amounts of (1 → 3, 1 → 4)-β-glucans with (1 → 3)-β-glucans present only around plasmodesmata. The callosic endosperm walls remain thin and cell plate-like throughout the cellularization process, appearing to exhibit a prolonged juvenile state. Received: 7 January 1997 / Accepted: 11 February 1997  相似文献   

18.
Glycoside hydrolase family 1 (GH1) β-glucosidases play roles in many processes in plants, such as chemical defense, alkaloid metabolism, hydrolysis of cell wall-derived oligosaccharides, phytohormone regulation, and lignification. However, the functions of most of the 34 GH1 gene products in rice (Oryza sativa) are unknown. Os3BGlu6, a rice β-glucosidase representing a previously uncharacterized phylogenetic cluster of GH1, was produced in recombinant Escherichia coli. Os3BGlu6 hydrolyzed p-nitrophenyl (pNP)-β-d-fucoside (kcat/Km = 67 mm−1 s−1), pNP-β-d-glucoside (kcat/Km = 6.2 mm−1 s−1), and pNP-β-d-galactoside (kcat/Km = 1.6 mm−1s−1) efficiently but had little activity toward other pNP glycosides. It also had high activity toward n-octyl-β-d-glucoside and β-(1→3)- and β-(1→2)-linked disaccharides and was able to hydrolyze apigenin β-glucoside and several other natural glycosides. Crystal structures of Os3BGlu6 and its complexes with a covalent intermediate, 2-deoxy-2-fluoroglucoside, and a nonhydrolyzable substrate analog, n-octyl-β-d-thioglucopyranoside, were solved at 1.83, 1.81, and 1.80 Å resolution, respectively. The position of the covalently trapped 2-F-glucosyl residue in the enzyme was similar to that in a 2-F-glucosyl intermediate complex of Os3BGlu7 (rice BGlu1). The side chain of methionine-251 in the mouth of the active site appeared to block the binding of extended β-(1→4)-linked oligosaccharides and interact with the hydrophobic aglycone of n-octyl-β-d-thioglucopyranoside. This correlates with the preference of Os3BGlu6 for short oligosaccharides and hydrophobic glycosides.β-Glucosidases (EC 3.2.1.21) have a wide range of functions in plants, including acting in cell wall remodeling, lignification, chemical defense, plant-microbe interactions, phytohormone activation, activation of metabolic intermediates, and release of volatiles from their glycosides (Esen, 1993). They fulfill these roles by hydrolyzing the glycosidic bond at the nonreducing terminal glucosyl residue of a glycoside or an oligosaccharide, thereby releasing Glc and an aglycone or a shortened carbohydrate. The aglycone released from the glycoside may be a monolignol, a toxic compound, or a compound that further reacts to release a toxic component, an active phytohormone, a reactive metabolic intermediate, or a volatile scent compound (Brzobohatý et al., 1993; Dharmawardhama et al., 1995; Reuveni et al., 1999; Lee et al., 2006; Barleben et al., 2007; Morant et al., 2008). Indeed, the wide range of glucosides of undocumented functions found in plants suggests that many β-glucosidase functions may remain to be discovered.Plant β-glucosidases fall into related families that have been classified as glycosyl hydrolase (GH) families GH1, GH3, and GH5 (Henrissat, 1991; Coutinho and Henrissat, 1998, 1999). Of these, GH1 has been most thoroughly documented and shown to comprise a gene family encoding 40 putative functional GHs in Arabidopsis (Arabidopsis thaliana) and 34 in rice (Oryza sativa) in addition to a few pseudogenes (Xu et al., 2004; Opassiri et al., 2006). In addition to β-glucosidases, plant GH1 members include β-mannosidases (Mo and Bewley, 2002), β-thioglucosidases (Burmeister et al., 1997), and disaccharidases such as primeverosidase (Mizutani et al., 2002) as well as hydroxyisourate hydrolase, which hydrolyzes the internal bond in a purine ring rather than a glycosidic bond (Raychaudhuri and Tipton, 2002). The specificity for the glycone in GH1 enzymes varies. Some enzymes are quite specific for β-d-glucosides or β-d-mannosides, while many accept either β-d-glucosides or β-d-fucosides, and some also hydrolyze β-d-galactosides, β-d-xylosides, and α-l-arabinoside (Esen, 1993). However, most GH1 enzymes are thought to hydrolyze glucosides in the plant, and it is the aglycone specificity that determines the functions of most GH1 enzymes.Aglycone specificity of GH1 β-glucosidases ranges from rather broad to absolutely specific for one substrate and is not obvious from sequence similarity. For instance, maize (Zea mays) ZmGlu1 β-glucosidase hydrolyzes a range of glycosides, including its natural substrate, 2-O-β-d-glucopyranosyl-4-dihydroxy-1,4-benzoxazin-3-one (DIMBOAGlc), but not dhurrin, whereas sorghum (Sorghum bicolor) Dhr1, which is 72% identical to ZmGlu1, only hydrolyzes its natural cyanogenic substrate dhurrin (Verdoucq et al., 2003). Similarly, despite sharing over 80% amino acid sequence identity, the legume isoflavonoid β-glucosidases dalcochinase from Dalbergia cochinchinensis and Dnbglu2 from Dalbergia nigrescens hydrolyze each other''s natural substrate very poorly (Chuankhayan et al., 2007). Thus, small differences in the amino acid sequence surrounding the active site may be expected to account for significant differences in substrate specificity.GH1 is classified in GH clan A, which consists of GH families whose members have a (β/α)8-barrel structure with the catalytic acid/base on strand 4 of the β-barrel and the catalytic nucleophile on strand 7 (Henrissat et al., 1995; Jenkins et al., 1995). As such, all GH1 enzymes have similar overall structures, but it has been noted that four variable loops at the C-terminal end of the β-barrel strands, designated A, B, C, and D, account for much of the differences in the active site architecture (Sanz-Aparicio et al., 1998). The similar structures with great diversity in substrate specificity make plant GH1 enzymes an ideal model system to investigate the structural basis of substrate specificity. To date, seven plant β-glucosidase structures have been reported, including three closely related chloroplastic enzymes from maize (Czjzek et al., 2000, 2001), sorghum (Verdoucq et al., 2004), and wheat (Triticum aestivum; Sue et al., 2006), the cytoplasmic strictosidine β-glucosidase from Rauvolfia serpentine (Barleben et al., 2007), and the secreted enzymes white clover (Trifolium repens) cyanogenic β-glucosidase (Barrett et al., 1995), white mustard (Sinapsis alba) myrosinase (thioglucosidase; Burmeister et al., 1997), and rice Os3BGlu7 (BGlu1; Chuenchor et al., 2008). These enzymes hydrolyze substrates with a range of structures, but they cannot account for the full range of β-glucosidase substrates available in plants, and determining the structural differences that bring about substrate specificity differences in even closely related GH1 enzymes has proven tricky (Verdoucq et al., 2003, 2004; Sue et al., 2006; Chuenchor et al., 2008).Amino acid sequence-based phylogenetic analysis of GH1 enzymes encoded by the rice genome showed that there are eight clusters containing both rice and Arabidopsis proteins that are more closely related to each other than they are to enzymes from the same plants outside the clusters (Fig. 1; Opassiri et al., 2006). In addition, there are a cluster of sixteen putative β-glucosidases and a cluster of myrosinases in Arabidopsis without any closely related rice counterparts. Comparison with characterized GH1 enzymes from other plants reveals other clusters of related enzymes not found in rice or Arabidopsis, including the chloroplastic enzymes, from which the maize, sorghum, and wheat structures are derived, and the cytoplasmic metabolic enzymes, from with the strictosidine hydrolase structure is derived (Fig. 1). Therefore, although the known structures provide good tools for molecular modeling of plant enzymes, most rice and Arabidopsis GH1 enzymes lack a close correspondence in sequence and functional evolution to these structures, suggesting that the variable loops that determine the active site may be different. It would be useful, therefore, to know the structures and substrate specificities of representative members of each of the eight clusters seen in rice and Arabidopsis. To begin to acquire this information, we have expressed Os3BGlu6, a member of cluster At/Os 1 in Figure 1, characterized its substrate specificity, and determined its structure alone and in complex with a glycosyl intermediate and a nonhydrolyzable substrate analog.Open in a separate windowFigure 1.Simplified phylogenetic tree of the amino acid sequences of eukaryotic GH1 proteins with known structures and those of rice and Arabidopsis GH1 gene products. The protein sequences of the eukaryotic proteins with known structures are marked with four-character PDB codes for one of their structures, including Trifolium repens cyanogenic β-glucosidase (1CBG; Barrett et al., 1995), Sinapsis alba myrosinase (1MYR; Burmeister et al., 1997), Zea mays ZmGlu1 β-glucosidase (1E1F; Czjzek et al., 2000), Sorghum bicolor Dhr1 dhurrinase (1V02; Verdoucq et al., 2004), Triticum aestivum β-glucosidase (2DGA; Sue et al., 2006), Rauvolfia serpentina strictosidine β-glucosidase (2JF6; Barleben et al., 2007), and Oryza sativa Os3BGlu7 (BGlu1) β-glucosidase (2RGL; Chuenchor et al., 2008) from plants, along with Brevicoryne brassicae myrosinase (1WCG; Husebye et al., 2005), Homo sapiens cytoplasmic (Klotho) β-glucosidase (2E9M; Hayashi et al., 2007), and Phanerochaete chrysosporium (2E3Z; Nijikken et al., 2007), while those encoded in the Arabidopsis and rice genomes are labeled with the systematic names given by Xu et al. (2004) and Opassiri et al. (2006), respectively. One or two example proteins from each plant are given for each of the eight clusters of genes shared by Arabidopsis (At) and rice (Os) and the Arabidopsis-specific clusters At I (β-glucosidases) and At II (myrosinases), with the number of Arabidopsis or rice enzymes in each cluster given in parentheses. These sequences were aligned with all of the Arabidopsis and rice sequences in ClustalX (Thompson et al., 1997), the alignment was manually edited, all but representative sequences were removed, and the tree was calculated by the neighbor-joining method, bootstrapped with 1,000 trials, and then drawn with TreeView (Page, 1996). The grass plastid β-glucosidases, which are not represented in Arabidopsis and rice, are shown in the group marked “Plastid.” Percentage bootstrap reproducibility values are shown on internal branches where they are greater than 60%. Except those marked by asterisks, all external branches represent groups with 100% bootstrap reproducibility. To avoid excess complexity, those groups of sequences marked with asterisks are not monophyletic and represent more branches within the designated cluster than are shown. For a complete phylogenetic analysis of Arabidopsis and rice GH1 proteins, see Opassiri et al. (2006).  相似文献   

19.
20.

Background and Objective

Genetic factors are important in the pathogenesis of fractures. Notably, estrogen receptor α (ESR1) has been suggested as a possible candidate gene for hip fractures; however, published studies of ESR1 gene polymorphisms have been hampered by small sample sizes and inconclusive or ambiguous results. The aim of this meta-analysis is to investigate the associations between two novel common ESR1 polymorphisms (intron 1 polymorphisms PvuII-rs2234693: C>T and XbaI-rs9340799: A>G) and hip fracture.

Methods

Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of the association.

Results

Five case-control and three cohort studies were assessed, including a total of 1,838 hip fracture cases and 14,972 healthy controls. This meta-analysis revealed that the PvuII T allele is a highly significant risk factor for hip fracture susceptibility, with an effect magnitude similar in male and pre-menopausal and post-menopausal female patients. In stratified analysis based on ethnicity, the PvuII T allele remained significantly correlated with increased risk of hip fracture in Caucasian populations; this correlation, however, was not found in Asian populations. Unlike the PvuII polymorphism, we did not find significant differences in the XbaI (A>G) polymorphism allele or genotype distributions of hip fracture patients and controls. We also found no obvious association between the XbaI polymorphism and hip fracture in any of the racial or gender subgroups.

Conclusion

Our findings show that the ESR1 PvuII T allele may increase the risk of hip fracture and that the XbaI polymorphism is not associated with hip fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号