首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The disulfide-bonded loop of chromogranin B (CgB), a regulated secretory protein with widespread distribution in neuroendocrine cells, is known to be essential for the sorting of CgB from the trans-Golgi network (TGN) to immature secretory granules. Here we show that this loop, when fused to the constitutively secreted protein alpha1-antitrypsin (AT), is sufficient to direct the fusion protein to secretory granules. Importantly, the sorting efficiency of the AT reporter protein bearing two loops (E2/3-AT-E2/3) is much higher compared with that of AT with a single disulfide-bonded loop. In contrast to endogenous CgB, E2/3-AT-E2/3 does not undergo Ca2+/pH-dependent aggregation in the TGN. Furthermore, the disulfide-bonded loop of CgB mediates membrane binding in the TGN and does so with 5-fold higher efficiency if two loops are present on the reporter protein. The latter finding supports the concept that under physiological conditions, aggregates of CgB are the sorted units of cargo which have multiple loops on their surface leading to high membrane binding and sorting efficiency of CgB in the TGN.  相似文献   

2.
A S Dittié  L Thomas  G Thomas    S A Tooze 《The EMBO journal》1997,16(16):4859-4870
The composition of secretory granules in neuroendocrine and endocrine cells is determined by two sorting events; the first in the trans-Golgi complex (TGN), the second in the immature secretory granule (ISG). Sorting from the ISG, which may be mediated by the AP-1 type adaptor complex and clathrin-coated vesicles, occurs during ISG maturation. Here we show that furin, a ubiquitously expressed, TGN/endosomal membrane endoprotease, is present in the regulated pathway of neuroendocrine cells where it is found in ISGs. By contrast, TGN38, a membrane protein that is also routed through the TGN/endosomal system does not enter ISGs. Furin, however, is excluded from mature secretory granules, suggesting that the endoprotease is retrieved from the clathrin-coated ISGs. Consistent with this, we show that the furin cytoplasmic domain interacts with AP-1, a component of the TGN/ISG-localized clathrin sorting machinery. Interaction between AP-1 and furin is dependent on phosphorylation of the enzyme's cytoplasmic domain by casein kinase II. Finally, in support of a requirement for the phosphorylation-dependent association of furin with AP-1, expression of furin mutants that mimic either the phosphorylated or unphosphorylated forms of the endoprotease in AtT-20 cells demonstrates that the integrity of the CKII sites is necessary for removal of furin from the regulated pathway.  相似文献   

3.
In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.  相似文献   

4.
Granins are major constituents of dense-core secretory granules in neuroendocrine cells, but their function is still a matter of debate. Work in cell lines has suggested that the most abundant and ubiquitously expressed granins, chromogranin A and B (CgA and CgB), are involved in granulogenesis and protein sorting. Here we report the generation and characterization of mice lacking chromogranin B (CgB-ko), which were viable and fertile. Unlike neuroendocrine tissues, pancreatic islets of these animals lacked compensatory changes in other granins and were therefore analyzed in detail. Stimulated secretion of insulin, glucagon and somatostatin was reduced in CgB-ko islets, in parallel with somewhat impaired glucose clearance and reduced insulin release, but normal insulin sensitivity in vivo. CgB-ko islets lacked specifically the rapid initial phase of stimulated secretion, had elevated basal insulin release, and stored and released twice as much proinsulin as wildtype (wt) islets. Stimulated release of glucagon and somatostatin was reduced as well. Surprisingly, biogenesis, morphology and function of insulin granules were normal, and no differences were found with regard to β-cell stimulus-secretion coupling. We conclude that CgB is not required for normal insulin granule biogenesis or maintenance in vivo, but is essential for adequate secretion of islet hormones. Consequentially CgB-ko animals display some, but not all, hallmarks of human type-2 diabetes. However, the molecular mechanisms underlying this defect remain to be determined.  相似文献   

5.
E Chanat  U Weiss  W B Huttner    S A Tooze 《The EMBO journal》1993,12(5):2159-2168
The role of the single, highly conserved disulfide bond in chromogranin B (secretogranin I) on the sorting of this regulated secretory protein to secretory granules was investigated in the neuroendocrine cell line PC12. Treatment of PC12 cells with dithiothreitol (DTT), a membrane permeable thiol reducing agent known to prevent disulfide bond formation in intact cells, resulted in the secretion of newly synthesized chromogranin B, but only slightly decreased the intracellular storage of newly synthesized secretogranin II, a regulated secretory protein devoid of cysteines. The secretion of newly synthesized chromogranin B in the presence of DTT occurred with similar kinetics to those of a heparan sulfate proteoglycan, a known marker of the constitutive secretory pathway in PC12 cells. Analysis of the various secretory vesicles derived from the trans-Golgi network (TGN) indicated that DTT treatment diverted newly synthesized chromogranin B to constitutive secretory vesicles, whereas the packaging of secretogranin II into immature secretory granules was unaffected by the reducing agent. The chromogranin B molecules diverted to constitutive secretory vesicles, in contrast to those stored in secretory granules, were found to contain free sulfhydryl residues. The effect of DTT on chromogranin B occurred in the TGN rather than in the endoplasmic reticulum. We conclude that the sorting of CgB in the TGN to secretory granules is dependent upon the integrity of its single disulfide bond.  相似文献   

6.
Secretogranin III (SgIII) is one of the acidic secretory proteins, designated as granins, which are specifically expressed in neuronal and endocrine cells. To clarify its precise distribution in the anterior lobe of the rat pituitary gland, we raised a polyclonal antiserum against rat SgIII for immunocytochemical analyses. By immunohistochemistry using semithin sections, positive signals for SgIII were detected intensely in mammotropes and thyrotropes, moderately in gonadotropes and corticotropes, but not in somatotropes. The distribution pattern of SgIII in the pituitary gland was similar to that of chromogranin B (CgB), also of the granin protein family, suggesting that the expressions of these two granins are regulated by common mechanisms. The localization of SgIII in endocrine cells was confirmed by immunoelectron microscopy. In particular, secretory granules of mammotropes and thyrotropes were densely and preferentially co-labeled for SgIII and CgB in their periphery. Moreover, positive signals for SgIII were occasionally found in cells containing both prolactin and TSH in secretory granules. These lines of evidence suggest that SgIII and CgB are closely associated with the secretory granule membrane and that this membrane association might contribute to gathering and anchoring of other soluble constituents to the secretory granule membrane.  相似文献   

7.
Regulated secretory proteins are thought to be sorted in the trans-Golgi network (TGN) via selective aggregation. The factors responsible for this aggregation are unknown. We show here that two widespread regulated secretory proteins, chromogranin B and secretogranin II (granins), remain in an aggregated state when TGN vesicles from neuroendocrine cells (PC12) are permeabilized at pH 6.4 in 1-10 mM calcium, conditions believed to exist in this compartment. Permeabilization of immature secretory granules under these conditions allowed the recovery of electron dense cores. The granin aggregates in the TGN largely excluded glycosaminoglycan chains which served as constitutively secreted bulk flow markers. The low pH, high calcium milieu was sufficient to induce granin aggregation in the RER. In the TGN of pituitary GH4C1 cells, the proportion of granins conserved as aggregates was higher upon hormonal treatment known to increase secretory granule formation. Our data suggest that a decrease in pH and an increase in calcium are sufficient to trigger the selective aggregation of the granins in the TGN, segregating them from constitutive secretory proteins.  相似文献   

8.
Conjugation of ISG15 inhibits replication of several viruses. Here, using an expression system for assaying human and mouse ISG15 conjugations (ISGylations), we have demonstrated that vaccinia virus E3 protein binds and antagonizes human and mouse ISG15 modification. To study ISGylation importance in poxvirus infection, we used a mouse model that expresses deconjugating proteases. Our results indicate that ISGylation restricts in vitro replication of the vaccinia virus VVΔE3L mutant but unconjugated ISG15 is crucial to counteract the inflammatory response produced after VVΔE3L infection.  相似文献   

9.
The effects of brefeldin A (BFA) on membrane traffic between the trans-Golgi network (TGN) and the plasma membrane were investigated in intact PC12 cells and in a cell-free system derived from PC12 cells. In intact cells, BFA caused a virtually complete block of constitutive secretion, as indicated by the lack of release from, and accumulation in, the cells of a [35S]sulfate-labeled heparan sulfate proteoglycan (hsPG). Pulse-chase experiments with [35S]sulfate followed by subcellular fractionation showed that this block was due to the inhibition of formation of constitutive secretory vesicles (CSVs) from the TGN. BFA did not block the depolarization-induced release of [35S]sulfate-labeled chromogranin B (CgB) and secretogranin II (SgII) from secretory granules formed prior to the addition of the drug, showing that BFA does not block secretory granule fusion with the plasma membrane. The presence of BFA did, however, prevent the appearance of [35S]sulfate-labeled CgB and SgII in secretory granules, indicating that the drug inhibits the formation of secretory granules from the TGN. Evidence for a direct block of vesicle formation by BFA was obtained using a cell-free system derived from [35S]sulfate-labeled PC12 cells. In this system, low concentrations of BFA (5 micrograms/ml) inhibited the formation of the hsPG-containing CSVs and that of the SgII-containing secretory granules from the TGN to the same extent (50-60%) as, and in a non-additive manner with, the nonhydrolyzable GTP analogue GTP gamma S. Consistent with the inhibitory effects of BFA on vesicle formation from the TGN, BFA treatment of intact PC12 cells led to the hypersialylation of CgB, which presumably was due to the increased residence time of the protein in the TGN. In conclusion, our data are consistent with, and allow the generalization of, the concept that the BFA-induced block of anterograde membrane traffic results from the inhibition of vesicle formation from a donor compartment.  相似文献   

10.
For several secretory proteins, it has beenhypothesized that disulfide-bonded loop structures are required forsorting to secretory granules. To explore this hypothesis, we employeddithiothreitol (DTT) treatment in live pancreatic islets, as well as inPC-12 andGH4C1cells. In islets, disulfide reduction in the distal secretory pathwaydid not increase constitutive or constitutive-like secretion ofproinsulin (or insulin). In PC-12 cells, DTT treatment caused adramatic increase in unstimulated secretion of newly synthesizedchromogranin B (CgB), presumably as a consequence of reducing thesingle conserved chromogranin disulfide bond (E. Chanat, U. Weiss, W. B. Huttner, and S. A. Tooze. EMBO J. 12: 2159-2168, 1993). However, inGH4C1cells that also synthesize CgB endogenously, DTT treatment reducednewly synthesized prolactin and blocked its export, whereas newlysynthesized CgB was routed normally to secretory granules. Moreover, ontransient expression inGH4C1cells, CgA and a CgA mutant lacking the conserved disulfide bond showedcomparable multimeric aggregation properties and targeting to secretorygranules, as measured by stimulated secretion assays. Thus theconformational perturbation of regulated secretory proteins caused bydisulfide disruption leads to consequences in protein trafficking thatare both protein and cell type dependent.

  相似文献   

11.
We have investigated the role of different domains of a salivary basic proline-rich protein in intracellular transport and sorting of proline-rich proteins to the secretory granules. We have cloned a full-length cDNA of a basic proline-rich protein from the rat parotid and expressed it in AtT-20 cells. It was correctly sorted into secretory granules as shown by EM immunolocalization and by its presence in 8-bromocyclic AMP-stimulated secretion. Deletion of the N-terminal thirteen amino acid domain upstream from the proline-rich domain eliminated storage whereas deletion of the C-terminal 20-amino acid domain downstream from the proline-rich domain had no effect. Intracellular transport of full-length and mutant proline-rich proteins was unusually slow due to slow exit from the endoplasmic reticulum. However, the rate of transport increased with increasing level of expression for the full-length protein and the C-terminal deletion mutant. In contrast, the rate of transport of the N-terminal deletion mutant was independent of the level of expression. These results imply that the N-terminal domain is necessary for both storage and efficient intracellular transport. Moreover, interactions (self-aggregation?) that mediate sorting may begin as early as the endoplasmic reticulum.  相似文献   

12.
Knockdown of the actin-severing protein actin-depolymerizing factor (ADF)/cofilin inhibited export of an exogenously expressed soluble secretory protein from Golgi membranes in Drosophila melanogaster and mammalian tissue culture cells. A stable isotope labeling by amino acids in cell culture mass spectrometry–based protein profiling revealed that a large number of endogenous secretory proteins in mammalian cells were not secreted upon ADF/cofilin knockdown. Although many secretory proteins were retained, a Golgi-resident protein and a lysosomal hydrolase were aberrantly secreted upon ADF/cofilin knockdown. Overall, our findings indicate that inactivation of ADF/cofilin perturbed the sorting of a subset of both soluble and integral membrane proteins at the trans-Golgi network (TGN). We suggest that ADF/cofilin-dependent actin trimming generates a sorting domain at the TGN, which filters secretory cargo for export, and that uncontrolled growth of this domain causes missorting of proteins. This type of actin-dependent compartmentalization and filtering of secretory cargo at the TGN by ADF/cofilin could explain sorting of proteins that are destined to the cell surface.  相似文献   

13.
The role of clathrin in intracellular sorting was investigated by expression of a dominant-negative mutant form of clathrin, termed the hub fragment. Hub inhibition of clathrin-mediated membrane transport was established by demonstrating a block of transferrin internalization and an alteration in the intracellular distribution of the cation-independent mannose-6-phosphate receptor. Hubs had no effect on uptake of FITC-dextran, adaptor distribution, organelle integrity in the secretory pathway, or cell surface expression of constitutively secreted molecules. Hub expression blocked lysosomal delivery of chimeric molecules containing either the tyrosine-based sorting signal of H2M or the dileucine-based sorting signal of CD3γ, confirming a role for clathrin-coated vesicles (CCVs) in recognizing these signals and sorting them to the endocytic pathway. Hub expression was then used to probe the role of CCVs in targeting native molecules bearing these sorting signals in the context of HLA–DM and the invariant chain (I chain) complexed to HLA–DR. The distribution of these molecules was differentially affected. Accumulation of hubs before expression of the DM dimer blocked DM export from the TGN, whereas hubs had no effect on direct targeting of the DR–I chain complex from the TGN to the endocytic pathway. However, concurrent expression of hubs, such that hubs were building to inhibitory concentrations during DM or DR–I chain expression, caused cell surface accumulation of both complexes. These observations suggest that both DM and DR–I chain are directly transported to the endocytic pathway from the TGN, DM in CCVs, and DR–I chain independent of CCVs. Subsequently, both complexes can appear at the cell surface from where they are both internalized by CCVs. Differential packaging in CCVs in the TGN, mediated by tyrosine- and dileucine-based sorting signals, could be a mechanism for functional segregation of DM from DR–I chain until their intended rendezvous in late endocytic compartments.  相似文献   

14.
Chromogranin B (CgB, secretogranin I) is a secretory granule matrix protein expressed in a wide variety of endocrine cells and neurons. Here we generated transgenic mice expressing CgB under the control of the human cytomegalovirus promoter. Northern and immunoblot analyses, in situ hybridization and immunocytochemistry revealed that the exocrine pancreas was the tissue with the highest level of ectopic CgB expression. Upon subcellular fractionation of the exocrine pancreas, the distribution of CgB in the various fractions was indistinguishable from that of amylase, an endogenous constituent of zymogen granules. Immunogold electron microscopy of pancreatic acinar cells showed co-localization of CgB with zymogens in Golgi cisternae, condensing vacuoles/immature granules and mature zymogen granules; the ratio of immunoreactivity of CgB to zymogens being highest in condensing vacuoles/immature granules. CgB isolated from zymogen granules of the pancreas of the transgenic mice aggregated in a mildly acidic (pH 5.5) milieu in vitro, suggesting that low pH-induced aggregation contributed to the observed concentration of CgB in condensing vacuoles. Our results show that a neuroendocrine-regulated secretory protein can be sorted to exocrine secretory granules in vivo, and imply that a key feature of CgB sorting in the trans-Golgi network of neuroendocrine cells, i.e. its aggregation-mediated concentration in the course of immature secretory granule formation, also occurs in exocrine cells although secretory protein sorting in these cells is thought to occur largely in the course of secretory granule maturation.  相似文献   

15.
The sorting signals that direct proteins to the apical surface of polarized epithelial cells are complex and can include posttranslational modifications, such as N- and O-linked glycosylation. Efficient apical sorting of the neurotrophin receptor p75 is dependent on its O-glycosylated membrane proximal stalk, but how this domain mediates targeting is unknown. Protein oligomerization or clustering has been suggested as a common step in the segregation of all apical proteins. Like many apical proteins, p75 forms dimers, and we hypothesized that formation of higher-order clusters mediated by p75 dimerization and interactions of the stalk facilitate its apical sorting. Using fluorescence fluctuation techniques (photon-counting histogram and number and brightness analyses) to study p75 oligomerization status in vivo, we found that wild-type p75–green fluorescent protein forms clusters in the trans-Golgi network (TGN) but not at the plasma membrane. Disruption of either the dimerization motif or the stalk domain impaired both clustering and polarized delivery. Manipulation of O-glycan processing or depletion of multiple galectins expressed in Madin-Darby canine kidney cells had no effect on p75 sorting, suggesting that the stalk domain functions as a structural prop to position other determinants in the lumenal domain of p75 for oligomerization. Additionally, a p75 mutant with intact dimerization and stalk motifs but with a dominant basolateral sorting determinant (Δ250 mutant) did not form oligomers, consistent with a requirement for clustering in apical sorting. Artificially enhancing dimerization restored clustering to the Δ250 mutant but was insufficient to reroute this mutant to the apical surface. Together these studies demonstrate that clustering in the TGN is required for normal biosynthetic apical sorting of p75 but is not by itself sufficient to reroute a protein to the apical surface in the presence of a strong basolateral sorting determinant. Our studies shed new light on the hierarchy of polarized sorting signals and on the mechanisms by which newly synthesized proteins are segregated in the TGN for eventual apical delivery.  相似文献   

16.
The granin (chromogranin/secretogranin) family   总被引:27,自引:0,他引:27  
The chromogranins/secretogranins, referred to in abbreviated form as granins, are a family of acidic secretory proteins that are found in the secretory granules of a wide variety of endocrine cells and neurons, being stored together with many different peptide hormones and neuropeptides. The recent elucidation of their primary structure has provided insights into possible functions of these proteins. Moreover, the granins have been successfully used as markers for normal and neoplastic endocrine and neuronal cells, as well as model proteins to understand the sorting mechanism involved in the formation of secretory granules.  相似文献   

17.
In pancreatic beta-cells, the syntaxin 6 (Syn6) soluble N-ethylmaleimide-sensitive factor attachment protein receptor is distributed in the trans-Golgi network (TGN) (with spillover into immature secretory granules) and endosomes. A possible Syn6 requirement has been suggested in secretory granule biogenesis, but the role of Syn6 in live regulated secretory cells remains unexplored. We have created an ecdysone-inducible gene expression system in the INS-1 beta-cell line and find that induced expression of a membrane-anchorless, cytosolic Syn6 (called Syn6t), but not full-length Syn6, causes a prominent defect in endosomal delivery to lysosomes, and the TGN, in these cells. The defect occurs downstream of the endosomal branchpoint involved in transferrin recycling, and upstream of the steady-state distribution of mannose 6-phosphate receptors. By contrast, neither acquisition of stimulus competence nor the ultimate size of beta-granules is affected. Biosynthetic effects of dominant-interfering Syn6 seem limited to slowed intragranular processing to insulin (achieving normal levels within 2 h) and minor perturbation of sorting of newly synthesized lysosomal proenzymes. We conclude that expression of the Syn6t mutant slows a rate-limiting step in endosomal maturation but provides only modest and potentially indirect interference with regulated and constitutive secretory pathways, and in TGN sorting of lysosomal enzymes.  相似文献   

18.
Chromogranin B (CgB, also called secretogranin I) is a secretory protein sorted to secretory granules in a wide variety of endocrine cells and neurons. Unexpectedly, after stimulation of regulated secretion in the neuroendocrine cell line PC12, a fraction of the exocytosed CgB was not released into the medium but remained associated with the plasma membrane. The addition of exogenous CgB to unstimulated cells did not result in the appearance of cell surface CgB, suggesting that the presence of cell surface CgB could not be accounted for by adsorption of released CgB to the cell surface. Upon further incubation of stimulated PC12 cells, the surface CgB was internalized by the cells and largely degraded. The surface CgB was not released by exposure to pH 11, yet it partitioned in the aqueous phase upon Triton X-114 phase separation. Subcellular fractionation and differential extraction studies showed that the membrane-associated CgB constituted at least 10% of the total cellular CgB. These observations suggest that (a) the appearance of CgB at the cell surface is due to fusion of secretory granules with the plasma membrane and (b) a fraction of CgB is present in tight association with the secretory granule membrane. We propose a model in which membrane-associated CgB, by virtue of its ability to interact in a homophilic manner with soluble CgB, plays a key role in the sorting and targeting of CgB to the regulated pathway.  相似文献   

19.
Essential vaccinia virus genes are often studied with conditional-lethal inducible mutants. Here, we constructed a deletion mutant lacking the essential H7R gene (the ΔH7 mutant) with an H7-expressing cell line. Compared to an inducible H7 mutant, the ΔH7 mutant showed a defect at an earlier step of virion membrane biogenesis, before the development of short crescent-shaped precursors of the viral envelope. Our studies refine the role of H7 in virion membrane biogenesis and highlight the values of analyzing deletion mutants.  相似文献   

20.
P-selectin is an adhesion receptor for leukocytes expressed on activated platelets and endothelial cells. The cytoplasmic domain of P-selectin was shown in vitro to contain signals required for both the sorting of this protein into storage granules and its internalization from the plasma membrane. To evaluate in vivo the role of the regulated secretion of P-selectin, we have generated a mouse that expresses P-selectin lacking the cytoplasmic domain (ΔCT mice). The deletion did not affect the sorting of P-selectin into α-granules of platelets but severely compromised the storage of P-selectin in endothelial cells. Unstored P-selectin was proteolytically shed from the plasma membrane, resulting in increased levels of soluble P-selectin in the plasma. The ΔCT–P-selectin appeared capable of mediating cell adhesion as it supported leukocyte rolling in the mutant mice. However, a secretagogue failed to upregulate leukocyte rolling in the ΔCT mice, indicating an absence of a releasable storage pool of P-selectin in the endothelium. Furthermore, the neutrophil influx into the inflamed peritoneum was only 30% of the wild-type level 2 h after stimulation. Our results suggest that different sorting mechanisms for P-selectin are used in platelets and endothelial cells and that the storage pool of P-selectin in endothelial cells is functionally important during early stages of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号