首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
植物尿苷二磷酸葡萄糖焦磷酸化酶(UGPase)是蔗糖合成与降解途径的关键酶。本研究采用水稻叶片离体培养方法,结合Northern杂交技术,研究了外源糖对水稻Ugp1基因表达的影响。研究结果表明,蔗糖、葡萄糖、果糖、光照均能上调水稻Ugp1基因的表达,同时这种上调表达依赖于己糖激酶;果糖能上调水稻成熟叶片中Ugp1基因的表达,但并不影响苗期叶片中Ugp1基因的表达,具组织特异性;葡萄糖和果糖协同作用对Ugp1基因的诱导表达强于蔗糖,这种诱导除依赖于己糖激酶外,还存在其它未知的调控途径。水稻中存在UGPase的多种异构体,蔗糖及光照可诱导水稻Ugp1基因的上调表达,但对水稻UGPase的多种异构体形式并无影响。研究结果将有助于深入了解水稻Ugp1基因与糖信号途径互作调控网络。  相似文献   

2.
3.
Wan L  Zha W  Cheng X  Liu C  Lv L  Liu C  Wang Z  Du B  Chen R  Zhu L  He G 《Planta》2011,233(2):309-323
Plant β-1,3-glucanases are involved in plant defense and development. In rice (Oryza sativa), 14 genes encoding putative β-1,3-glucanases have been isolated and sequenced. However, only limited information is available on the function of these β-1,3-glucanase genes. In this study, we report a detailed functional characterization of one of these genes, Osg1. Osg1 encodes a glucanase carrying no C-terminal extension. Osg1 was found to be expressed throughout the plant and highly expressed in florets, leaf sheaths, and leaf blades. Investigations using real-time PCR, immunocytochemical analysis, and a GUS-reporter gene driven by the Osg1 promoter indicated that Osg1 was mainly expressed at the late meiosis, early microspore, and middle microspore stages in the florets. To elucidate the role of Osg1, we suppressed expression of the Osg1 gene by RNA interference in transgenic rice. The silencing of Osg1 resulted in male sterility. The pollen mother cells appeared to be normal in Osg1-RI plants, but callose degradation was disrupted around the microspores in the anther locules of the Osg1-RI plants at the early microspore stage. Consequently, the release of the young microspores into the anther locules was delayed, and the microspores began to degenerate later. These results provide evidence that Osg1 is essential for timely callose degradation in the process of tetrad dissolution.  相似文献   

4.
  In the male sterile32(ms32)mutant in Arabidopsis thaliana, pollen development is affected during meiosis of pollen mother cells (PMCs). In normal wild-type (WT) anthers, callose is deposited around PMCs before and during meiosis, and after meiosis the tetrads have a complete callose wall. In ms32, PMCs showed initial signs of some callose deposition before meiosis, but it was degraded soon after, as was part of the cellulosic wall around the PMCs. The early dissolution of callose in ms32 was associated with the occurrence of extensive stacks of rough ER (RER) in tapetal cells. The stacks of RER were also observed in the WT tapetum, but at a later stage, i.e., after the tetrads were formed and when callose is normally broken down for release of microspores. Based on these observations it is suggested that: (1) callose degradation around developing microspores is linked to the formation of RER in tapetal cells, which presumably synthesize and/or secrete callase into the anther locule, and (2) mutation in MS32 disrupts the timing of these events. Received: 27 April 1999 / Revision accepted: 21 June 1999  相似文献   

5.
UDP-glucose is the universal activated form of glucose, employed in all organisms for glucosyl transfer reactions and as precursor for various activated carbohydrates. In animal and fungal metabolism, UDP-glucose is required for utilization of galactose and for the synthesis of glycogen, the major carbohydrate storage polymer. The formation of UDP-glucose is catalyzed by UDP-glucose pyrophosphorylase (UGPase), which is highly conserved among eukaryotes. Here, we present the crystal structure of yeast UGPase, Ugp1p. Both in solution and in the crystal, Ugp1p forms homooctamers, which represent the enzymatically active form of the protein. Ugp1p subunits consist of three domains, with the active site presumably located in the central SpsA GnT I core (SGC) domain. The association in the octamer is mediated by contacts between left-handed beta-helices in the C-terminal domains, forming a toroidal solenoid structure in the core of the complex. The catalytic domains attached to this scaffold core do not directly contact each other, consistent with simple Michaelis-Menten kinetics found for Ugp1p. Conservation of hydrophobic residues at the subunit interfaces suggests that all fungal and animal homologs form this quarternary structure arrangement in contrast to monomeric plant UGPases, which have charged residues at these positions. Implications of this oligomeric arrangement for regulation of UGPase activity in fungi and animals are discussed.  相似文献   

6.
Female sterility associated with the presence of callose in the nucellus at anthesis was studied in an F1 progeny of two alfalfa plants displaying 5 and 81% ovule sterility. Transgressive segregation was observed and 100% sterile plants were obtained. Two of the sterile plants were used for cytological analyses on sectioned and stain-cleared whole ovules, in comparison to a 100% fertile full sib plant. The first sign of sterility was callose deposition in the nucellus cell walls surrounding the sporogenous cells of the young ovules. At the same stage, no trace of callose was present in ovule primordia of the fertile plant. Megaspore mother cells differentiated in both fertile and sterile ovules and meiosis was initiated, as indicated by chromatin patterning typical of a zygotene stage. However, meiosis was never completed in the sterile plants. In the control, callose was deposited around the meiocyte and as sects between the cells of the dyads and tetrads during meiosis, and disappeared after the completion of meiosis; an embryo sac developed and female fertility was normal. In the sterile ovules, some nucellus cells enlarged and callose accumulation continued forming thick deposits. At anthesis, the sterile ovules lacked an embryo sac and showed massive callose accumulation in the nucellus. Male fertility was normal in female-sterile plants, thus a female-specific arrest of sporogenesis appears to be the cause of sterility. Pistil development was aberrant in some sterile genotypes, even with arrested pistil growth in early flower buds.  相似文献   

7.
Quantitative ovule sterility in Medicago sativa   总被引:2,自引:0,他引:2  
 Ovule sterility was found to be associated with callose deposition in B17, a plant with low fertility from the alfalfa cv Blazer XL. The site of callose deposition, which began during embryo-sac development and affected 81% of the ovules in mature florets, at random positions in the ovary, appeared to be the embryo-sac wall or the integumentary tapetum. The fertile ovules of B17 transmitted the ovule-sterility trait to the progenies, thereby demonstrating a sporophytic genetic control. B17 was crossed with P13, a Peruvian plant with 5% callosized ovules, to generate reciprocal F1 populations, and an F1 plant (91% callosized ovules) was used to obtain the backcross populations. B17 was also crossed to unrelated, highly fertile, plants. S1 progenies from B17 and P13 were also studied. All the progeny populations displayed continuous variation for the percentage of sterile ovules, supporting a polygenic control. Narrow-sense heritability estimated by offspring-midparent regression was 0.85. Reduced transmission of the sterility trait through the pollen is hypothesized to explain the difference between reciprocal crosses. Six progeny plants showing 100% callosized ovules proved to be female-sterile. Ovule sterility could be an important component of the generally observed low realized seed potential in alfalfa. Received: 2 March 1998 / Accepted: 28 May 1998  相似文献   

8.
9.
Male reproductive development of rice (Oryza sativa L.) is very sensitive to drought. A brief, transitory episode of water stress during meiosis in pollen mother cells of rice grown under controlled environmental conditions induced pollen sterility. Anthers containing sterile pollen were smaller, thinner, and often deformed compared to normal anthers of well-watered plants. Only about 20% of the fully developed florets in stressed plants produced grains, compared to 90% in well-watered controls. Water stress treatments after meiosis were progressively less damaging. Levels of starch and sugars and activities of key enzymes involved in sucrose cleavage and starch synthesis were analyzed in anthers collected at various developmental stages from plants briefly stressed during meiosis and then re-watered. Normal starch accumulation during pollen development was strongly inhibited in stress-affected anthers. During the period of stress, both reducing and non-reducing sugars accumulated in anthers. After the relief of stress, reducing sugar levels fell somewhat below those in controls, but levels of non-reducing sugars remained higher than in controls. Activities of acid invertase and soluble starch synthase in stressed anthers were lower than in controls at comparable stages throughout development, during as well as after stress. Stress had no immediate effect on ADP-glucose pyrophosphorylase activity, but had an inhibitory aftereffect throughout post-stress development. Sucrose synthase activity, which was, relatively speaking, much lower than acid invertase activity, was only slightly suppressed by stress. The results show that it is unlikely that pollen sterility, or the attendant inhibition of starch accumulation, in water-stressed rice plants are caused by carbohydrate starvation per se. Instead, an impairment of enzymes of sugar metabolism and starch synthesis may be among the potential causes of this failure.  相似文献   

10.
The RecA/RAD51 family of rice (Oryza sativa) consists of at least 13 members. However, the functions of most of these members are unknown. Here the functional characterization of one member of this family, RAD51C, is reported. Knockout (KO) of RAD51C resulted in both female and male sterility in rice. Transferring RAD51C to the RAD51C-KO line restored fertility. Cytological analyses showed that the sterility of RAD51C-KO plants was associated with abnormal early meiotic processes in both megasporocytes and pollen mother cells (PMCs). PMCs had an absence of normal pachytene chromosomes and had abnormal chromosome fragments. The RAD51C-KO line showed no obvious difference from wild-type plants in mitosis in the anther wall cells, which was consistent with the observation that the RAD51C-KO line did not have obviously abnormal morphology during vegetative development. However, the RAD51C-KO line was sensitive to different DNA-damaging agents. These results suggest that RAD51C is essential for reproductive development by regulating meiosis as well as for DNA damage repair in somatic cells.  相似文献   

11.
The effects of inorganic phosphate (Pi) status, light/dark and sucrose on expression of UDP-glucose pyrophosphorylase (UGPase) gene (Ugp), which is involved in sucrose/ polysaccharides metabolism, were investigated using Arabidopsis wild-type (wt) plants and mutants impaired in Pi and carbohydrate status. Generally, P-deficiency resulted in increased Ugp expression and enhanced UGPase activity and protein content, as found for wt plants grown on P-deficient and complete nutrient solution, as well as for pho1 (P-deficient) mutants. Ugp was highly expressed in darkened leaves of pho1, but not wt plants; daily light exposure enhanced Ugp expression both in wt and pho mutants. The pho1 and pho2 (Pi-accumulating) mutations had little or no effect on leaf contents of glucose and fructose, regardless of light/dark conditions, whereas pho1 plants had much higher levels of sucrose and starch in the dark than pho2 and wt plants. The Ugp was up-regulated when leaves were fed with sucrose in wt plants, but the expression in pho2 background was much less sensitive to sucrose supply than in wt and pho1 plants. Expression of Ugp in pgm1 and sex1 mutants (impaired in starch/sugar content) was not dependent on starch content, and not tightly correlated with soluble sugar status. Okadaic acid (OKA) effectively blocked the P-starvation and sucrose-dependent expression of Ugp in excised leaves, whereas staurosporine (STA) had only a small effect on both processes (especially in -P leaves), suggesting that P-starvation and sucrose effects on Ugp are transmitted by pathways that may share similar components with respect to their (in) sensitivity to OKA and STA. The results of this study suggest that Ugp expression is modulated by an interaction of signals derived from P-deficiency status, sucrose content and dark/light conditions, and that light/sucrose and P-deficiency may have additive effects on Ugp expression.  相似文献   

12.
Seventeen independent transgenic rice plants with the maize anthocyanin regulatory gene Lc under control of the CaMV 35S promoter were obtained and verified by molecular identification. Ten plants showed red spikelets during early development of florets, and the degenerate florets were still red after heading. Additionally, these plants exhibited intense pigmentation on the surface of the anther and the bottom of the ovary. They were unable to properly bloom and were completely sterile. Following pollination with normal pollen, these plants yielded red caryopses but did not mature normally. QRT-PCR analysis indicated that mRNA accumulation of the CHS-like gene encoding a chalcone synthase-related protein was increased significantly in the sterile plant. This is the first report to suggest that upregulation of the CHS gene expression may result in rice sterility and affect the normal development of rice seeds.  相似文献   

13.
Each of the four microsporangia has three or four wall layers, a uninucleate tapetum of various cell shapes with nuclei that remain in prophase, and 12-24 pollen mother cells (PMCs). A sterile transverse septum sometimes bisects the microsporangium. PMCs secrete callose but not uniformly, and contact among them continues through meiosis. Simultaneous cytokinesis by furrowing isolates each microspore in callose, which later disperses. The separated microspores become vacuolate, undergo mitosis to become pollen, and later become filled with food reserves. Endothecial wall thickening and tapetal dissolution occur after pollen engorgement. Calcium oxalate crystals form in tapetal cells during the sporogenous stage, reach maximum size during early meiosis, and remain prominent until tapetal dissolution.  相似文献   

14.
The rice (Oryza sativa) genome contains 18 copies of genes of the ARGONAUTE (AGO) family. Although AGO members play important roles in RNA-mediated silencing during plant development, a family member that is specifically involved in sexual reproduction has not been identified in plants. We identified the rice AGO gene MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1) from the analysis of seed-sterile mutants. In the mel1 mutant, chromosome condensation was arrested at early meiotic stages and irregularly sized, multinucleated, and vacuolated pollen mother cells (PMCs) frequently appeared in developing anthers. In addition, histone H3 lysine-9 dimethylation of pericentromeres was rarely reduced and modification of the nucleolar-organizing region was altered in mel1 mutant PMCs. The mutation also affected female germ cell development. These results indicate that the germ cell-specific rice MEL1 gene regulates the cell division of premeiotic germ cells, the proper modification of meiotic chromosomes, and the faithful progression of meiosis, probably via small RNA-mediated gene silencing, but not the initiation and establishment of germ cells themselves.  相似文献   

15.
On squash preparations of anthers from pollen fertile and sterile plants of sweet pepper (Capsicum annuum L. cv. Severka) callose envelopes of microsporocytes, stained specifically with resorcin blue, were investigated microscopically. During normal course of microsporogenesis in fertile plants the envelopes remained intact up to the stage of microspore tetrads. Then callose begins to dissolve, and that from individual microspores towards the envelope periphery. In sterile analogues of the same cultivar the callose breakdown occurred precociously, usually in the course of the second, but sometimes as early as the first meiotic division of PMCs. Having completed meiosis sporadic microsporocytes formed microspore tetrads. Most PMCs contained an undivided four-nucleate protoplast rimmed with a narrow or wider unstained zone of dissolved callose. In certain cases more condensed callose septa pointing to the furrows on the surface of the PMC protoplast were well-observable in this lytic zone, as a residuum of normal mechanism of tetradogenesis.  相似文献   

16.
We have used fluorescent, confocal laser and transmission electron microscopy (TEM) to examine cellular organisations, including callose (1,3-beta-glucan) behaviour, in meiotic and early post-meiotic rice anthers. These features are critical for pollen formation and provide information to better understand pollen sterility caused by abiotic stress in rice and other monocotyledonous species. Among organelles during meiosis, abundant plastids, mitochondria and nuclei of the anther cells show distinctive features. Chloroplasts in the endothecium store starch and indicate a potential for photosynthetic activity. During meiosis, the middle layer cells are markedly compressed and at the tetrad stage are either vacuolated or filled with degenerating electron-opaque organelles. Viable mitochondria, stained with Rhodamine 123, are seen in the endothecium and tapetum, but the mitochondria in the middle layer are not stained during meiosis. The radial walls of the tapetum are disorganised and degenerating, indicating the formation of a syncytium; pro-orbicules are located at the locular walls at the tetrad stage. Immunohistochemical studies show that the sporogenous cells are entirely enveloped by a thick callosic layer at early meiosis. Cell plate callose was assembled in a plane between the dyad cells. In the tetrads, however, callose formed only at the centre, showing that the tetrad microspores are not enveloped but separated by callose walls. Thick, undulating electron-opaque walls around the tetrads indicate the beginning of exinous microspore wall differentiation.  相似文献   

17.
A new class of male gametocide is described: trihalomethylsulfonamides, the most active example of this class being trifluoromethylsulfonamide (TFMSA). TFMSA induces male sterility, specifically, without detectable effects on other plant functions. Male sterility induction in maize (Zea mays, gaspe flint) required minimally 200 g TFMSA per plant and this rate was used in a metabolite sampling time-course experiment to determine the earliest detectable change in metabolites of developing florets. Metabolites profiled were amino acids, callose, fatty acids, flavones, phenylpropenoids, sporopollenin and starch, all of which are related to successful pollen development. Changes in proline and starch were the earliest statistically significant differences observed between florets of control plants and TFMSA-treated plants. These metabolic differences were observed before symptoms of pollen failure were evident. In subsequent experiments, transient increases in glume proline and decreases in anther proline were linearly related to sub-effective rates of TFMSA (0, 25, 50, 75 and 100 g plant–1). Increases in glume proline faded during development whereas decreases in anther proline linearly related to TFMSA rate became more prominent. Changes in all other metabolites profiled were not linearly related to TFMSA rate. Related experiments showed that florets from TFMSA-treated plants were not capable of converting 14C-glutamate to 14C-proline, and the anther transport capacity of 14C-proline in TFMSA-treated plants was significantly reduced. It is inferred that TFMSA induces male sterility by interfering with the transport of proline from the site of synthesis to the site of accumulation, resulting in feedback inhibition of proline biosynthesis, ultimately starving the developing anther of proline.  相似文献   

18.
We have studied the microtubule cytoskeleton structure and callose walls deposition in the course of meiosis at the cytomictic and normal tobacco (N. tabacum L.) PMCs. It was ascertained that microtubule cytoskeleton did not play an evident part in the process of cytomixis. Increased cytomixis frequency probably is determined by irregular callose walls deposition. The possible reasons of nuclear material passage between tobacco PMCs at the cellular level are discussed.  相似文献   

19.
The expression of the enzyme UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) from potato (Solanum tuberosum L.) was analysed with respect to sink-source interactions and potato tuber storage. The highest level of expression was found in developing tubers, the strongest sink tissue. Storage of mature tubers at low temperatures led to an increase of the steady-state level of UGPase mRNA, implicating a role of this enzyme in the process of cold-sweetening. Transgenic plants were created expressing UGPase antisensee RNA under the control of the 35S promoter of the Cauliflower Mosaic Virus with the polyadenylation signal of the octopine-synthase gene. Regenerated plants were tested for reduction of UGPase at the RNA, protein and activity levels. Plants with a 95%–96% reduction of UGPase activity in growing tubers showed no change in growth and development. Also, carbohydrate metabolism in tubers of these plants was not substantially affected, indicating that only 4% of the wild-type UGPase activity is sufficient for the enzyme to function in plant growth and development.Abbreviations cDNA copy DNA - CaMV Cauliflower Mosaic Virus - Glc1P glucose-1-phosphate - UDPGlc UDP-glucose - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - UGPase UDP-glucose pyrophosphorylase We are grateful to Dr. J.P. Spychalla (Cambridge Laboratory, Norwich, Norfolk, UK) for providing antiserum directed against the potato tuber UGPase protein. We thank J. Bergstein and B. Schäfer for photographic work, J. Dietze for plant transformation and R. Breitfeld and B. Burose for taking care of the greenhouse plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号