首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chromosomal passenger complex (CPC) is a key regulator of mitosis in eukaryotes. It comprises four essential and conserved proteins known in mammals/yeasts as Aurora B/Ipl1, INCENP/Sli15, Survivin/Bir1, and Borealin/Nbl1. These subunits act together in a highly controlled fashion. Regulation of Aurora B/Ipl1 kinase activity and localization is critical for CPC function. Although regulation of CPC localization and kinase activity in vivo has been investigated elsewhere, studies on the complete, four-subunit CPC and its basic biochemical properties are only beginning. Here we describe the biochemical characterization of purified and complete Saccharomyces cerevisiae four-subunit CPC. We determined the affinity of the CPC for microtubules and demonstrated that the binding of CPC to microtubules is primarily electrostatic in nature and depends on the acidic C-terminal tail (E-hook) of tubulin. Moreover, phosphorylation of INCENP/Sli15 on its microtubule binding region also negatively regulates CPC affinity for microtubules. Furthermore, we show that phosphorylation of INCENP/Sli15 is required for activation of the kinase Aurora B/Ipl1 and can occur in trans. Although phosphorylation of INCENP/Sli15 is essential for activation, we determined that a version of the CPC lacking the INCENP/Sli15 microtubule binding region (residues Glu-91 to Ile-631) is able to form an intact complex that retains microtubule binding activity. Thus, we conclude that this INCENP/Sli15 linker domain plays a largely regulatory function and is not essential for complex formation or microtubule binding.  相似文献   

2.
Dynamic microtubules facilitate chromosome arrangement before anaphase, whereas during anaphase microtubule stability assists chromosome separation. Changes in microtubule dynamics at the metaphase-anaphase transition are regulated by Cdk1. Cdk1-mediated phosphorylation of Sli15/INCENP promotes preanaphase microtubule dynamics by preventing chromosomal passenger complex (CPC; Sli15/INCENP, Bir1/Survivin, Nbl1/Borealin, Ipl1/Aurora) association with spindles. However, whether Cdk1 has sole control over microtubule dynamics, and how CPC-microtubule association influences microtubule behavior, are unclear. Here, we show that Ipl1/Aurora-dependent phosphorylation of Sli15/INCENP modulates microtubule dynamics by preventing CPC binding to the preanaphase spindle and to the central spindle until late anaphase, facilitating spatiotemporal control of microtubule dynamics required for proper metaphase centromere positioning and anaphase spindle elongation. Decreased Ipl1-dependent Sli15 phosphorylation drives direct CPC binding to microtubules, revealing how the CPC influences microtubule dynamics. We propose that Cdk1 and Ipl1/Aurora cooperatively modulate microtubule dynamics and that Ipl1/Aurora-dependent phosphorylation of Sli15 controls spindle function by excluding the CPC from spindle regions engaged in microtubule polymerization.  相似文献   

3.
Kinetochore-passenger complexes in metazoans have been proposed to coordinate the segregation of chromosomes in anaphase with the induction of cytokinesis. Passenger protein homologues in the budding yeast Saccharomyces cerevisiae play a critical role early in mitosis, ensuring proper biorientation of kinetochore-microtubule attachments. Our recent work has implicated the passenger protein Bir1p (Survivin) and the inner kinetochore complex centromere binding factor 3 (CBF3) in the regulation of septin dynamics during anaphase. Here, we present data that is consistent with there being multiple passenger protein complexes. Our data show that Bir1p links together a large passenger complex containing Ndc10p, Sli15p (INCENP), and Ipl1p (Aurora B) and that the interaction between Bir1p and Sli15p is specifically involved in regulating septin dynamics during anaphase. Neither conditional alleles nor mutants of BIR1 that disrupt the interaction between Bir1p and Sli15p resulted in mono-attached kinetochores, suggesting that the Bir1p-Sli15p complex functions in anaphase and independently from Sli15p-Ipl1p complexes. We present a model for how discrete passenger complexes coordinate distinct aspects of mitosis.  相似文献   

4.
The inhibitor of apoptosis (IAP) family of proteins contains a subset of members characterized by the presence of highly conserved baculoviral IAP repeat (BIR) domains. Recent work has shown that some of these BIR-domain proteins play a prominent role in the regulation of cell division, in particular at the stage of chromosome segregation and cytokinesis. We and others have shown that the Schizosaccharomyces pombe BIR-domain protein, Bir1p/Pbh1p/Cut17p, is important for the regulation of mitosis. Here we further characterize S. pombe Bir1p using methods of cell biology and genetics. We show that Bir1p is dispersed throughout the nucleus during the cell cycle. In addition, a significant part of Bir1p is also detected at the kinetochores and the spindle midzone during mitosis and meiosis. Time-lapse microscopy studies suggest that Bir1p relocates from the kinetochores to the spindle at the end of anaphase A. Bir1p colocalizes with the S. pombe Aurora kinase homolog Aim1p, a protein essential for mitosis, at the kinetochores as well as the spindle midzone during mitosis, and functional Bir1p is essential for localization of Aim1p to the kinetochores and the spindle midzone. Analyses of bir1 conditional mutants revealed that Bir1p is essential for chromosome condensation during mitosis. In addition, anaphase cells show the presence of lagging chromosomes and a defect in spindle elongation. We conclude that Bir1p is important for multiple processes that occur during mitosis in S. pombe.  相似文献   

5.
The Saccharomyces cerevisiae chromosomal passenger proteins Ipl1 (Aurora B) and Sli15 (INCENP) are required for the tension checkpoint, but the role of the third passenger, Bir1, is controversial. We have isolated a temperature-sensitive mutant (bir1-107) in the essential C-terminal region of Bir1 known to be required for binding to Sli15. This allele reveals a checkpoint function for Bir1. The mutant displays a biorientation defect, a defective checkpoint response to lack of tension, and an inability to detach mutant kinetochores. Ipl1 localizes to aberrant foci when Bir1 localization is disrupted in the bir1-107 mutant. Thus, one checkpoint role of Bir1 is to properly localize Ipl1 and allow detachment of kinetochores. Quantitative analysis indicates that the chromosomal passengers colocalize with kinetochores in G1 but localize between kinetochores that are under tension. Bir1 localization to kinetochores is maintained in an mcd1-1 mutant in the absence of tension. Our results suggest that the establishment of tension removes Ipl1, Bir1, and Sli15, and their kinetochore detachment activity, from the vicinity of kinetochores and allows cells to proceed through the tension checkpoint.  相似文献   

6.
Cytoskeletal rearrangements during mitosis must be co-ordinated with chromosome movements. The 'chromosomal passenger' proteins [1], which include the inner centromere protein (INCENP [2]), the Aurora-related serine-threonine protein kinase AIRK2 [3,4] and the unidentified human autoantigen TD-60 [5], have been suggested to integrate mitotic events. These proteins are chromosomal until metaphase but subsequently transfer to the midzone microtubule array and the equatorial cortex during anaphase. Disruption of INCENP function affects both chromosome segregation and completion of cytokinesis [6,7], whereas interference with AIRK2 function primarily affects cytokinesis [3,8]. Here, we report that INCENP is stockpiled in Xenopus eggs in a complex with Xenopus AIRK2 (XAIRK2), and that INCENP and AIRK2 kinase bind one another in vitro. This association was found to be evolutionarily conserved. Sli15p, the binding partner of yeast Aurora kinase Ipl1p, can be recognized as an INCENP family member because of the presence of a conserved carboxy-terminal sequence region, which we term the IN box. This interaction between INCENP and Aurora kinase was found to be biologically relevant. INCENP and AIRK2 colocalized exactly in human cells, and INCENP was required to target AIRK2 correctly to centromeres and the central spindle.  相似文献   

7.
Accurate chromosome segregation requires the capture of sister kinetochores by microtubules from opposite spindle poles prior to the initiation of anaphase, a state termed chromosome biorientation. In the budding yeast Saccharomyces cerevisiae, the conserved protein kinase Ipl1 (Aurora B in metazoans) is critical for ensuring correct chromosomal alignment. Ipl1 associates with its activators Sli15 (INCENP), Nbl1 (Borealin), and Bir1 (Survivin), but while Sli15 clearly functions with Ipl1 to promote chromosome biorientation, the role of Bir1 has been uncertain. Using a temperature-sensitive bir1 mutant (bir1-17), we show that Bir1 is needed to permit efficient chromosome biorientation. However, once established, chromosome biorientation is maintained in bir1-17 cells at the restrictive temperature. Ipl1 is partially delocalized in bir1-17 cells, and its protein kinase activity is markedly reduced under nonpermissive conditions. bir1-17 cells arrest normally in response to microtubule depolymerization but fail to delay anaphase when sister kinetochore tension is reduced. Thus, Bir1 is required for the tension checkpoint. Despite their robust mitotic arrest in response to nocodazole, bir1-17 cells are hypersensitive to microtubule-depolymerizing drugs and show a more severe biorientation defect on recovery from nocodazole treatment. The role of Bir1 therefore may become more critical when spindle formation is delayed.Accurate chromosome segregation during anaphase is vital for ensuring the maintenance of genome integrity during cell division and, in turn, depends critically on the correct attachment of sister chromatids to kinetochore microtubules. For high-fidelity chromosome segregation, kinetochores must capture spindle microtubules such that sister chromatids are connected to opposite spindle poles (termed amphitelic attachment or chromosome biorientation), ensuring that they are pulled in opposite directions during the subsequent anaphase.In the budding yeast Saccharomyces cerevisiae, the majority of sister chromatids remain attached to microtubules from a single pole (mono-oriented) without the intervention of a correction mechanism to promote amphitelic attachment (36), a key element of which is the Ipl1 protein kinase. Ipl1 has been proposed to promote the detachment of incorrect microtubule-kinetochore connections so that correct attachments subsequently can form (35). In the absence of Ipl1 function, at the point of anaphase onset around two-thirds of sister chromatids remain mono-oriented, attached to microtubules originating from a single pole to which they then cosegregate (35). Kinetochore proteins such as Dam1 and Ndc80 have been proposed as key Ipl1 substrates for their role in promoting chromosome biorientation (6, 41). Ipl1 kinase also is required for cells to activate the spindle checkpoint in the absence of tension on kinetochore-microtubule attachments, and hence ipl1 mutant cells fail to delay anaphase despite their many mono-oriented chromosomes (2). Depending on the circumstances, the checkpoint role of Ipl1 involves either the generation of unattached kinetochores (26) or the phosphorylation of the checkpoint protein Mad3 (19). Ipl1 also is required in the absence of the BimC family kinesin Cin8p, probably reflecting a role in spindle assembly (9, 21), and is involved in regulating spindle disassembly following anaphase (5).Ipl1 kinase is highly conserved, and its metazoan ortholog (Aurora B) is involved in both chromosome biorientation and the spindle assembly checkpoint, forming part of the chromosomal passenger complex that also contains INCENP, Survivin, and Borealin (27, 40). The chromosomal passenger complex is so called because although these proteins colocalize throughout the cell cycle, their location changes dynamically from the chromosome arms in G1 to centromeres in prometaphase and finally to the central spindle in anaphase. Such coordinated behavior is consistent with the recent crystal structure of the complex between INCENP, Survivin, and Borealin, in which they interact via tightly entwined helical domains (16).In budding yeast, Ipl1 interacts with Sli15, Bir1, and Nbl1, which have been proposed to be orthologs of INCENP, Survivin, and Borealin, respectively (6, 18). All three proteins are the products of essential genes. Like INCENP, Sli15 has a conserved C-terminal domain (the IN-box) that is required for Ipl1 kinase activation, and sli15 mutants have a phenotype that is very similar to that of ipl1 mutants (17, 18). Although yeast cells with reduced Bir1 function show chromosome instability, the first-described bir1 mutants failed to reveal a chromosome biorientation defect but instead conferred defects in septin dynamics during anaphase (38). Bir1 interacts with Ndc10 and is responsible for taking Ndc10 to the anaphase spindle (38, 42, 43), a role that may be linked to this septin defect (4). Yeast Bir1 is much larger than its metazoan counterpart (Survivin) and shows little sequence conservation outside the conserved BIR domain, yet this region is nonessential in yeast (42) and therefore unlikely to be involved in chromosome biorientation. Conversely, metazoan Borealin proteins are much larger than yeast Nbl1, which consists of little more than the helical region proposed to form the tight interaction with INCENP/Sli15 and Survivin/Bir1 complexes. Furthermore, a significant fraction of both Sli15 and Bir1 are present in a complex that lacks Ipl1 (29, 38) and that recent work has shown to contain Nbl1 (25), bringing into question the importance of Bir1 for chromosome biorientation. The extent to which Bir1 and Survivin function in conserved or analogous ways within the chromosomal passenger complexes of yeast and metazoans therefore was unclear at the start of our work.The Sli15-Bir1 complex has been proposed to interact both with microtubules (via the central domain of Sli15) and with kinetochores (through the Bir1-Ndc10 interaction) and through these interactions to function as a tension sensor, relaying information concerning the state of microtubule-kinetochore connections to Ipl1 kinase. Thus, when chromosomes are mono-oriented, the Bir1-Sli15-Nbl1 complex might activate Ipl1 in the absence of tension so as to promote chromosome biorientation by detaching incorrect microtubule attachments (29). This model predicts an essential role for Bir1 in promoting chromosome biorientation, but such evidence has been lacking. By generating a temperature-sensitive bir1 allele (bir1-17) and showing that it confers a profound defect in chromosome biorientation, we demonstrate that Bir1 does play a key role in the correction process needed to ensure that all yeast chromosomes become correctly aligned on the mitotic spindle. Furthermore, since the bir1-17 mutant fails to activate the spindle assembly checkpoint properly in response to reduced sister kinetochore tension, like Ipl1 it forms part of the tension checkpoint mechanism. Our data therefore are consistent with a role for Bir1 in conferring tension responsiveness on Ipl1 function.  相似文献   

8.
Chromosomal passenger proteins associate with chromosomes early in mitosis and transfer to the spindle at ana/telophase. Recent results show that aurora B/AIM-1 (aurora and Ipl1-like midbody-associated protein kinase), which is responsible for mitotic histone H3 phosphorylation, INCENP (Inner Centromere protein) and Survivin/BIR are in a macromolecular complex as novel chromosomal passenger proteins. Aurora B/AIM-1 can bind to Survivin and the C-terminal region of INCENP, respectively, and colocalizes with both proteins to the centromeres, midzone and midbody. Disruption of either aurora B/AIM-1 or INCENP function leads to sever defects in chromosome segregation and cytokinesis. Moreover, the formation of the central spindle through anaphase to cytokinesis is also disrupted severely. These data suggest that chromosomal passenger complex is required for proper chromosome segregation by phosphorylating histone H3, and cytokinesis by ensuring the correct assembly of the midzone and midbody microtubule. Chromosomal passenger protein complex may couple chromosome segregation with cytokinesis.  相似文献   

9.
How kinetochores correct improper microtubule attachments and regulate the spindle checkpoint signal is unclear. In budding yeast, kinetochores harboring mutations in the mitotic kinase Ipl1 fail to bind chromosomes in a bipolar fashion. In C. elegans and Drosophila, inhibition of the Ipl1 homolog, Aurora B kinase, induces aberrant anaphase and cytokinesis. To study Aurora B kinase in vertebrates, we microinjected mitotic XTC cells with inhibitory antibody and found several related effects. After injection of the antibody, some chromosomes failed to congress to the metaphase plate, consistent with a conserved role for Aurora B in bipolar attachment of chromosomes. Injected cells exited mitosis with no evidence of anaphase or cytokinesis. Injection of anti-Xaurora B antibody also altered the microtubule network in mitotic cells with an extension of the astral microtubules and a reduction of kinetochore microtubules. Finally, inhibition of Aurora B in cultured cells and in cycling Xenopus egg extracts caused escape from the spindle checkpoint arrest induced by microtubule drugs. Our findings implicate Aurora B as a critical coordinator relating changes in microtubule dynamics in mitosis, chromosome movement in prometaphase and anaphase, signaling of the spindle checkpoint, and cytokinesis.  相似文献   

10.
Fission yeast Bir1p/Cut17p/Pbh1p, the homolog of human Survivin, is a conserved chromosomal passenger protein that is required for cell division and cytokinesis. To study how Bir1p promotes accurate segregation of chromosomes, we generated and analyzed a temperature-sensitive allele, bir1-46, and carried out genetic screens to find genes that interact with bir1(+). We identified Psf2p, a component of the GINS complex required for DNA replication initiation, as a high-copy-number suppressor of the bir1-46 growth defect. Loss of Psf2p function by depletion or deletion or by use of a temperature-sensitive allele, psf2-209, resulted in chromosome missegregation that was associated with mislocalization of Bir1p. We also found that the human homolog of Psf2p, PSF2, was required for proper chromosome segregation. In addition, we observed that high-copy-number expression of Pic1p, the fission yeast homolog of INCENP (inner centromere protein), suppressed bir1-46. Pic1p exhibited a localization pattern typical of chromosomal passenger proteins. Deletion of pic1(+) caused chromosome missegregation phenotypes similar to those of bir1-46. Our data suggest that Bir1p and Pic1p act as part of a conserved chromosomal passenger complex and that Psf2p/GINS indirectly affects the localization and function of this complex in chromosome segregation, perhaps through an S-phase role in centromere replication.  相似文献   

11.
Aurora B regulates chromosome segregation and cytokinesis and is the first protein to be implicated as a regulator of bipolar attachment of spindle microtubules to kinetochores. Evidence from several systems suggests that Aurora B is physically associated with inner centromere protein (INCENP) in mitosis and has genetic interactions with Survivin. It is unclear whether the Aurora B and INCENP interaction is cell cycle regulated and if Survivin physically interacts in this complex. In this study, we cloned the Xenopus Survivin gene, examined its association with Aurora B and INCENP, and determined the effect of its binding on Aurora B kinase activity. We demonstrate that in the Xenopus early embryo, all of the detectable Survivin is in a complex with both Aurora B and INCENP throughout the cell cycle. Survivin and Aurora B bind different domains on INCENP. Aurora B activity is stimulated >10-fold in mitotic extracts; this activation is phosphatase sensitive, and the binding of Survivin is required for full Aurora B activity. We also find the hydrodynamic properties of the Aurora B/Survivin/INCENP complex are cell cycle regulated. Our data indicate that Aurora B kinase activity is regulated by both Survivin binding and cell cycle-dependent phosphorylation.  相似文献   

12.
The ultimate goal of cell division is equal transmission of the duplicated genome to two new daughter cells. Multiple surveillance systems exist that monitor proper execution of the cell division program and as such ensure stability of our genome. One widely studied protein complex essential for proper chromosome segregation and execution of cytoplasmic division (cytokinesis) is the chromosomal passenger complex (CPC). This highly conserved complex consists of Borealin, Survivin, INCENP, and Aurora B kinase, and has a dynamic localization pattern during mitosis and cytokinesis. Not surprisingly, it also performs various functions during these phases of the cell cycle. In this review, we will give an overview of the latest insights into the regulation of CPC localization and discuss if and how specific localization impacts its diverse functions in the dividing cell.  相似文献   

13.
We have shown previously that Ipl1 and Sli15 are required for chromosome segregation in Saccharomyces cerevisiae. Sli15 associates directly with the Ipl1 protein kinase and these two proteins colocalize to the mitotic spindle. We show here that Sli15 stimulates the in vitro, and likely in vivo, kinase activity of Ipl1, and Sli15 facilitates the association of Ipl1 with the mitotic spindle. The Ipl1-binding and -stimulating activities of Sli15 both reside within a region containing homology to the metazoan inner centromere protein (INCENP). Ipl1 and Sli15 also bind to Dam1, a microtubule-binding protein required for mitotic spindle integrity and kinetochore function. Sli15 and Dam1 are most likely physiological targets of Ipl1 since Ipl1 can phosphorylate both proteins efficiently in vitro, and the in vivo phosphorylation of both proteins is reduced in ipl1 mutants. Some dam1 mutations exacerbate the phenotype of ipl1 and sli15 mutants, thus providing evidence that Dam1 interactions with Ipl1-Sli15 are functionally important in vivo. Similar to Dam1, Ipl1 and Sli15 each bind to microtubules directly in vitro, and they are associated with yeast centromeric DNA in vivo. Given their dual association with microtubules and kinetochores, Ipl1, Sli15, and Dam1 may play crucial roles in regulating chromosome-spindle interactions or in the movement of kinetochores along microtubules.  相似文献   

14.
The Sli15–Ipl1–Bir1 chromosomal passenger complex is essential for proper kinetochore–microtubule attachment and spindle stability in the budding yeast Saccharomyces cerevisiae. During early anaphase, release of the Cdc14 protein phosphatase from the nucleolus leads to the dephosphorylation of Sli15 and redistribution of this complex from kinetochores to the spindle. We show here that the predominantly nucleolar ribosome biogenesis protein Utp7 is also present at kinetochores and is required for normal organization of kinetochore proteins and proper chromosome segregation. Utp7 associates with and regulates the localization of Sli15 and Cdc14. Before anaphase onset, it prevents the premature nucleolar release of Cdc14 and the premature concentration of Sli15 on the spindle. Furthermore, Utp7 can regulate the localization and phosphorylation status of Sli15 independent of its effect on Cdc14 function. Thus, Utp7 is a multifunctional protein that plays essential roles in the vital cellular processes of ribosome biogenesis, chromosome segregation, and cell cycle control.  相似文献   

15.
The coordinated activities at centromeres of two key cell cycle kinases, Polo and Aurora B, are critical for ensuring that the two sister kinetochores of each chromosome are attached to microtubules from opposite spindle poles prior to chromosome segregation at anaphase. Initial attachments of chromosomes to the spindle involve random interactions between kinetochores and dynamic microtubules, and errors occur frequently during early stages of the process. The balance between microtubule binding and error correction (e.g., release of bound microtubules) requires the activities of Polo and Aurora B kinases, with Polo promoting stable attachments and Aurora B promoting detachment. Our study concerns the coordination of the activities of these two kinases in vivo. We show that INCENP, a key scaffolding subunit of the chromosomal passenger complex (CPC), which consists of Aurora B kinase, INCENP, Survivin, and Borealin/Dasra B, also interacts with Polo kinase in Drosophila cells. It was known that Aurora A/Bora activates Polo at centrosomes during late G2. However, the kinase that activates Polo on chromosomes for its critical functions at kinetochores was not known. We show here that Aurora B kinase phosphorylates Polo on its activation loop at the centromere in early mitosis. This phosphorylation requires both INCENP and Aurora B activity (but not Aurora A activity) and is critical for Polo function at kinetochores. Our results demonstrate clearly that Polo kinase is regulated differently at centrosomes and centromeres and suggest that INCENP acts as a platform for kinase crosstalk at the centromere. This crosstalk may enable Polo and Aurora B to achieve a balance wherein microtubule mis-attachments are corrected, but proper attachments are stabilized allowing proper chromosome segregation.  相似文献   

16.
The Saccharomyces cerevisiae inhibitor of apoptosis (IAP) repeat protein Bir1 localizes as a chromosomal passenger. A deletion analysis of Bir1 identified two regions important for function. The C-terminal region is essential for growth, binds Sli15, and is necessary and sufficient for the localization of Bir1 as a chromosomal passenger. The middle region is not essential but is required to localize the inner kinetochore protein Ndc10 to the spindle during anaphase and to the midzone at telophase. In contrast, precise deletion of the highly conserved IAP repeats conferred no phenotype and did not alter the cell cycle delay caused by loss of cohesin. Bir1 is phosphorylated in a cell cycle-dependent manner. Mutation of all nine CDK consensus sites in the middle region of Bir1 significantly decreased the level of phosphorylation and blocked localization of Ndc10 to the spindle at anaphase. Moreover, immunoprecipitation of Ndc10 with Bir1 was dependent on phosphorylation. The loss of Ndc10 from the anaphase spindle prevented elongation of the spindle beyond 7 microm. We conclude that phosphorylation of the middle region of Bir1 is required to bring Ndc10 to the spindle at anaphase, which is required for full spindle elongation.  相似文献   

17.
Etoposide is a potent inducer of mitotic catastrophe; a type of cell death resulting from aberrant mitosis. It is important in p53 negative cells where p53 dependent apoptosis and events at the G1 and G2 cell cycle checkpoints are compromised. Passenger proteins regulate many aspects of mitosis and siRNA interference or direct inhibition of Aurora B kinase results in mitotic catastrophe. However, there is little available data of clinical relevance in leukaemia models. Here, in p53 negative K562 myeloid leukemia cells, etoposide-induced mitotic catastrophe is shown to be time and/or concentration dependent. Survivin and Aurora remained bound to chromosomes. Survivin and Aurora were also associated with Cdk1 and were shown to form complexes, which in pull down experiments, included INCENP. There was no evidence of Aurora B kinase suppression. These data suggests etoposide will complement Aurora B kinase inhibitors currently in clinical trials for cancer.  相似文献   

18.
Aurora B kinase activity is required for successful cell division. In this paper, we show that Aurora B is phosphorylated at serine 331 (Ser331) during mitosis and that phosphorylated Aurora B localizes to kinetochores in prometaphase cells. Chk1 kinase is essential for Ser331 phosphorylation during unperturbed prometaphase or during spindle disruption by taxol but not nocodazole. Phosphorylation at Ser331 is required for optimal phosphorylation of INCENP at TSS residues, for Survivin association with the chromosomal passenger complex, and for complete Aurora B activation, but it is dispensable for Aurora B localization to centromeres, for autophosphorylation at threonine 232, and for association with INCENP. Overexpression of Aurora B(S331A), in which Ser331 is mutated to alanine, results in spontaneous chromosome missegregation, cell multinucleation, unstable binding of BubR1 to kinetochores, and impaired mitotic delay in the presence of taxol. We propose that Chk1 phosphorylates Aurora B at Ser331 to fully induce Aurora B kinase activity. These results indicate that phosphorylation at Ser331 is an essential mechanism for Aurora B activation.  相似文献   

19.
Survivin is a member of the inhibitor of apoptosis (IAP) gene family, containing a single baculovirus IAP repeat (BIR) and no RING finger, that is expressed in many human cancers. Although it has been proposed to be involved in mitotic and cytokinetic processes, its functional subcellular distribution in the cytoplasm and nucleus, and its binding to centrosomes, spindle fibers, and centromeres in relation to these processes, is not fully resolved. We have analyzed the localization of Survivin in normal (Detroit 551, IMR-90) and tumor-derived (HeLa, Saos-2) cell lines, and found that it does colocalize with centrosomes in the cytoplasm during interphase, then moves to centromeres during mitosis, and finally localizes to the midbody spindle fibers during telophase. However, Taxol, a popular microtubule stabilizing agent that is frequently used in the study of these processes, severely disrupted the localization of Survivin. Taxol treatment of cells promoted extensive relocalization of Survivin with alpha-tubulin on microtubules during either interphase or mitosis. Survivin antisense oligonucleotide markedly sensitized HeLa cells to cell death induced by agents acting at the level of cell surface receptor (Fas pathway) or at the level of mitochondria (etoposide). HeLa cell death induced by Survivin antisense oligonucleotide could be partially complemented by Deterin, the Drosophila homolog of Survivin (Jones et al. [2000] J. Biol. Chem. 275:22157-22166). Reciprocally, a chimera of the Deterin BIR domain and Survivin C-terminus could rescue Drosophila Kc cells from death induced by transfection of a human caspase-7-expressing plasmid. These results indicate common components of Survivin and Deterin antiapoptotic action in the vertebrate and invertebrate phyla.  相似文献   

20.
Three lines of investigation have suggested that interactions between Survivin and the chromosomal passenger proteins INCENP and Aurora-B kinase may be important for mitotic progression. First, interference with the function of Survivin/BIR1, INCENP, or Aurora-B kinase leads to similar defects in mitosis and cytokinesis [1-7] (see [8] for review). Second, INCENP and Aurora-B exist in a complex in Xenopus eggs [9] and in mammalian cultured cells [7]. Third, interference with Survivin or INCENP function causes Aurora-B kinase to be mislocalized in mitosis in both C. elegans and vertebrates [5, 7, 9]. Here, we provide evidence that Survivin, Aurora-B, and INCENP interact physically and functionally. Direct visualization of Survivin-GFP in mitotic cells reveals that it localizes identically to INCENP and Aurora-B. Survivin binds directly to both Aurora-B and INCENP in yeast two-hybrid and in vitro pull-down assays. The in vitro interaction between Survivin and Aurora-B is extraordinarily stable in that it resists 3 M NaCl. Finally, Survivin and INCENP interact functionally in vivo; in cells in which INCENP localization is disrupted, Survivin adheres to the chromosomes and no longer concentrates at the centromeres or transfers to the anaphase spindle midzone. Our data provide the first biochemical evidence that Survivin can interact directly with members of the chromosomal passenger complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号