首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Di Giulio M 《Biochimie》2012,94(7):1464-1466
The properties, historical and empirical observations of a model of the origin of the tRNA molecule are discussed. This model would predict that this molecule originated by means of the assembly of two hairpin-like structures of RNA. The conclusion is that the model possesses a relevant part of the truth on the origin of the tRNA molecule.  相似文献   

2.
3.
Sex determination is regulated very differently in the soma vs. the germline, yet both processes are critical for the creation of the male and female gametes. In general, the soma plays an essential role in regulating sexual identity of the germline. However, in some species, such as Drosophila and mouse, the sex chromosome constitution of the germ cells makes an autonomous contribution to germline sexual development. Here we review how the soma and germline cooperate to determine germline sexual identity for some important model systems, the fly, the worm and the mouse, and discuss some of the implications of 'dual control' (soma plus germline) as compared to species where germline sex is dictated only by the surrounding soma.  相似文献   

4.
The Drosophila oskar (osk) mRNA is unusual in that it has both coding and noncoding functions. As an mRNA, osk encodes a protein required for embryonic patterning and germ cell formation. Independent of that function, the absence of osk mRNA disrupts formation of the karyosome and blocks progression through oogenesis. Here we show that loss of osk mRNA also affects the distribution of regulatory proteins, relaxing their association with large RNPs within the germline, and allowing them to accumulate in the somatic follicle cells. This and other noncoding functions of the osk mRNA are mediated by multiple sequence elements with distinct roles. One role, provided by numerous binding sites in two distinct regions of the osk 3′ UTR, is to sequester the translational regulator Bruno (Bru), which itself controls translation of osk mRNA. This defines a novel regulatory circuit, with Bru restricting the activity of osk, and osk in turn restricting the activity of Bru. Other functional elements, which do not bind Bru and are positioned close to the 3′ end of the RNA, act in the oocyte and are essential. Despite the different roles played by the different types of elements contributing to RNA function, mutation of any leads to accumulation of the germline regulatory factors in the follicle cells.  相似文献   

5.
In a major evolutionary transition to a new level of organization, internal conflicts must be controlled before the transition can truly be successful. One such transition is that from single cells to multicellularity. Conflicts among cells in multicellular organisms can be greatly reduced if they consist of genetically identical clones. However, mutations to cheaters that experience one round of within-individual selection could still be a problem, particularly for certain life cycles. We propose an experimental evolution method to investigate this issue, using micro-organisms to construct multicellular pseudo-organisms, which can be evolved under different artificial life cycles. These experiments can be used to test the importance of various life cycle features in maintaining cooperation. They include structured reproduction, in which small propagule size reduces within-individual genetic variation. They also include structured growth, which increases local relatedness within individual bodies. Our method provides a novel way to test how different life cycles favour cooperation, even for life cycles that do not exist.  相似文献   

6.
Selfish genetic elements (SGEs) are ubiquitous in eukaryotes and bacteria, and make up a large part of the genome. They frequently target sperm to increase their transmission success, but these manipulations are often associated with reduced male fertility. Low fertility of SGE-carrying males is suggested to promote polyandry as a female strategy to bias paternity against male carriers. Support for this hypothesis is found in several taxa, where SGE-carrying males have reduced sperm competitive ability. In contrast, when SGEs give rise to reproductive incompatibilities between SGE-carrying males and females, polyandry is not necessarily favoured, irrespective of the detrimental impact on male fertility. This is due to the frequency-dependent nature of these incompatibilities, because they will decrease in the population as the frequency of SGEs increases. However, reduced fertility of SGE-carrying males can prevent the successful population invasion of SGEs. In addition, SGEs can directly influence male and female mating behaviour, mating rates and reproductive traits (e.g. female reproductive tract length and male sperm). This reveals a potent and dynamic interaction between SGEs and polyandry highlighting the potential to generate sexual selection and conflict, but also indicates that polyandry can promote harmony within the genome by undermining the spread of SGEs.  相似文献   

7.
G Seydoux  T Schedl  I Greenwald 《Cell》1990,61(6):939-951
In each gonadal arm of wild-type C. elegans hermaphrodites, the somatic distal tip cell (DTC) maintains distal germline nuclei in mitosis, while proximal nuclei enter meiosis. We have identified two conditions under which a proximal somatic cell, the anchor cell (AC), inappropriately maintains proximal germline nuclei in mitosis: when defined somatic gonadal cells have been ablated in wild type, and in lin-12 null mutants. Laser ablations and mosaic analysis indicate that somatic gonadal cells neighboring the AC normally require lin-12 activity to prevent the inappropriate AC-germline interaction. The AC-germline interaction, like the DTC-germline interaction, requires glp-1 activity. In one model, we propose that the AC sends an intercellular signal intended to interact with the lin-12 product in somatic gonadal cells; when lin-12 activity is absent, the signal interacts instead with the related glp-1 product in germline. Our data illustrate the importance of mechanisms that prevent inappropriate interactions during development.  相似文献   

8.
There have been over 25 independent unicellular to multicellular evolutionary transitions, which have been transformational in the complexity of life. All of these transitions likely occurred in communities numerically dominated by unicellular organisms, mostly bacteria. Hence, it is reasonable to expect that bacteria were involved in generating the ecological conditions that promoted the stability and proliferation of the first multicellular forms as protective units. In this study, we addressed this problem by analyzing the occurrence of multicellularity in an experimental phylogeny of yeasts (Sacharomyces cerevisiae) a model organism that is unicellular but can generate multicellular clusters under some conditions. We exposed a single ancestral population to periodic divergences, coevolving with a cocktail of environmental bacteria that were inoculated to the environment of the ancestor, and compared to a control (no bacteria). We quantified culturable microorganisms to the level of genera, finding up to 20 taxa (all bacteria) that competed with the yeasts during diversification. After 600 generations of coevolution, the yeasts produced two types of multicellular clusters: clonal and aggregative. Whereas clonal clusters were present in both treatments, aggregative clusters were only present under the bacteria treatment and showed significant phylogenetic signal. However, clonal clusters showed different properties if bacteria were present as follows: They were more abundant and significantly smaller than in the control. These results indicate that bacteria are important modulators of the occurrence of multicellularity, providing support to the idea that they generated the ecological conditions‐promoting multicellularity.  相似文献   

9.
The Helicobacter pylori genome includes a family of outer membrane proteins (OMPs) with substantial N and C-terminal identity. To better understand their evolution, the nucleotide sequences for two members, babA and babB, were determined from a worldwide group of 23 strains. The geographic origin of each strain was found to be the major determinant of phylogenetic structure, with strains of Eastern and Western origin showing greatest divergence. For strains 96-10 (Japan) and 96-74 (USA), the 5' regions of babB are replaced with babA sequences, demonstrating that recombination occurs between the two loci. babA and babB have nearly equivalent variation in nucleotide and amino acid identity, and frequencies of synonymous and non-synonymous substitutions. Both genes have segmental conservation but within the 3' segment, substitution patterns are nearly identical. Although babA and babB 5' and midregion segment phylogenies show strong interstrain similarity, the 3' segments show strong intrastrain similarity, indicative of concerted evolution. Within these 3' segments, the lower intrastrain than interstrain frequencies of nucleotide substitutions, which are below mean background H. pylori substitution frequencies, indicate selection against intrastrain diversification. Since babA/babB gene conversions likely underlie the concerted evolution of the 3' segments, in an experimental system, we demonstrate that gene conversions can frequently (10(-3)) occur in H. pylori. That these events are recA-dependent and DNase-resistant indicates their likely cause is intragenomic recombination.  相似文献   

10.
Price TA  Wedell N 《Genetica》2008,134(1):99-111
Females of many species mate with more than one male (polyandry), yet the adaptive significance of polyandry is poorly understood. One hypothesis to explain the widespread occurrence of multiple mating is that it may allow females to utilize post-copulatory mechanisms to reduce the risk of fertilizing their eggs with sperm from incompatible males. Selfish genetic elements (SGEs) are ubiquitous in eukaryotes, frequent sources of reproductive incompatibilities, and associated with fitness costs. However, their impact on sexual selection is largely unexplored. In this review we examine the link between SGEs, male fertility and sperm competitive ability. We show there is widespread evidence that SGEs are associated with reduced fertility in both animals and plants, and present some recent data showing that males carrying SGEs have reduced paternity in sperm competition. We also discuss possible reasons why male gametes are particularly vulnerable to the selfish actions of SGEs. The widespread reduction in male fertility caused by SGEs implies polyandry may be a successful female strategy to bias paternity against SGE-carrying males.  相似文献   

11.
Price TA  Wedell N 《Genetica》2008,132(3):295-307
Females of many species mate with more than one male (polyandry), yet the adaptive significance of polyandry is poorly understood. One hypothesis to explain the widespread occurrence of multiple mating is that it may allow females to utilize post-copulatory mechanisms to reduce the risk of fertilizing their eggs with sperm from incompatible males. Selfish genetic elements (SGEs) are ubiquitous in eukaryotes, frequent sources of reproductive incompatibilities, and associated with fitness costs. However, their impact on sexual selection is largely unexplored. In this review we examine the link between SGEs, male fertility and sperm competitive ability. We show there is widespread evidence that SGEs are associated with reduced fertility in both animals and plants, and present some recent data showing that males carrying SGEs have reduced paternity in sperm competition. We also discuss possible reasons why male gametes are particularly vulnerable to the selfish actions of SGEs. The widespread reduction in male fertility caused by SGEs implies polyandry may be a successful female strategy to bias paternity against SGE-carrying males.  相似文献   

12.
13.
Males and females have different optimal values for some traits, such as body size. When the same genes control these traits in both sexes, selection pushes in opposite directions in males and females. Alleles at autosomal loci spend equal amounts of time in males and females, suggesting that the sexually antagonistic selective forces may approximately balance between the opposing optima. Frank and Crespi noted that alleles on the X chromosome spend twice as much time in diploid females as in haploid males. That distinction between the sexes may tend to favor X-linked genes that push more strongly toward the female optimum than the male optimum. The female bias of X-linked genes opposes the intermediate optimum of autosomal genes, potentially creating a difference between the direction of selection on traits favored by X chromosomes and autosomes. Patten has recently argued that explicit genetic assumptions about dominance and the relative magnitude of allelic effects may lead X-linked genes to favor the male rather than the female optimum, contradicting Frank and Crespi. This article combines the insights of those prior analyses into a new, more general theory. We find some parameter combinations for X-linked loci that favor a female bias and other parameter combinations that favor a male bias. We conclude that the X likely contains a mosaic pattern of loci that differ with autosomes over sexually antagonistic traits. The overall tendency for a female or male bias on the X depends on prior assumptions about the distribution of key parameters across X-linked loci. Those parameters include the dominance coefficient and the way in which ploidy influences the magnitude of allelic effects.  相似文献   

14.
The fitness of an evolutionary individual can be understood in terms of its two basic components: survival and reproduction. As embodied in current theory, trade-offs between these fitness components drive the evolution of life-history traits in extant multicellular organisms. Here, we argue that the evolution of germ-soma specialization and the emergence of individuality at a new higher level during the transition from unicellular to multicellular organisms are also consequences of trade-offs between the two components of fitness-survival and reproduction. The models presented here explore fitness trade-offs at both the cell and group levels during the unicellular-multicellular transition. When the two components of fitness negatively covary at the lower level there is an enhanced fitness at the group level equal to the covariance of components at the lower level. We show that the group fitness trade-offs are initially determined by the cell level trade-offs. However, as the transition proceeds to multicellularity, the group level trade-offs depart from the cell level ones, because certain fitness advantages of cell specialization may be realized only by the group. The curvature of the trade-off between fitness components is a basic issue in life-history theory and we predict that this curvature is concave in single-celled organisms but becomes increasingly convex as group size increases in multicellular organisms. We argue that the increasingly convex curvature of the trade-off function is driven by the initial cost of reproduction to survival which increases as group size increases. To illustrate the principles and conclusions of the model, we consider aspects of the biology of the volvocine green algae, which contain both unicellular and multicellular members.  相似文献   

15.
The haploidizing male killer hypothesis suggests an evolutionary origin for paternal genome elimination (PGE) that is consistent with the ecological correlates of ancestral haplodiploid insect clades. We make use of population genetics models to test the logic and assumptions of this hypothesis with particular emphasis on the co-evolution between bacteria and host. We derive simple invasion conditions for rare modifiers of bacteria transmission and rare modifiers of host survivorship after haploidization. We also study the evolutionary dynamics of both these modifiers. We conclude that PGE shows evolutionary genetic stability and present a comprehensive analysis of the probability that such genetic system evolves due to the action of cytoplasmic genes.  相似文献   

16.
17.
《Current biology : CB》2020,30(21):4155-4164.e6
  1. Download : Download high-res image (258KB)
  2. Download : Download full-size image
  相似文献   

18.
In this study, we compared the genomes of three metal-resistant bacteria isolated from mercury-contaminated soil. We identified diverse and novel MGEs with evidence of multiple LGT events shaping their genomic structure and heavy metal resistance. Among the three metal-resistant strains, Sphingobium sp SA2 and Sphingopyxis sp SE2 were resistant to multiple metals including mercury, cadmium, copper, zinc and lead. Pseudoxanthomonas sp SE1 showed resistance to mercury only. Whole genome sequencing by Illumina and Oxford Nanopore technologies was undertaken to obtain comprehensive genomic data. The Sphingobium and Sphingopyxis strains contained multiple chromosomes and plasmids, whereas the Pseudoxanthomonas strain contained one circular chromosome. Consistent with their metal resistance profiles, the strains of Sphingobium and Sphingopyxis contained a higher quantity of diverse metal resistance genes across their chromosomes and plasmids compared to the single-metal resistant Pseudoxanthomonas SE1. In all three strains, metal resistance genes were principally associated with various novel MGEs including genomic islands (GIs), integrative conjugative elements (ICEs), transposons, insertion sequences (IS), recombinase in trio (RIT) elements and group II introns, indicating their importance in facilitating metal resistance adaptation in a contaminated environment. In the Pseudoxanthomonas strain, metal resistance regions were largely situated on a GI. The chromosomes of the strains of Sphingobium and Sphingopyxis contained multiple metal resistance regions, which were likely acquired by several GIs, ICEs, numerous IS elements, several Tn3 family transposons and RIT elements. Two of the plasmids of Sphingobium were impacted by Tn3 family transposons and ISs likely integrating metal resistance genes. The two plasmids of Sphingopyxis harboured transposons, IS elements, an RIT element and a group II intron. This study provides a comprehensive annotation of complex genomic regions of metal resistance associated with novel MGEs. It highlights the critical importance of LGT in the evolution of metal resistance of bacteria in contaminated environments.  相似文献   

19.
The evolution of development required few new features not already present in the eukaryotic cell, as exemplified by the cell cycle. Moreover, the protozoa possess many features of spatial organization and regulation present in metazoan embryos.
The earliest multicellular organism could have been reproduced by a stem cell mechanism or by fission, the latter requiring cell-to-cell interactions that may have favoured cell-interactions and regulation. Regeneration can be considered as a meta-phenomenon related to asexual reproduction and retention of embryonic characters. The origin of embryonic structures like the gastrula may be accounted for in terms of Haeckel's 'Gastrea' theory. Mechanisms based on selection at the level of cell lineage are rejected.
It is not clear what selective forces act on development itself, as distinct from the requirement for reliably producing a functional orgainsm. There is, for example, a major problem why gastrulation should be so variable in related animals. Selection for rate of development in relation to energy utilization may play a role. If many variants are neutral this may facilitate the evolution of novelty.
In general terms there is a requirement for a continuity principle for the evolution of each form in development. Most groups pass through a phylotypic stage with considerable diversity before and after.  相似文献   

20.
Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号