首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhu W  Dang Z  Qiu J  Lv C  Jia G  Li L  Zhou Z 《Chirality》2007,19(8):632-637
The stereoselective toxicokinetics of ethofumesate enantiomers following a single intravenous (i.v.) administration at doses of 30 mg/kg were investigated in rabbits. Plasma concentrations of (+)- and (-)-ethofumesate were analyzed by a validated chiral HPLC method that involved extraction of plasma with organic solvent followed by separation on a cellulose-Tris-(3,5-dimethylphenylcarbamate)-based chiral column and quantification by UV absorbance at 230 nm. Plasma concentration-time curves after i.v. administration were best described by an open two-compartment model. The concentration of the (-)-enantiomer decreased more rapidly than that of the (+)-enantiomer. Significant differences in toxicokinetic parameters between the two enantiomers indicated that stereoselective behavior occurred with the (-)-enantiomer being preferentially metabolized and eliminated.  相似文献   

2.
The influence of aging on the pharmacokinetics and the tissue distribution of (R)- and of (S)-propranolol was studied in 3-, 12-, and 24-month-old rats. After both iv and oral administration of rac-propranolol, the plasma concentrations were higher for the (R)- than for the (S)-enantiomer. For the tissue concentrations, the reverse was true. The free fraction of (S)-propranolol in plasma was about 4 times larger than that of (R)-propranolol, and this is the main factor responsible for the differences in kinetics between the two enantiomers. There was a suggestion for a difference in tissue binding between the two enantiomers. With aging, the plasma and tissue concentrations of both enantiomers increase, probably due to a decrease in blood clearance. Tissue binding did not change much with aging. Notwithstanding the marked differences between the kinetics of the propranolol enantiomers, the changes which occur with aging affect both enantiomers to the same degree.  相似文献   

3.
Miura M  Uno T  Tateishi T  Suzuki T 《Chirality》2007,19(3):223-227
Fexofenadine, a substrate of P-glycoprotein and an organic anion transporter polypeptide, is commonly used to assess P-glycoprotein activity in vivo. The purpose of this study was to elucidate the pharmacokinetics of each fexofenadine enantiomer. After a single oral dose of racemic fexofenadine (60 mg), the plasma and urine concentrations of fexofenadine enantiomers were measured over the course of 24 h in six healthy subjects. The mean plasma concentration of R(+)-fexofenadine was higher than that of S(-)-fexofenadine. The area under the plasma concentration-time curve (AUC(0-infinity)) and the maximum plasma concentration (C(max)) of R(+)-fexofenadine were significantly greater than those of the S(-)-enantiomer (P = 0.0018 and 0.0028, respectively). The R/S ratios of AUC and C(max) of fexofenadine were 1.75 and 1.63, respectively. The oral clearance and renal clearance of S(-)-fexofenadine were significantly greater than that of R(+)-fexofenadine (P = 0.0074 and 0.0036). On the other hand, the stereoselective metabolism of fexofenadine using recombinant CYP3A4 was investigated; however, fexofenadine enantiomers were not metabolized by CYP3A4. Fexofenadine is transported by both P-glycoprotein and OATP and is not metabolized by intestinal CYP3A. Our findings suggest that the affinity of P-glycoprotein for S(-)-fexofenadine is greater than its affinity for the R(+)-enantiomer. Thus, P-glycoprotein is likely to have chiral discriminatory abilities.  相似文献   

4.
The purposes of this work were (1) to develop a high performance liquid chromatographic (HPLC) assay for the enantiomers of thalidomide in blood, (2) to study their inversion and degradation in human blood, and (3) to study the pharmacokinetics of (+)-(R)- and (?)-(S)-thalidomide after oral administration of the separate enantiomers or of the racemate to healthy male volunteers. The enantiomers of thalidomide were determined by direct resolution on a tribenzoyl cellulose column. Mean rate constants of chiral inversion of (+)-(R)-thalidomide and (?)-(S)-thalidomide in blood at 37°C were 0.30 and 0.31 h?1, respectively. Rate constants of degradation were 0.17 and 0.18 h?1. There was rapid interconversion in vivo in humans, the (+)-(R)-enantiomer predominating at equilibrium. The pharmacokinetics of (+)-(R)- and (?)-(S)-thalidomide could be characterized by means of two one-compartment models connected by rate constants for chiral inversion. Mean rate constants for in vivo inversion were 0.17 h?1 (R to S) and 0.12 h?1 (S to R) and for elimination 0.079 h?1 (R) and 0.24 h?1 (S), i.e., a considerably faster rate of elimination of the (?)-(S)-enantiomer. Putative differences in therapeutic or adverse effects between (+)-(R)- and (?)-(S)-thalidomide would to a large extent be abolished by rapid interconversion in vivo. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Reboxetine, (RS)-2-[(RS)-α-(2-ethoxyphenoxy)benzyl]morpholine methanesulphonate, is a racemic compound and consists of a mixture of the (R,R)- and (S,S)-enantiomers. In this study, brain and plasma levels of both enantiomers were determined in mice and rats after oral administration of reboxetine at doses (1.1 mg/kg, mouse; 20 mg/kg, rat) twice the respective ED50 values in the antireserpine test. Plasma and brain concentrations of each enantiomer were measured up to 6 h postdosing using an HPLC method with fluorimetric detection after derivatization with a chiral agent (FLEC). In mice and rats, brain and plasma levels of the (R,R)-enantiomer were always higher than those of the (S,S)-enantiomer. After normalization for dose, the mean AUC0-tz values of both the (R,R)- and (S,S)-enantiomers in mouse brain were about 23 and 32 times higher than in rat brain, respectively. In plasma, the corrected mean AUC0-tz values were about 5 (R,R) and 10 (S,S) times higher in mice than in rats. These results provide evidence for the higher bioavailability and/or lower clearance of both enantiomers in mice than in rats, and for a higher penetration of both enantiomers into mouse brain compared to rat brain. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Enantiomeric pairs of the antihistaminic drug terfenadine and its carboxylic acid derivative were directly separated by HPLC using an ovomucoid protein column. Absolute configurations of terfenadine enantiomers were assigned by comparing their circular dichroism spectra with those of 1-phenyl-1-butanol enantiomers of known absolute stereochemistry. Terfenadine and its major carboxylic acid metabolite extracted from blood plasma following an oral administration of a racemic terfenadine to rats were found to be enriched in the (S)- and (R)-enantiomers, respectively. The results indicated that the (R)-enantiomer of an orally administered racemic terfenadine was preferentially oxidized in rats to form a carboxylic acid metabolite enriched in the (R)-enantiomer.  相似文献   

7.
RS-8359, (+/-)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]pyrimidine selectively and reversibly inhibits monoamine oxidase A (MAO-A). After oral administration of rac-RS-8359 to rats, mice, dogs, monkeys, and humans, plasma concentrations of the (R)-enantiomer were greatly higher than were those of the (S)-enantiomer in all species studied. The AUC((R)) to AUC((S)) ratios were 2.6 in rats, 3.8 in mice, 31 in dogs, and 238 in monkeys, and the (S)-enantiomer was almost negligible in human plasma. After intravenous administration of RS-8359 enantiomers to rats, the pharmacokinetic parameters showed that the (S)-enantiomer had a 2.7-fold greater total clearance (CL(t)) and a 70% shorter half-life (t(1/2)) than those for the (R)-enantiomer but had no difference in distribution volume (V(d)). No significant difference in the intestinal absorption rate was observed. The principal metabolites were the 2-keto form, possibly produced by aldehyde oxidase, the cis-diol form, and the 2-keto-cis-diol form produced by cytochrome P450 in rats, the cis-diol form in mice, RS-8359 glucuronide in dogs, and the 2-keto form in monkeys and humans. Thus, the rapid disappearance of the (S)-enantiomer from the plasma was thought to be due to the rapid metabolism of the (S)-enantiomer by different drug-metabolizing enzymes, depending on species.  相似文献   

8.
Plasma concentrations of (R)- and (S)-amlodipine were measured after single oral administrations to 18 healthy volunteers of 20 mg amlodipine racemate. The contribution of the pharmacologically active (S)-enantiomer to the concentrations of total amlodipine (sum of enantiomers) was significantly higher than that of the inactive (R)-enantiomer, with mean values of 47% R to 53% S for the Cmax and 41% R to 59% S for the AUC (range between 24% R:76% S and 50% R:50% S). The oral clearance of the active (S)-form was subject to much less intersubject variation (25% CV) than that of the inactive (R)-form (52% CV). (R)-Amlodipine was more rapidly eliminated from plasma than (S)-amlodipine, with mean terminal half-lives of 34.9 h (R) and 49.6 h (S). The terminal half-lives of total amlodipine (mean 44.2 h) were strongly correlated with—and thus highly predictive for—the half-lives of the (S)-enantiomer. It is proposed that the observed enantioselectivity of oral amlodipine is due to differences in the systemic blood clearance of the enantiomers. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The intravenous (0.5 mg/kg) and oral (5 mg/kg) dose kinetics of verapamil were studied in 6 dogs during steady-state oral verapamil dosing (5 mg/kg every 8 h for 3 days). Racemic verapamil and norverapamil, a metabolite of verapamil, were quantitated in plasma by HPLC-fluorescence detection. The verapamil peaks eluting off the column were collected and rechromatographed on an Ultron-OVM column, which resolved the two verapamil enantiomers. After intravenous administration, the systemic clearance and apparent volume of distribution of (?)-(S)-verapamil were nearly twice that of the (+)-(R)-isomer. There was no difference in the elimination half-lives between the two isomers. After oral administration, the oral clearance of (?)-(S)-verapamil was 20 times that of the (+)-(R)-isomer. The apparent bioavailability of (+)-(R)-verapamil was over 14 times that of (?)-(S)-verapamil. The plasma protein binding of the (+)-(R)-isomer was slightly higher by 5% than (?)-(S)-verapamil; however, this effect was not enough to account for the difference between the apparent volume of distribution of the enantiomers, indicating that the tissue binding of (?)-(S)-verapamil was greater than that of the (+)-(R)-isomer. This data on the disposition of the enantiomers of verapamil in the dog is similar to that reported for man and demonstrates that the dog may be an appropriate animal model for man in future studies on the disposition of the enantiomers of verapamil. © 1993 Wiley-Liss, Inc.  相似文献   

10.
RS-8359, (+/-)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]-pyrimidine is a racemic compound with a selective and reversible monoamine oxidase A (MAO-A) inhibition activity. The substrate and product enantioselectivity with respect to 2-hydroxylation of RS-8359 enantiomers was studied using mouse and rat liver microsomes. In mice, the (S)-enantiomer was transformed to the cis-diol metabolite, whereas the (R)-enantiomer to the trans-diol metabolite. The Vmax/Km value for the formation of the cis-diol metabolite from the (S)-enantiomer was sevenfold greater than that for the formation of the trans-diol metabolite from the (R)-enantiomer. The greater Vmax/Km value for the (S)-enantiomer was due to the tenfold smaller Km value compared to that for the (R)-enantiomer. The results were in fair agreement with the previously reported low plasma concentrations of the (S)-enantiomer and the high recovery of the cis-diol metabolite derived from the (S)-enantiomer in urine after oral administration of RS-8359 to mice. Similarly to mice, in rats the (R)-enantiomer was transformed to the trans-diol metabolite, whereas the (S)-enantiomer yielded the cis-diol and trans-diol metabolites. The Vmax/Km value for the (R)-enantiomer was larger than that for the (S)-enantiomer in rats, indicating that the low plasma concentration of the (S)-enantiomer in rats might be caused by a metabolic reaction other than P450-dependent hydroxylation. CYP3A was shown to be responsible for the trans-diol formation from the (R)-enantiomer.  相似文献   

11.
It has been proposed that the chiral inversion of the 2-arylpropionic acids is due to the stereospecific formation of the (-)-R-profenyl-CoA thioesters which are putative intermediates in the inversion. Accordingly, amino acid conjugation, for which the CoA thioesters are obligate intermediates, should be restricted to those optical forms which give rise to the (-)-R-profenyl-CoA, i.e., the racemates and the (-)-(R)-isomers. We have examined this problem in dogs with respect to 2-phenylpropionic acid(2-PPA). Regardless of the optical configuration of 2-phenylpropionic acid administered, the glycine conjugate was the major urinary metabolite and this was shown to be exclusively the (+)-(S)-enantiomer by chiral HPLC. Both (-)-(R)- and (+)-(S)-2-phenylpropionic acid were present in plasma after the administration of either antipode, and further evidence of the chiral inversion of both enantiomers was provided by the presence of some 25% of the opposite enantiomer in the free 2-phenylpropionic acid and its glucuronide excreted in urine after administration of (-)-(R)- and (+)-(S)-2-phenylpropionic acid. The (+)-(S)-enantiomer underwent chiral inversion to the (-)-(R)-antipode when incubated with dog hepatocytes. These data suggests that both enantiomers of 2-phenylpropionic acid are substrates for canine hepatic acyl CoA ligase(s) and thus undergo chiral inversion, but that the CoA thioester of only (+)-(S)-2-phenylpropionic acid is a substrate for the glycine N-acyl transferase. These studies are presently being extended to the structure and species specificity of the reverse inversion and amino acid conjugation of profen NSAIDs.  相似文献   

12.
Hydroxychloroquine, a slow acting antirheumatic drug, is administered as the racemic mixture. Blood concentrations of the two enantiomers of hydroxychloroquine were measured in two studies, one study of eight patients, in whom blood and urine concentrations were measured during the first 6 months of therapy with rac-hydroxychloroquine, and one of 43 patients who had received rac-hydroxychloroquine therapy for at least 6 months. In the latter study rheumatoid disease activity was also measured. The pharmacokinetics of hydroxychloroquine were found to be enantioselective. The concentrations of (?)-(R)-hydroxychloroquine were higher than those of the (+)-(S)-antipode in all patients at all time points, although the ratios of the two enantiomers did display a two to three fold variability between patients. Both total and renal clearance were greater for the (+)-(S)-enantiomer. From the observational, cross-sectional study design used, it was not possible to differentiate concentration–effect relationships of the two enantiomers. The 11-fold range of drug concentrations swamped any effect of variability between patients in enantiomer proportions. Blood concentrations of both enantiomers were significantly higher in groups of patients with less active disease. © 1994 Wiley-Liss, Inc.  相似文献   

13.
rac-Isradipine is a dihydropyridine type calcium antagonist. Its calcium entry blocking effect is due primarily to the (+)-(S)-enantiomer. This study describes a sensitive enantioselective method for the determination of isradipine in human serum. Following alkaline extraction into hexane, the enantiomers of isradipine are separated quantitatively by high-performance liquid chromatography on a Chiralcel OJ column at 39°C. The collected fractions were evaporated and assayed using capillary gas chromatography on a HP 50+ column with nitrogen selective detection. Using 2.0 ml of serum, 0.7 nmol/1 (0.26 ng/ml) of each enantiomer could be determined with acceptable precision. The method has successfully been used to measure (+)-(S)- and (−)-(R)-isradipine concentrations in samples from volunteers after intravenous and oral administration of isradipine. Chirality 10:808–812, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The effect of the enantiomers of a novel 5-HT2 receptor antagonist, (+/-)-(1R,3S)-1-[2-[4-[3-(p-fluorophenyl)-1-indanyl]-piperazinyl] ethyl]-2-imidazolidinone, was studied on serotonin (5-HT), noradrenaline (NA), potassium (K+), and calcium (Ca2+)-induced contractions in isolated rat thoracic aorta. The enantiomers shifted the 5-HT, NA, K+, and Ca2+ concentration-response curves to the right in a concentration-dependent manner and depressed the maximal contractile responses. The (+)-enantiomer was a far more potent inhibitor of 5-HT-induced contractions than the (-)-enantiomer. The (+)-enantiomer and phentolamine, both at 10(-6) M, had equal inhibitory effects on NA-evoked contractions. The (+)-enantiomer was again more potent inhibiting NA-induced contractions than the (-)-enantiomer. Both enantiomers had an equieffective inhibitory effect on K+ and Ca2(+)-induced contractions. The results show that the 5-HT and alpha-adrenoceptor antagonism of the two enantiomers is stereoselective, the (+)-enantiomer being more potent than the (-)-enantiomer. In contrast the enantiomers had equal, nonstereoselective inhibitory effects on K+ and Ca2(+)-evoked contractions.  相似文献   

15.
Conscious male Wistar SPF Riv:TOX rats were dosed intravenously with 2.5, 5, or 10 mg/kg rac-propranolol·HCl, or with 5 mg/kg of either (-)-(S)- or (+)-(R)-propranolol·HCl. Disposition of (-)-(S)- and (+)-(R)-propranolol after dosing of rac-propranolol was linear in the dose range examined. Total plasma clearance was not changed in animals dosed with the individual enantiomers compared to the animals that were dosed with rac-propranolol. However, for (-)-(S)-propranolol both volume of distribution and elimination half-life decreased, whereas for (+)-(R)-propranolol increases were observed for these characteristics, in animals dosed with the individual enantiomers. Our observations suggest that the (+)-(R)-enantiomer competes with (-)-(S)-propranolol for plasma protein binding sites, resulting in lower plasma protein binding of the (-)-(S)-enantiomer when the racemate is administered. From recent toxicological experiments, it was concluded that rac-propranolol is more toxic than the individual enantiomers in the rat, when dosed iv at the same total mass. It is concluded that the observed potentiation of toxic effects of propranolol enantiomers when administered as a racemate can at least partly be explained by a pharmacokinetic interaction. © 1995 Wiley-Liss, Inc.  相似文献   

16.
A method is described that combines chiral HPLC and off-line GC with mass-selective detection for the quantitation of the enantiomers of nisoldipine [(±)-I] in human plasma. An isotope-labelled internal standard [nine-fold deuterated (±)-I] is used throughout the assay. The limit of quantification is 0.1 μg/l for each enantiomer. Data on the precision, accuracy and selectivity of the method are presented. Enantioselective analysis was performed in subjects receiving the racemic drug in tablet form. In healthy volunteers the maximum concentration and the area under the curve of the pharmacologically more active (+)-enantiomer were greater by 9-fold and 13-fold, respectively, compared to those of the (−)-enantiomer. In elderly hypertensive patients plasma concentrations of (+)-I were ca. five times as high as those of the (−)-enantiomer. Stereoselectivity was not affected by hepatic impairment. After intravenous administration of (±)-I there were no relevant differences between the plasma concentrations of the enantiomers.  相似文献   

17.
Hamdy DA  Brocks DR 《Chirality》2009,21(7):704-712
The stereoselective pharmacokinetics of ketoconazole (KTZ) enantiomers were studied in rat after i.v. and oral administration of (+/-)-KTZ. Sprague-Dawley rats were administered racemic KTZ as 10 mg/kg i.v. or orally over the range 10-80 mg/kg as single doses. Serial blood samples were collected over a 24-h period via surgically placed jugular vein cannulae. Plasma was assayed for KTZ enantiomer concentrations using stereospecific HPLC. Enantiomeric plasma protein binding was determined using an erythrocyte partitioning method at racemic concentrations of 10 and 40 mg/L. Stereoselective metabolism was tested by incubating the racemate (0.5-250 microM) with rat liver microsomes. In all rats, (+)-KTZ plasma concentrations were higher (up to 2.5-fold) than (-)-KTZ. The clearance and volume of distribution of the (-) enantiomer were approximately twofold higher than antipode. Half-life did not differ between the enantiomers. After oral doses the t(max) was not stereoselective. For both enantiomers with higher doses the respective half-life were found to increase. The mean unbound fraction of the (-) enantiomer was found to be up to threefold higher than that of the (+) enantiomer. At higher concentrations nonlinearity in plasma protein binding was observed for both enantiomers. There was no evidence of stereoselective metabolism by liver microsomes. Stereoselectivity in KTZ pharmacokinetics is attributable to plasma protein binding, although other processes such as transport or intestinal metabolism may also contribute.  相似文献   

18.
In a randomized, double-blind, cross-over study in 12 healthy volunteers, the effects of single oral doses of 100 mg rac-atenolol were compared during exercise to those of equal amounts of the optically pure enantiomers, i.e., 50 mg (R)- and 50 mg (S)-atenolol. The mean rate pressure product decreased with rac-atenolol (?37%; P < 0.01) and half-dosed (S)-atenolol (?35%; P < 0.01) to the same extent, whereas (R)-atenolol caused no effect. Radioligand binding studies in beta-adrenergic receptors of the guinea pig heart yielded a eudismic ratio of 46 for (S)- to (R)-atenolol. The mean AUCs, maximal plasma concentrations, and plasma half-lives of the enantiomers were similar regardless of whether they were administered as optically pure enantiomers or as racemic mixture. On the other hand, the AUC of (R)-atenolol was 1.08-fold greater (P < 0.01) than that of the (S)-enantiomer. The reason for this finding remains unclear. We conclude that only (S)-atenolol, but not (R)-atenolol, contributes to the beta-blocking effect of currently used rac-atenolol since the same effect can be elicited with the (S)-enantiomer alone. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The disposition of hydroxychloroquine enantiomers has been investigated in nine patients with rheumatoid arthritis following administration of a single dose of the racemate. Blood concentrations of (?)-(R)-hydroxychloroquine exceed those of (+)-(S)-hydroxychloroquine following both an oral and intravenous dose of the racemate. Maximum blood concentrations of (?)-(R)-hydroxychloroquine were higher than (+)-(S) -hydroxychloroquine after oral dosing (121 ± 56 and 99 ± 42 ng/ml, respectively, P = 0.009). The time to maximum concentration and the absorption half-life, calculated using deconvolution techniques, were similar for both enantiomers. The fractions of the dose of each enantiomer absorbed were similar, 0.74 and 0.77 for (?)-(R)- and (+)-(S)-hydroxychloroquine, respectively (P = 0.77). The data suggest that absorption of hydroxychloroquine is not enantioselective. The stereoselective disposition of hydroxychloroquine appears to be due to enantioselective metabolism and renal clearance, rather than stereoselectivity in absorption and distribution. © 1994 Wiley-Liss, Inc.  相似文献   

20.
The results of a previous pharmacokinetic study of disopyramide (DP) enantiomers in humans suggested that DP and/or mono-N-desisopropyldisopyramide (MND) may show stereoselective extrarenal elimination. Thus, the present study investigates the biliary elimination of DP and MND enantiomers in three patients who had undergone cholecystectomy for cholelithiasis. DP and MND enantiomers displayed biliary elimination. In both subjects, this elimination pathway showed the same characteristics: (1) biliary elimination of DP and MND was stereoselective, (2) the stereoselectivity was opposite to that observed for the metabolic and renal elimination pathways, i.e., the elimination of the (-)-(R)-enantiomer was higher than that of the (+)-(S)-enantiomer, and (3) biliary elimination of MND was higher than that of DP, for both enantiomers. Estimates of the relative contribution of the biliary clearance in the total clearance of DP and MND indicated that this elimination pathway was secondary, especially for DP. The biliary clearance (expressed as % of total clearance) was 1.9 to 4.0% for (-)-(R)-DP, 1.2 to 1.7% for (+)-(S)-DP, 7.8 to 22.9% for (-)-(R)-MND, and 5.2 to 10.5% for (+)-(S)-MND.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号