首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
酶曾-度被认为只能在水介质中起催化作用,而有机溶剂则会使其失活。由于大量化学反应都是在有机深剂中进行的,使得酶催化在有机合成中的应用受到极大限制。近年来少研究表明,只要条件合适,酶催化在有机介质中也可进行[1.2],并已在实际应用中显示其优点,如肽的合成[3,4]、旋光性物质的合成[5,6]、不溶于水的化学物质的酶法分析[7]、酯和酯交换反应[8,9]、甾体氧化[10]、脱氢的应[10]、酚类聚合反应[12].与一般化学催化相比,生物催化剂(酶)除了催化效率高,反应秉公执法曙和外,它具有亚格的选择性。例如对反应的专一性,化学基团的选择性,位置的选择性和对映选择性,因此,酶催化物别适合那些一般化学方法难以实现的手性化合物的选择性转化[13,14].  相似文献   

2.
Lanne于1987年提出了生物催化剂工程(Biocatalyst engimeering)和介质工程(Medium enineering)的概念[1].有机相生物催化中溶剂的选择也是介质工程的内容之一。纯酶在有机相中的催化作用已有大量报道[2],但对完整细胞研究甚少。本文以甲基单胞菌(Methylomonos)Z201完整细胞为生物催化剂,丙烯环氧化为指标反应,研究有机溶剂对活性的影响并对催化活性-溶剂疏水性进行了相关性分析。研究了水-十六烷两相体系中十六烷含量和搅拦速度对丙烯环氧化速度的影响和细胞的操作稳定性。  相似文献   

3.
云南红豆杉培养细胞系的建立   总被引:10,自引:0,他引:10  
紫杉醇(Taxol)最初是从红豆杉属植物短叶红豆杉(Taxus brevifolia)树皮中分离出的一种二萜类化合物[1].对卵巢癌,转移性乳腺癌和恶性黑色寮瘤等患者疗效显著[2],全世界红豆杉属植物有近11种,都含紫杉醇成分.但含量很低,加之现存数量很少,生长极为缓慢.造成了紫杉醇原料供应的危机[3]。紫杉醇化学合成已经成功[4-6],但繁杂的反应过程及前体化合物来源的限制使得它们无法实现商业化生产。最近从短叶红豆杉中分离出一种生产紫杉醇的内寄生真菌Tgromyer andreanae[7].由于紫杉醇含量仅为24~50ng/L.没有实用价值。植物细胞和组织培养可能是解决天然抗肿瘤药物长期供应的有效方法之一[8]。自1991年Christen等人申请利用红豆杉细胞培养物生产紫杉醇专利以来[9].有关红豆杉细胞培养的研究已有不少报[10-12]。但云南红豆杉(T.yunnanensis)仅见愈伤组织诱导的报道[13]。本文报道云南红豆杉愈伤组织诱导和细胞培养的初步结果,并分析了细胞培养物中紫杉醇含量。  相似文献   

4.
摇瓶的体积氧传递系数和氧通透率的测定   总被引:8,自引:2,他引:6  
通过设计特殊摇瓶,用亚硫酸钠法测出摇瓶的体积氧传递系数和氧透过纱布层的通透率。以氧电极测其内外氧的分压降后,可以算出摇瓶表观体积氧传递系数(kLa)app及真实体积氧传递系数kLa,并进一步求出氧通透率。由实验得出:氧分压降低6.1%,氧传递系数增加一倍;在37c、220r/min、500m1摇瓶(内盛液50m1)8层纱布的氧通透率Pm=43.7moI/m2·h·arm;并且关联出摇瓶容积V、装液量VL、转速n、摄氏温度t之间的模型式:(kLa)app=1.84×10-7[t]1.8479·[n]2.3906.(VLV]-0.6360(kLa)=2.02×10-7[t]1.8525·[n]2.39441·[VLV]-0.6370  相似文献   

5.
从红豆杉科红豆杉属植物如短叶红豆杉(Taxusbrevifolia)等的树皮或枝叶提取到的紫杉醇(Tax-ol)是一种具有强抗癌活性的二萜烯类化合物[1].作为一种治疗晚期卵巢癌、乳腺癌的新药已经在欧美等一些国家被批准上市,成为迄今从植物中提取的最有效的抗癌药之一[2].但由于紫杉树皮来提取紫杉醇的方法如紫杉醇的化学合成、半合成,从真菌中提取紫杉醇以及改善红豆杉的栽培措施等等均已取得了较大进展,但离实际应用还相差太远[5,6].而利用组织和细胞培养方法替代砍伐天然红豆杉树皮来提取紫杉醇,也已成为近几年来红豆杉研究的一个重要课题之一并已取得了较大进展[7].云南红豆杉(Taxus yunnanensis)主要分布于我国云南省,是分布于我国的主要品种之一,其含量在我国现有的几种红豆杉植物中属于较高的一种[3],在我国,近些年来亦有不少实验室在红豆杉细胞培养方面取得了较好的成绩,但文献报道的较少[8-10].本文报道利用云南红豆杉细胞培养方法来生产紫杉醇,以最终取代从天然来源的树皮和枝叶中提取的可能性,对云南红豆杉进行的愈伤组织的诱导和培养研究的进展。  相似文献   

6.
生黑醋菌可以将D-山梨醇转化为L-山梨塘,用微生物将D-山梨醇氧化为L-山梨糖是维生素C生产的一个重要部分,目前工业上用的都是游离菌批式生产工艺。由于固定化活细胞作为生物催化剂具有生产的连续性和稳定性.操作简便.产物易于分离纯化等优点[1],已有不少实验室研究甩固定化微生物细胞将D-山梨醇转化为L-山梨糖[1-6],国内也有用海藻酸固定化生黑醋菌Acetobacteriummelanogenum的报道[2,3]。用海藻酸钙[1-3]、聚丙烯酰胺[4]、铝处理的海藻酸钙[5]、水合聚丙烯酰胺与海藻酸钙混合固定化的微生物细胞[6]转化D-山梨醇成为L-山梨糖,都有因机械强度差,而不适合在搅拌式发酵罐中生产的弱点。聚乙烯醇制备的固定化微生物细胞具有机械强度好、类似于橡皮的弹性、成低等特性[7]。因此,我们选择聚乙烯醇作为固定化生黑醋菌的材料。  相似文献   

7.
本文研究了诺卡氏菌(Noeardia) 62-1 菌株和蓝色梨头霉(Absidia coerulea) AS3.65在一起,转化5a-娠烷-3β,17a-二羟基-20-酮-21-醋酸酯一步生成氢化可的松的协同转化作用。由于诺卡氏菌62一l菌株的水解酶活性弱,A1一脱氢酶的活性强,所以在单独转化中形成RSA,P.S和ALRS等多种产物,但蓝色梨头霉有很强的水解酶活性并具11β一羟化酶,所以在和诺卡氏菌的协同转化中,只测到少量RSA和微量不欲得的△1-RS,生成的主要中间产物是RS,它紧接着进一步转化成氢化可的松,这是一种理想的转化方法。  相似文献   

8.
微水体系中荧光假单胞菌脂肪酶催化合成单甘酯   总被引:4,自引:0,他引:4  
研究了无溶剂微水体系中荧光假单胞菌脂肪酶 (PFL)催化油脂甘油解合成单甘酯的反应因素以及多温程非均相固液反应对单甘酯产率的影响。以初始体系最低共熔点 (PFL)取代临界温度学说中的油脂初熔点 ,通过考察不同IEP体系的甘油解 ,发现PFL酶促油脂甘油解时存在碳链基质特异性的函数关系 ,即反应物油脂中饱和碳残基的质量百分含量 (C16+C18)与单甘酯产率间符合以下多项式:Y =- 0.0006X3 +0.0592X2-0.8909X+26.753(13%<X<76.5%),式中X为C16+C18,Y为40℃时等温反应条件下的单甘酯产率。IEP为40℃时,最适等温反应条件如下:加水量3%~4.5%,加酶量为500μ/g油酯摩尔比1:2.5-5.0(油酯:甘油)反应温度40℃.实验条件下多步等程序降温反应48h后单甘酯最高产率为81.4%.  相似文献   

9.
在真菌的反硝化作用中,一种细胞色素P-450起着一氧化氮还原酶的作用,被称为细胞色素P-450nor[1]。最近的研究发现:真菌细胞色素P-450nor有三种类型。除了缣孢菌(Fusarium oxysporum)P+450nor(即F.P-450nor)外。还有两种存在于柱孢菌(Cylindrocarpon tonkinense).即C. P-450norl和2[2]。 F.P-450nox和C.P-450norl能以NADH为直接的电子供体,使NO还原生成N2O。C. P-450nor2不仅能直接利用NADH。而且能直接利用NADPH.还原NO生成N2O。F. P-450nor基因已被克隆和测序[3-4]。本文测定了C.P-450nor2的eDNA编码区全序列,3’非编码区部分序列和5’引导序列。  相似文献   

10.
[背景] Skyllamycins是一类从链霉菌中发现的具有血小板生长因子抑制和生物膜抑制作用的非核糖体肽类,其环肽环合反应是由非核糖体肽合成酶中的硫酯酶功能域催化完成。[目的] 克隆和表达Skyllamycin非核糖体肽合成酶最后一个模块中的硫酯酶(Skyxy-TE)基因,合成Skyxy-TE底物类似物,通过体外催化实验表征Skyxy-TE的底物杂泛性。[方法] 采用Ligation Independent Cloning(LIC)方法,从一株含有Skyllamycin B生物合成基因簇的链霉菌Streptomyces sp.PKU-MA01239中克隆和表达skyxy-TE,通过镍离子柱亲和层析纯化Skyxy-TE。运用固相多肽合成法合成2个底物类似物12,进行Skyxy-TE的体外催化实验。[结果] 通过对Skyxy-TE的表达纯化,获得了纯度较好的可溶性蛋白;通过固相多肽合成,得到了能够模拟Skyllamycin B底物类似物的化合物12,硫酯酶蛋白体外催化化合物12得到了化合物34,化合物34通过核磁共振和高分辨质谱确认为环肽。[结论] Skyllamycin B生物合成中Skyxy-TE表现出一定的底物杂泛性,可以识别底物类似物催化环化反应,该研究为将来利用化学-酶联法制备更多环肽类似物提供了依据。  相似文献   

11.
研究脱氧核酶对近日钟基因period1(per1)表达的影响, 进而寻找治疗和近日节律有关疾病的基因疗法. 设计合成针对per 1的脱氧核酶DRz164, DRz256, 并构建pcDNA3-per1164:256体外转录载体, 将转录产物和脱氧核酶混合, 在一定反应条件下进行体外切割反应, 地高辛酶联免疫及酶催化显色法检测脱氧核酶的体外切割效率. 将pcDNA3-per1和DRz164或DRz256在脂质体的介导下转染NIH3T3细胞, 通过逆转录-聚合酶链反应(RT-PCR)、流式细胞术(FCM)检测脱氧核酶对近日基因表达的影响. 于37℃孵育2 h后, DRz164对底物的剪切百分率为63%, DRz256为50.5%. RT-PCR半定量检测per1 mRNA表达水平明显下降, FCM结果显示细胞内Per1蛋白的合成受到抑制. 脱氧核酶DRz164, DRz256体外具有定点切割近日钟基因per1mRNA组分的活性, 使转染细胞per1 mRNA 和Per1蛋白表达下降.  相似文献   

12.
Laabe于1987年提出了生物催化剂工程(Biocatalyst engineering)和介质工程(Medium engineering)的概念[1]。有机相生物催化中溶剂的选择也是介质工程的内容之一。纯酶在有机相中的催化作用已有大量报道[2],但对完整细胞研究甚步。本文以甲基单胞菌(Methylomonas Z201)完整细胞为生物催化剂.丙烯环氧化为指标反应.研究有机溶剂对活性的影响并对催化活性——溶剂疏水性进行了相关性分析。研究了水一十六烷两相体系中十六烷含量和搅拌速度对丙烯环氧化速度的影响和细胞的操作稳定性。  相似文献   

13.
枯草杆菌中性蛋白酶基因在大肠杆菌中的表达   总被引:7,自引:0,他引:7  
蛋白酶是枯草杆菌(Bacillus subtilis)产生的具有重要工业价值的水解酶。对蛋白酶基因的分离与高效率表达一直是基因工程研究领域的重要内容之一[1-4]。蛋白酶基因的筛选可采用不同的方法,如“免疫法”、“DNA 杂交法”、“遗传互补法”等。大肠杆菌(Escherichia coli)是基因工程中最常用的宿主菌, 若能以E.Coli作为筛选蛋白酶基因的宿主苗,那么使用E.Coli的常规载体,便可直接获得完整的蛋白 酶基因。枯草杆菌的蛋白酶基因能否在大肠杆菌中表达.则是实现这一目标的关键。Koide等人[5]报道过枯草杆菌的胞内丝氨酸蛋白酶基因在大肠杆菌中的表达。转化细胞在含有脱脂牛奶的平板上可产生十分微弱的水解圈。Ikeraara等人[6]将Subtilisin E(枯草杆菌蛋白酶E)插人大肠杆菌的表达载体,具有活性的Subtilisin E便可分泌到大肠杆菌的细胞周质中。吴汝平撰文指出[7]。克隆的枯草杆菌蛋白酶基因不能在大肠杆菌中表达。是因为大肠杆菌不能转录枯草杆菌的促使生长调节基因。Wang等人[8]则认为,在大肠杆菌中观察不到野生型的中性蛋白酶基因E(nprE)的表达。是因为nprE的表达产物对大肠杆菌有致死作用.除去该基因上的核糖体结合位点,nprE便能在大肠杆菌中低水平表达,并能将表达产 物分泌至胞外。由上可知.枯草杆菌的蛋白酶基因能否在大肠杆菌中表达以及表达的位置仍然是一个众说纷纭的问题,这一问题也正是能否用大肠杆菌作为宿主菌筛选蛋白酶基因的关键。  相似文献   

14.
生物法合成维生素C棕榈酸酯   总被引:7,自引:0,他引:7  
研究了不同的脂肪酶在有机溶剂体系中催化合成L-维生素C棕榈酸酯的反应。针对维生素C在有机溶剂中溶解度较低这一问题,对催化合成维生素C棕榈酸酯反应的脂肪酶和反应介质进行比较,同时对影响合成维生素C棕榈酸酯反应的因素(温度、底物浓度、底物摩尔比、反应时间和酶量等)进行探讨,优化了反应条件:在10mL的丙酮中,1.094g棕榈酸与0.107g维生素C在酶量为20%(W/W, 固定化酶/维生素C)的固定化脂肪酶催化下,初始含0.4nm分子筛20%,温度为60℃,转速为200r/min,反应48h转化率可以达到80%,产物维生素C棕榈酸酯的浓度可达20g/L。  相似文献   

15.
[背景] N-甲基-L-苯丙氨酸是一种N-烷基化芳香氨基酸,是重要的手性合成单元/中间体/组成成分,在医药、农业、食品等领域有重要应用价值的代谢产物中广泛存在。N-烷基化芳香氨基酸的合成与制备仍具有巨大的挑战。[目的] 在研究加兰他敏的生物合成过程中,我们从产加兰他敏的红花石蒜中克隆并表征苯丙氨酸解氨酶LrPAL3。LrPAL3催化区域及对映选择性的氢胺化反应得到L-苯丙氨酸。通过生物信息学分析,推测LrPAL3可能催化反式-肉桂酸的一步N-甲基胺化反应得到N-甲基-L-苯丙氨酸。[方法] 将反式-肉桂酸与甲胺,以及表达LrPAL3的大肠杆菌全细胞一起孵育。HPLC-DAD及HRESIMS分析表明,上述反应产物为N-甲基-苯丙氨酸。为确定该产物的立体构型,将上述催化反应放大,通过分离纯化得到该酶催化反应产物。[结果] 该化合物的氢谱数据及比旋光数据与N-甲基-L-苯丙氨酸标准品的数据一致。由此说明,LrPAL3能够催化反式-肉桂酸和甲胺发生N-烷基胺化反应,区域和立体专一性地生成N-甲基-L-苯丙氨酸。[结论] 本研究为手性N-烷基氨基酸的不对称合成提供了一种全新的绿色、高效生物催化剂。通过对LrPAL3的蛋白质定向进化及代谢工程,将会进一步扩展LrPAL3的催化反应范围,以多种N-烷基胺类及取代的苯基丙烯酸为底物,实现手性N-烷基-芳基氨基酸的高效区域及立体选择性生物合成。  相似文献   

16.
日本根霉IFO5318胞外β-葡萄糖苷酶的纯化及部分特性   总被引:1,自引:0,他引:1  
采用硫酸铵沉淀及柱层析等步骤纯化了日本根霉IFO5318的β—葡萄糖苷酶,回收率为22%。该酶分子量约为4.0×10~5,由四个相同大小的亚基组成;最适反应温度55℃,最适反应pH5.5;对热较敏感,但能在较大的pH范围内保持稳定。用对硝基苯基—β-D-吡喃葡糖苷为底物,测得的K_m和V_(max)值分别为0.825mg·ml~(-1)和135.4μmol·min~(-1)·mg~(-1)。该酶对纤维二糖的水解能力最强,SDS、Fe3+、Hg2+等对酶活力有抑制作用。  相似文献   

17.
由地衣芽孢杆菌NK-27获得的β-甘露聚糖酶在40℃、酶液终浓度1u/ml时,经12h水解魔芋粉、角豆胶、瓜儿豆胶和田菁胶所生成的酶解产物,经薄层层析检测表明为单糖和低聚糖。在PYG和GAM液体培养基中,添加不同量的四种植物胶酶解产物对青春双歧杆菌(Bifidobacteriumadole-scentis)具有明显的促生长作用,菌体增殖数从10提高到10个/ml。  相似文献   

18.
19.
研究了ArthrobacterK110 8乙内酰脲酶的反应条件 ,结果表明 ,K1108乙内酰脲酶的最适反应温度为 55℃ ,最适pH为 70 ,Co2+ 和Fe2+ 对该酶有激活作用 ,而Ca2+ 有严重抑制作用。K1108乙内酰脲酶的底物专一性较强 ,其最适底物为 5 苄基乙内酰脲 ,5 苯基乙内酰脲和 5 吲哚甲基乙内酰脲均不能作为其有效底物。对K1108乙内酰脲酶立体反应机制研究结果表明 ,其乙内酰脲水解酶不具立体选择性 ,决定产物立体构型的酶是N 氨甲酰氨基酸水解酶。  相似文献   

20.
[目的]假单胞菌SJTE-1可高效转化17β-雌二醇,但是催化该转化的酶尚不清楚。本文鉴定了该菌株的一个新的3-酮酰基-ACP还原酶(ANI01589.1),并对其进行了功能研究。[方法]首先,我们克隆了该3-酰基-ACP还原酶的编码基因,在大肠杆菌BL21(DE3)菌株中进行了异源表达;利用金属离子亲和层析法,纯化获得了重组蛋白。体外检测了重组蛋白的活性与酶学性质,并利用高效液相色谱法(HPLC)测定了该酶的催化产物。[结果]3-酮酰基-ACP还原酶可被17β-雌二醇诱导表达,重组蛋白纯化量可达19.6 mg/L。蛋白序列比对结果表明,该蛋白包含短链脱氢酶/还原酶(SDR)的2个共有区域和多个保守残基。该酶以NAD+为辅助因子,将17β-雌二醇转化为雌酮;其Km值为0.071 mmol/L,kcat值为2.4±0.06/s-1,5 min内可转化超过95.8%的雌二醇。该酶的最佳反应温度为42℃,最佳pH为8.0。不同二价离子对该酶的活性影响不同,Mg2+和Mn2+可增强其酶活性。[结论]这一假单胞菌SJTE-1来源的3-酮酰基-ACP还原酶可高效催化17β-雌二醇的转化,该酶可能在该菌株的雌激素代谢过程中起到重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号