首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Schopfer P  Plachy C  Frahry G 《Plant physiology》2001,125(4):1591-1602
Germination of radish (Raphanus sativus cv Eterna) seeds can be inhibited by far-red light (high-irradiance reaction of phytochrome) or abscisic acid (ABA). Gibberellic acid (GA3) restores full germination under far-red light. This experimental system was used to investigate the release of reactive oxygen intermediates (ROI) by seed coats and embryos during germination, utilizing the apoplastic oxidation of 2',7'-dichlorofluorescin to fluorescent 2',7'-dichlorofluorescein as an in vivo assay. Germination in darkness is accompanied by a steep rise in ROI release originating from the seed coat (living aleurone layer) as well as the embryo. At the same time as the inhibition of germination, far-red light and ABA inhibit ROI release in both seed parts and GA3 reverses this inhibition when initiating germination under far-red light. During the later stage of germination the seed coat also releases peroxidase with a time course affected by far-red light, ABA, and GA3. The participation of superoxide radicals, hydrogen peroxide, and hydroxyl radicals in ROI metabolism was demonstrated with specific in vivo assays. ROI production by germinating seeds represents an active, developmentally controlled physiological function, presumably for protecting the emerging seedling against attack by pathogens.  相似文献   

3.
4.
The mechanisms imposing a gibberellin (GA) requirement to promote the germination of dormant and non-dormant Arabidopsis seeds were analyzed using the GA-deficient mutant ga1, several seed coat pigmentation and structure mutants, and the abscisic acid (ABA)-deficient mutant aba1. Testa mutants, which exhibit reduced seed dormancy, were not resistant to GA biosynthesis inhibitors such as tetcyclacis and paclobutrazol, contrarily to what was found before for other non-dormant mutants in Arabidopsis. However, testa mutants were more sensitive to exogenous GAs than the wild-types in the presence of the inhibitors or when transferred to a GA-deficient background. The germination capacity of the ga1-1 mutant could be integrally restored, without the help of exogenous GAs, by removing the envelopes or by transferring the mutation to a tt background (tt4 and ttg1). The double mutants still required light and chilling for dormancy breaking, which may indicate that both agents can have an effect independently of GA biosynthesis. The ABA biosynthesis inhibitor norflurazon was partially efficient in releasing the dormancy of wild-type and mutant seeds. These results suggest that GAs are required to overcome the germination constraints imposed both by the seed coat and ABA-related embryo dormancy.  相似文献   

5.
Arabidopsis mutants with a reduced seed dormancy.   总被引:12,自引:1,他引:11  
The development of seed dormancy is an aspect of seed maturation, the last stage of seed development. To isolate mutants of Arabidopsis thaliana that are affected in this process, we selected directly for the absence of dormancy among freshly harvested M2 seeds. The screen yielded two mutants exhibiting a reduced dormancy, rdo1 and rdo2, that are specifically affected in dormancy determined by the embryo. The rdo1 and rdo2 mutants show normal levels of abscisic acid and the same sensitivity to abscisic acid, ethylene, auxin, and cytokinin as the wild type. The rdo2 mutant but not the rdo1 mutant has a reduced sensitivity to the gibberellin biosynthesis inhibitor tetcyclacis. Double-mutant analysis suggested that the RDO1 and RDO2 genes are involved in separate pathways leading to the development of dormancy. We assume that the RDO2 gene controls a step in the induction of dormancy that is most likely induced by abscisic acid and is expressed as an increase of the gibberellin requirement for germination.  相似文献   

6.
采用荧光显微技术结合药理学方法,以水稻(Oryza sativa L.)种子及其糊粉层为实验材料,研究外源CO、NO对干旱胁迫下水稻种子萌发过程中糊粉层细胞DNA降解及死亡的影响。结果表明:(1)干旱胁迫促进糊粉层细胞的死亡,且近胚端糊粉层细胞的死亡进程早于远胚端的细胞。(2)外源CO及NO供体处理能缓解干旱胁迫下水稻糊粉层细胞DNA的降解,延迟细胞死亡进程;CO专一性抑制剂及NO清除剂能逆转CO及NO的效应,缩短细胞死亡进程。(3)外源CO及NO供体促进干旱胁迫下水稻种子的萌发,CO专一性抑制剂及NO清除剂能抑制干旱胁迫下水稻种子的萌发。(4)CO合成酶抑制剂并不能抑制外源NO对干旱胁迫伤害的缓解效应,即CO能通过NO介导调节干旱胁迫下水稻种子糊粉层细胞的死亡及种子萌发。  相似文献   

7.
Peroxiredoxins (Prx) are thiol-dependent antioxidants containing one (1-cysteine [-Cys]) or two (2-Cys) conserved Cys residues that protect lipids, enzymes, and DNA against reactive oxygen species. In plants, the 1-Cys Prxs are highly expressed during late seed development, and the expression pattern is dormancy related in mature seeds. We have expressed the Arabidopsis 1-Cys Prx AtPER1 in Escherichia coli and show that this protein has antioxidant activity in vitro and protects E. coli in vivo against the toxic oxidant cumene hydroperoxide. Although some 1-Cys Prxs are targeted to the nucleus, a green fluorescent protein-AtPER1 fusion protein was also localized to the cytoplasm in an onion epidermis subcellular localization assay. It has been proposed that seed Prxs are involved in maintenance of dormancy and/or protect the embryo and aleurone layer surviving desiccation against damage caused by reactive oxygen species. These hypotheses were tested using transgenic Arabidopsis lines overexpressing the barley (Hordeum vulgare) 1-Cys PER1 protein and lines with reduced levels of AtPER1 due to antisensing or RNA interference. We found no correlation between Prx levels and the duration of the after-ripening period required before germination. Thus, Prxs are unlikely to contribute to maintenance of dormancy. RNA interference lines almost devoid of AtPER1 protein developed and germinated normally under standard growth room conditions. However, seeds from lines overexpressing PER1 were less inclined to germinate than wild-type seeds in the presence of NaCl, mannitol, and methyl viologen, suggesting that Prx can sense harsh environmental surroundings and play a part in the inhibition of germination under unfavorable conditions.  相似文献   

8.
In Arabidopsis thaliana, the etr1-2 mutation confers dominant ethylene insensitivity and results in a greater proportion of mature seeds that exhibit dormancy compared with mature seeds of the wild-type. We investigated the impact of the etr1-2 mutation on other plant hormones by analyzing the profiles of four classes of plant hormones and their metabolites by HPLC-ESI/MS/MS in mature seeds of wild-type and etr1-2 plants. Hormone metabolites were analyzed in seeds imbibed immediately under germination conditions, in seeds subjected to a 7-day moist-chilling (stratification) period, and during germination/early post-germinative growth. Higher than wild-type levels of abscisic acid (ABA) appeared to contribute, at least in part, to the greater incidence of dormancy in mature seeds of etr1-2. The lower levels of abscisic acid glucose ester (ABA-GE) in etr1-2 seeds compared with wild-type seeds under germination conditions (with and without moist-chilling treatments) suggest that reduced metabolism of ABA to ABA-GE likely contributed to the accumulation of ABA during germination in the mutant. The mutant seeds exhibited generally higher auxin levels and a large build-up of indole-3-aspartate when placed in germination conditions following moist-chilling. The mutant manifested increased levels of cytokinin glucosides through zeatin-O-glucosylation (Z-O-Glu). The resulting increase in Z-O-Glu was the largest and most consistent change associated with the ETR1 gene mutation. There were more gibberellins (GA) and at higher concentrations in the mutant than in wild-type. Our results suggest that ethylene signaling modulates the metabolism of all the other plant hormone pathways in seeds. Additionally, the hormone profiles of etr1-2 seed during germination suggest a requirement for higher than wild-type levels of GA to promote germination in the absence of a functional ethylene signaling pathway.  相似文献   

9.
A role for brassinosteroids in germination in Arabidopsis   总被引:21,自引:0,他引:21       下载免费PDF全文
This paper presents evidence that plant brassinosteroid (BR) hormones play a role in promoting germination. It has long been recognized that seed dormancy and germination are regulated by the plant hormones abscisic acid (ABA) and gibberellin (GA). These two hormones act antagonistically with each other. ABA induces seed dormancy in maturing embryos and inhibits germination of seeds. GA breaks seed dormancy and promotes germination. Severe mutations in GA biosynthetic genes in Arabidopsis, such as ga1-3, result in a requirement for GA application to germinate. Whereas previous work has shown that BRs play a critical role in controlling cell elongation, cell division, and skotomorphogenesis, no germination phenotypes have been reported in BR mutants. We show that BR rescues the germination phenotype of severe GA biosynthetic mutants and of the GA-insensitive mutant sleepy1. This result shows that BR stimulates germination and raises the possibility that BR is needed for normal germination. If true, we would expect to detect a germination phenotype in BR mutants. We found that BR mutants exhibit a germination phenotype in the presence of ABA. Germination of both the BR biosynthetic mutant det2-1 and the BR-insensitive mutant bri1-1 is more strongly inhibited by ABA than is germination of wild type. Thus, the BR signal is needed to overcome inhibition of germination by ABA. Taken together, these results point to a role for BRs in stimulating germination.  相似文献   

10.
11.
12.
The Arabidopsis COMATOSE locus regulates germination potential   总被引:5,自引:0,他引:5  
Mutation of the COMATOSE locus in Arabidopsis results in a marked reduction in germination potential. Whilst the morphology of comatose (cts) embryos is not altered, physiological analysis reveals that mature cts seeds do not respond to gibberellin. Prolonged chilling of imbibed seeds only partially restores germination potential, and seeds do not after ripen. Genetic analysis shows that the cts phenotype is expressed in the embryo and phenotypic differences between wild-type and mutant plants were not observed during other stages of plant growth and development. Therefore cts represents a new class of mutant, with a specific lesion that results in severely impaired germination potential. Genetic interactions were analysed between cts and loci that regulate embryo maturation, and abscisic acid biosynthesis and perception. Results from these studies showed that the cts mutant phenotype required the wild-type action of these loci, and suggested that CTS exerts a repressive function on these loci. A model is presented postulating that CTS promotes increased germination potential, and represses embryo dormancy. These functions of CTS may result in the removal of embryo dormancy as a prerequisite to germination.  相似文献   

13.
14.
15.
Nitrate, a signal relieving seed dormancy in Arabidopsis   总被引:2,自引:0,他引:2  
Nitrate is an important nitrogen source for plants, but also a signal molecule that controls various aspects of plant development. In the present study the role of nitrate on seed dormancy in Arabidopsis was investigated. The effects of either mutations affecting the Arabidopsis nitrate reductase genes or of different nitrate regimes of mother plants on the dormancy of the seeds produced were analysed. Altogether, data show that conditions favouring nitrate accumulation in mother plants and in seeds lead to a lower dormancy of seeds with little other morphological or biochemical differences. Analysis of germination during seed development indicated that nitrate does not prevent the onset of dormancy but rather its maintenance. The effect of an exogenous supply of nitrate on seed germination was tested: nitrate in contrast to glutamine or potassium chloride clearly stimulated the germination of dormant seeds. Data show, moreover, that the Arabidopsis dual affinity nitrate transporter NRT1.1 (CHL1) may be involved in conveying the nitrate signal into seeds. Thus, nitrate provided exogenously or by mother plants to the produced seeds, acts as a signal molecule favouring germination in Arabidopsis. This signalling may involve interaction with the abscisic acid or gibberellin pathway.  相似文献   

16.
Using the gibberellin (GA) biosynthetic inhibitor Uniconazol, we determined that det1, a mutant that no longer requires light to be germinated, still requires GA synthesis for germination. This result suggests that dark inhibition of germination in Arabidopsis may be due to inhibition of GA synthesis by the DET1 gene product in mature wild-type seeds. Similar experiments with mutants that lack seed dormancy due to a reduced sensitivity to abscisic acid (abi) have shown that abi1 and abi3 no longer require GA for germination. Furthermore, by shifting wild-type seeds to inhibitor at 6-hour intervals during imbibition, we determined that GA synthesis is only required during the first 24 hours of the imbibition process to reverse abscisic acid-induced dormancy in Arabidopsis.  相似文献   

17.
Gibberellins and Light-Stimulated Seed Germination   总被引:3,自引:0,他引:3  
Bioactive gibberellins (GAs) promote seed germination in a number of plant species. In dicots, such as tomato and Arabidopsis, de novo GA biosynthesis after seed imbibition is essential for germination. Light is a crucial environmental cue determining seed germination in some species. The red (R) and far-red light photoreceptor phytochrome regulates GA biosynthesis in germinating lettuce and Arabidopsis seeds. This effect of light is, at least in part, targeted to mRNA abundance of GA 3-oxidase, which catalyzes the final biosynthetic step to produce bioactive GAs. The R-inducible GA 3-oxidase genes are predominantly expressed in the hypocotyl of Arabidopsis embryos. This predicted location of GA biosynthesis appears to correlate with the photosensitive site determined by using R micro-beam in lettuce seeds. The GA-deficient non-germinating mutants have been useful for studying how GA stimulates seed germination. In tomato, GA promotes the growth potential of the embryo and weakens the structures surrounding the embryo. Endo-b-mannanase, which is produced specifically in the micropylar endosperm in a GA-dependent manner, may be responsible for breaking down the endosperm cell walls to assist germination. Recently, a role for GA in overcoming the resistance imposed by the seed coat was also suggested in Arabidopsis from work with a range of seed coat mutants. Towards understanding the GA signaling pathway, GA response mutants have been isolated and characterized, some of which are affected in GA-stimulated seed germination.  相似文献   

18.
19.
The aleurone layer of mature Arabidopsis thaliana seed plays important roles in seed germination and dormancy. However, the proteomic profile of this cell layer is unknown partly because it is difficult to separate this thin cell layer from the mature seeds. In this study, we have used a simple technique to separate the aleurone layer along with the seed coat following germination of seeds and determined for the first time the putative protein composition of this cell layer. By subjecting the total proteins extracted from the seed coat to 2D gel electrophoresis followed by liquid chromatography/tandem mass spectrometry, we identified four AGI loci, AT4G28520, AT5G44120, AT1G03880, and AT1G03890; all of which belong to the seed storage family of proteins. Because in Arabidopsis the diploid aleurone cells of the seed coat perform protein storage functions similar to that of triploid endosperm of other plant species, it is assumed that the above AGI loci are associated with the aleurone layer of the seed coat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号