首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharide (KPS) biosynthesis, is constituted by the rkpU, rkpAGHIJ, and kpsF3 genes. Two mutants in this region affecting the rkpA (SVQ536) and rkpI (SVQ538) genes were constructed. Polyacrylamide gel electrophoresis and (1)H-NMR analyses did not detect KPS in these mutants. RT-PCR experiments indicated that, most probably, the rkpAGHI genes are cotranscribed. Glycine max cultivars (cvs.) Williams and Peking inoculated with mutants SVQ536 and SVQ538 showed reduced nodulation and symptoms of nitrogen starvation. Many pseudonodules were also formed on the American cv. Williams but not on the Asiatic cv. Peking, suggesting that in the determinate nodule-forming S. fredii-soybean symbiosis, bacterial KPS might be involved in determining cultivar-strain specificity. S. fredii HH103 mutants unable to produce KPS or exopolysaccharide (EPS) also showed reduced symbiotic capacity with Glycyrrhiza uralensis, an indeterminate nodule-forming legume. A HH103 exoA-rkpH double mutant unable to produce KPS and EPS was still able to form some nitrogen-fixing nodules on G. uralensis. Thus, here we describe for the first time a Sinorhizobium mutant strain, which produces neither KPS nor EPS is able to induce the formation of functional nodules in an indeterminate nodule-forming legume.  相似文献   

2.
The Sinorhizobium fredii HH103 rkp-3 region has been isolated and sequenced. Based on the similarities between the S. fredii HH103 rkpL, rkpM, rkpN, rkpO, rkpP, and rkpQ genes and their corresponding orthologues in Helicobacter pylori, we propose a possible pathway for the biosynthesis of the S. fredii HH103 K-antigen polysaccharide (KPS) repeating unit. Three rkp-3 genes (rkpM, rkpP, and rkpQ) involved in the biosynthesis of the HH103 KPS repeating unit (a derivative of the pseudaminic acid) have been mutated and analyzed. All the rkp-3 mutants failed to produce KPS and their lipopolysaccharide (LPS) profiles were altered. These mutants showed reduced motility and auto-agglutinated when early-stationary cultures were further incubated under static conditions. Glycine max, Vigna unguiculata (determinate nodule-forming legumes), and Cajanus cajan (indeterminate nodules) plants inoculated with mutants in rkpM, rkpQ, or rkpP only formed pseudonodules that did not fix nitrogen and were devoid of bacteria. In contrast, another indeterminate nodule-forming legume, Glycyrrhiza uralensis, was still able to form some nitrogen-fixing nodules with the three S. fredii HH103 rifampicin-resistant rkp-3 mutants tested. Our results suggest that the severe symbiotic impairment of the S. fredii rkp-3 mutants with soybean, V. unguiculata, and C. cajan is mainly due to the LPS alterations rather than to the incapacity to produce KPS.  相似文献   

3.
The rhizobial production of extracellular polysaccharide (EPS) is generally required for the symbiotic infection of host plants that form nodules with an apical meristem (indeterminate nodules). One exception is Rhizobium meliloti AK631, an exoB mutant of Rm41, which is deficient in EPS production yet infects and fixes nitrogen (i.e., is Fix+) on alfalfa, an indeterminate nodule-forming plant. A mutation of lpsZ in AK631 results in a Fix- strain with altered phage sensitivity, suggesting that a cell surface factor may substitute for EPS in the alfalfa-AK631 symbiosis. Biochemical analyses of the cell-associated polysaccharides of AK631 and Rm5830 (AK631 lpsZ) demonstrated that the lpsZ mutation affected the expression of a surface polysaccharide that is analogous to the group II K polysaccharides of Escherichia coli; the polysaccharide contains 3-deoxy-D-manno-2-octulosonic acid or a derivative thereof in each repeating unit. Rm5830 produced a polysaccharide with altered chromatographic and electrophoretic properties, indicating a difference in the molecular weight range. Similar results were obtained in a study of Rm1021, a wild-type isolate that lacks the lpsZ gene: the introduction of lpsZ into Rm1021 exoB (Rm6903) both suppresses the Fix- phenotype and results in a modified expression of the K polysaccharide. Chromatography and electrophoresis analysis showed that the polysaccharide extracted from Rm6903 lpsZ+ differed from that of Rm6903 in molecular weight range. Importantly, the effect of LpsZ is not structurally specific, as the introduction lpsZ+ into Rhizobium fredii USDA257 also resulted in a molecular weight range change in the structurally distinct K polysaccharide produced by that strain. This evidence suggests that LpsZ has a general effect on the size-specific expression of rhizobial K polysaccharides.  相似文献   

4.
5.
6.
A fix region of Rhizobium meliloti 41 involved both in symbiotic nodule development and in the adsorption of bacteriophage 16-3 was delimited by directed Tn5 mutagenesis. Mutations in this DNA region were assigned to four complementation units and were mapped close to the pyr-2 and pyr-29 chromosomal markers. Phage inactivation studies with bacterial cell envelope preparations and crude lipopolysaccharides (LPS) as well as preliminary characterization of LPS in the mutants indicated that these genes are involved in the synthesis of a strain-specific LPS. Mutations in this DNA region resulted in a Fix- phenotype in AK631, an exopolysaccharide (EPS)-deficient derivative of R. meliloti 41; however, they did not influence the symbiotic efficiency of the parent strain. An exo region able to restore the EPS production of AK631 was isolated and shown to be homologous to the exoB region of R. meliloti SU47. By generating double mutants, we demonstrated that exo and lps genes determine similar functions in the course of nodule development, suggesting that EPS and LPS may provide equivalent information for the host plant.  相似文献   

7.
Sinorhizobium meliloti is a free-living soil bacterium which is capable of establishing a symbiotic relationship with the alfalfa plant (Medicago sativa). This symbiosis involves a network of bacterium-host signaling, as well as the potential for bacterium-bacterium communication, such as quorum sensing. In this study, we characterized the production of N-acyl homoserine lactones (AHLs) by two commonly used S. meliloti strains, AK631 and Rm1021. We found that AK631 produces at least nine different AHLs, while Rm1021 produces only a subset of these molecules. To address the difference in AHL patterns between the strains, we developed a novel screening method to identify the genes affecting AHL synthesis. With this screening method, chromosomal groEL (groELc) was shown to be required for synthesis of the AHLs that are unique to AK631 but not for synthesis of the AHLs that are made by both AK631 and Rm1021. We then used the screening procedure to identify a mutation in a gene homologous to traM of Agrobacterium tumefaciens, which was able to suppress the phenotype of the groELc mutation. A traR homolog was identified immediately upstream of traM, and we propose that its gene product requires a functional groELc for activity and is also responsible for inducing the synthesis of the AHLs that are unique to AK631. We show that the traR/traM locus is part of a quorum-sensing system unique to AK631 and propose that this locus is involved in regulating conjugal plasmid transfer. We also present evidence for the existence of a second quorum-sensing system, sinR/sinI, which is present in both AK631 and Rm1021.  相似文献   

8.
Here we report that the structure of the Sinorhizobium fredii HH103 exopolysaccharide (EPS) is composed of glucose, galactose, glucuronic acid, pyruvic acid, in the ratios 5∶2∶2∶1 and is partially acetylated. A S. fredii HH103 exoA mutant (SVQ530), unable to produce EPS, not only forms nitrogen fixing nodules with soybean but also shows increased competitive capacity for nodule occupancy. Mutant SVQ530 is, however, less competitive to nodulate Vigna unguiculata. Biofilm formation was reduced in mutant SVQ530 but increased in an EPS overproducing mutant. Mutant SVQ530 was impaired in surface motility and showed higher osmosensitivity compared to its wild type strain in media containing 50 mM NaCl or 5% (w/v) sucrose. Neither S. fredii HH103 nor 41 other S. fredii strains were recognized by soybean lectin (SBL). S. fredii HH103 mutants affected in exopolysaccharides (EPS), lipopolysaccharides (LPS), cyclic glucans (CG) or capsular polysaccharides (KPS) were not significantly impaired in their soybean-root attachment capacity, suggesting that these surface polysaccharides might not be relevant in early attachment to soybean roots. These results also indicate that the molecular mechanisms involved in S. fredii attachment to soybean roots might be different to those operating in Bradyrhizobium japonicum.  相似文献   

9.
K polysaccharides (KPSs) of Sinorhizobium meliloti strains are strain-specific surface polysaccharides analogous to the group II K antigens of Escherichia coli. The K(R)5 antigen of strain AK631 is a highly polymerized disaccharide of pseudaminic and glucuronic acids. During invasion of host plants, this K antigen is able to replace the structurally different exopolysaccharide succinoglycan (EPS I) and promotes the formation of a nitrogen-fixing (Fix(+)) symbiosis. The KPS of strain Rm1021 is a homopolymer of 3-deoxy-D-manno-2 octulosonic acid (Kdo). The Kdo polysaccharide is covalently linked to the lipid anchor, has a low molecular weight (LMW), and is symbiotically inactive. On introduction of the Rm41-specific rkpZ gene into strain Rm1021, a modified KPS is expressed that is able to substitute EPS I during symbiosis with the host plant. To better understand the nature of modification conferred by rkpZ, we performed a structural analysis of the KPS using nuclear magnetic resonance (NMR), electrospray ionization-mass spectrometry (ESI-MS), and gas chromatography (GC-MS). The modified KPS retained primary polyKdo structure, but its degree of polymerization (DP) and level of production were increased significantly. In contrast to the wild-type polyKdo, only a part of polyKdo was lipidated. Shorter polysaccharide chains were lipid-free, whereas longer polysaccharide chains were lipidated. Sinorhizobium meliloti Rm1021 was found to carry two paralogs of rkpZ. Both genes are involved in polyKdo production, but they only show partial functional activity as compared with the rkpZ of Rm41.  相似文献   

10.
It has been postulated that nodulation outer proteins (Nops) avoid effective nodulation of Sinorhizobium fredii USDA257 to nodulate with American soybeans. S. fredii HH103 naturally nodulates with both Asiatic (non-commercial) and American (commercial) soybeans. Inactivation of the S. fredii HH103 gene rhcJ, which belongs to the tts (type III secretion) cluster, abolished Nop secretion and decreased its symbiotic capacity with the two varieties of soybeans. S. fredii strains HH103 and USDA257, that only nodulates with Asian soybeans, showed different SDS-PAGE Nop profiles, indicating that these strains secrete different sets of Nops. In coinoculation experiments, the presence of strain USDA257 provoked a clear reduction of the nodulation ability of strain HH103 with the American soybean cultivar Williams. These results suggest that S. fredii Nops can act as either detrimental or beneficial symbiotic factors in a strain-cultivar-dependent manner. Differences in the flavonoid-mediated expression of rhcJ with respect to nodA were also detected. In addition, one of the Nops secreted by strain HH103 was identified as NopA.  相似文献   

11.
12.
Sinorhizobium meliloti strain 1021 possesses the particularity to synthesize biologically inefficient capsular polysaccharides (KPS). It has been assumed that this class of compounds is not produced in high-molecular-mass (HMM) forms, even if many genetic analyses show the existence of expression of genes involved in the biosynthesis of capsular polysaccharides. The expression of these genes that are involved in the export of a KPS throughout the membrane and in the attachment of a lipid moiety has never been related to a structurally characterized surface polysaccharide. It is now reported that S. meliloti strain 1021 produces low-molecular-mass polysaccharides (4-4.5 kDa) that are exclusively composed of beta-(2-->7)-linked 3-deoxy-d-manno-oct-2-ulopyranosonic acid (Kdo) residues. These compounds are considered precursor molecules of HMM KPS, whose biosynthesis is arrested in the case of S. meliloti strain 1021. For the first time, the phospholipid anchor of a rhizobial KPS has been found, and its structure could be partially identified-namely, a phosphoglycerol moiety bearing a hydroxy-octacosanoic acid. When compared to other rhizobial KPS (composed of dimeric hexose-Kdo-like sugar repeating units), the Kdo homopolymer described here may explain why a complementation of S. meliloti strain 1021 Exo B mutant with an effective rkpZ gene restoring an active higher KPS size does not completely lead to the fully effective nitrogen fixing phenotype.  相似文献   

13.
The acidic exopolysaccharide (EPS I) produced by Rhizobium meliloti during symbiosis with Medicago sativa has been shown to be required for the proper development of nitrogen-fixing nodules. Cloned DNA from the exo region of R. meliloti is shown to stimulate production of the low-molecular-weight form of this exopolysaccharide, and in this report we show that the symbiotic deficiencies of two exo mutants of R. meliloti, the exoA and exoH mutants, can be rescued by the addition of this low-molecular-weight material at the time of inoculation. For exoA and exoH mutants, rescue with a preparation containing low-molecular-weight exopolysaccharide induces the formation of nitrogen-fixing nodules which appear somewhat later and at a reduced efficiency compared with wild-type-induced nodules; however, microscopic analysis of these nodules reveals similar nodule morphology and the presence of large numbers of bacteroids in each.  相似文献   

14.
A large-scale screen for symbiotic mutants was carried out using the model root nodulating bacterium Sinorhizobium meliloti . Several mutations in the previously uncharacterized gene msbA2 were isolated. msbA2 encodes a member of the ATP-binding cassette exporter family. This protein family is known to export a wide variety of compounds from bacterial cells. S. meliloti MsbA2 is required for the invasion of nodule tissue, with msbA2 mutant cells stimulating nodule primordium morphogenesis, but failing to invade plant tissue beyond the epidermal cell layer. msbA2 mutants do not exhibit any of the free-living traits often found to correlate with symbiotic defects, suggesting that MsbA2 may take part in a specifically symbiotic function. In strains that overproduce the symbiotic signalling polysaccharide succinoglycan, loss of MsbA2 function is extremely deleterious. This synthetic lethal phenotype can be suppressed by disrupting the succinoglycan biosynthetic genes exoY or exoA . It can also be suppressed by disrupting putative glycosyltransferase-encoding genes found upstream of msbA2 . Finally, the symbiotic phenotype of a msbA2 null mutant is suppressed by secondary mutations in these upstream transferase genes, indicating that the msbA2 mutant phenotype may be caused by an inhibitory accumulation of a novel polysaccharide that is synthesized from succinoglycan precursors.  相似文献   

15.
16.
Transposon Tn5-Mob mutagenesis allowed the selection of a Sinorhizobium fredii HH103 mutant derivative (SVQ 292) that requires the presence of uracil to grow in minimal media. The mutated gene, pyrF, codes for an orotidine-5 - monophosphate decarboxylase (EC 4.1.1.23). Mutant SVQ 292 and its parental prototrophic mutant HH103 showed similar Nod-factor and lipopolysaccharide profiles. The symbiotic properties of mutant SVQ 292 were severely impaired with all legumes tested. Mutant SVQ 292 formed small ineffective nodules on Cajanus cajan and abnormal nodules (pseudonodules) unable to fix nitrogen on Glycine max (soybean), Macroptitlium atropurpureum, Indigofera tinctoria, and Desmodium canadense. It also did not induce any macroscopic response in Macrotyloma axillare roots. The symbiotic capacity of SVQ 292 with soybean was not enhanced by the addition of uracil to the plant nutritive solution.  相似文献   

17.
Jones KM 《Journal of bacteriology》2012,194(16):4322-4331
The nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 produces acidic symbiotic exopolysaccharides that enable it to initiate and maintain infection thread formation on host legume plants. The exopolysaccharide that is most efficient in mediating this process is succinoglycan (exopolysaccharide I [EPSI]), a polysaccharide composed of octasaccharide repeating units of 1 galactose and 7 glucose residues, modified with succinyl, acetyl, and pyruvyl substituents. Previous studies had shown that S. meliloti 1021 mutants that produce increased levels of succinoglycan, such as exoR mutants, are defective in symbiosis with host plants, leading to the hypothesis that high levels of succinoglycan production might be detrimental to symbiotic development. This study demonstrates that increased succinoglycan production itself is not detrimental to symbiotic development and, in fact, enhances the symbiotic productivity of S. meliloti 1021 with the host plant Medicago truncatula cv. Jemalong A17. Increased succinoglycan production was engineered by overexpression of the exoY gene, which encodes the enzyme responsible for the first step in succinoglycan biosynthesis. These results suggest that the level of symbiotic exopolysaccharide produced by a rhizobial species is one of the factors involved in optimizing the interaction with plant hosts.  相似文献   

18.
Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号