首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inward rectifier (Kir) potassium channels are characterized by two transmembrane helices per subunit, plus an intracellular C-terminal domain that controls channel gating in response to changes in concentration of various ligands. Based on the crystal structure of the tetrameric C-terminal domain of Kir3.1, it is possible to build a homology model of the ATP-binding C-terminal domain of Kir6.2. Molecular dynamics simulations have been used to probe the dynamics of Kir C-terminal domains and to explore the relationship between their dynamics and possible mechanisms of channel gating. Multiple simulations, each of 10 ns duration, have been performed for Kir3.1 (crystal structure) and Kir6.2 (homology model), in both their monomeric and tetrameric forms. The Kir6.2 simulations were performed with and without bound ATP. The results of the simulations reveal comparable conformational stability for the crystal structure and the homology model. There is some decrease in conformational flexibility when comparing the monomers with the tetramers, corresponding mainly to the subunit interfaces in the tetramer. The beta-phosphate of ATP interacts with the side chain of K185 in the Kir6.2 model and simulations. The flexibility of the Kir6.2 tetramer is not changed greatly by the presence of bound ATP, other than in two loop regions. Principal components analysis of the simulated dynamics suggests loss of symmetry in both the Kir3.1 and Kir6.2 tetramers, consistent with "dimer-of-dimers" motion of subunits in C-terminal domains of the corresponding Kir channels. This is suggestive of a gating model in which a transition between exact tetrameric symmetry and dimer-of-dimers symmetry is associated with a change in transmembrane helix packing coupled to gating of the channel. Dimer-of-dimers motion of the C-terminal domain tetramer is also supported by coarse-grained (anisotropic network model) calculations. It is of interest that loss of exact rotational symmetry has also been suggested to play a role in gating in the bacterial Kir homolog, KirBac1.1, and in the nicotinic acetylcholine receptor channel.  相似文献   

2.
The muscarinic-gated atrial potassium (I(KACh)) channel contributes to the heart rate decrease triggered by the parasympathetic nervous system. I(KACh) is a heteromultimeric complex formed by Kir3.1 and Kir3.4 subunits, although Kir3.4 homomultimers have also been proposed to contribute to this conductance. While Kir3.4 homomultimers evince many properties of I(KACh), the contribution of Kir3.1 to I(KACh) is less well understood. Here, we explored the significance of Kir3.1 using knock-out mice. Kir3.1 knock-out mice were viable and appeared normal. The loss of Kir3.1 did not affect the level of atrial Kir3.4 protein but was correlated with a loss of carbachol-induced current in atrial myocytes. Low level channel activity resembling recombinant Kir3.4 homomultimers was observed in 40% of the cell-attached patches from Kir3.1 knock-out myocytes. Channel activity typically ran down quickly, however, and was not recovered in the inside-out configuration despite the addition of GTP and ATP to the bath. Both Kir3.1 knock-out and Kir3.4 knock-out mice exhibited mild resting tachycardias and blunted responses to pharmacological manipulation intended to activate I(KACh). We conclude that Kir3.1 confers properties to I(KACh) that enhance channel activity and that Kir3.4 homomultimers do not contribute significantly to the muscarinic-gated potassium current.  相似文献   

3.
Functional integrity of pancreatic adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels depends on the interactions between the pore-forming potassium channel subunit Kir6.2 and the regulatory subunit sulfonylurea receptor 1 (SUR1). Previous studies have shown that the N-terminal transmembrane domain of SUR1 (TMD0) interacts with Kir6.2 and is sufficient to confer high intrinsic open probability (P(o)) and bursting patterns of activity observed in full-length K(ATP) channels. However, the nature of TMD0-Kir6.2 interactions that underlie gating modulation is not well understood. Using two previously described disease-causing mutations in TMD0 (R74W and E128K), we performed amino acid substitutions to study the structural roles of these residues in K(ATP) channel function in the context of full-length SUR1 as well as TMD0. Our results revealed that although R74W and E128K in full-length SUR1 both decrease surface channel expression and reduce channel sensitivity to ATP inhibition, they arrive there via distinct mechanisms. Mutation of R74 uniformly reduced TMD0 protein levels, suggesting that R74 is necessary for stability of TMD0. In contrast, E128 mutations retained TMD0 protein levels but reduced functional coupling between TMD0 and Kir6.2 in mini-K(ATP) channels formed by TMD0 and Kir6.2. Importantly, E128K full-length channels, despite having a greatly reduced P(o), exhibit little response to phosphatidylinositol 4,5-bisphosphate (PIP(2)) stimulation. This is reminiscent of Kir6.2 channel behavior in the absence of SUR1 and suggests that TMD0 controls Kir6.2 gating by modulating Kir6.2 interactions with PIP(2). Further supporting this notion, the E128W mutation in full-length channels resulted in channel inactivation that was prevented or reversed by exogenous PIP(2). These results identify a critical determinant in TMD0 that controls Kir6.2 gating by controlling channel sensitivity to PIP(2). Moreover, they uncover a novel mechanism of K(ATP) channel inactivation involving aberrant functional coupling between SUR1 and Kir6.2.  相似文献   

4.
Pigment epithelium-derived factor (PEDF) combines neurotrophic, neuroprotective, anti-angiogenic, anti-tumor and neural stem cell self-renewal properties in a single molecule, making this protein a valuable potential therapeutic agent. We herein analyzed the expression of human recombinant full-length PEDF, and its N- and C-terminal regions (amino acids 1-243 and 195-418, respectively) in three mammalian cell lines (HEK-293T, COS-1, and 26HCMsv), and in the yeast Pichia pastoris. The highest production of recombinant PEDF was achieved in P. pastoris which secreted approximately 30 microg of full-length rPEDF, and 47 microg of C-terminal/ml of culture medium. Full-length rPEDF was purified by one-step Ni-chelating high-performance liquid chromatography, recovering almost 70% of secreted rPEDF with a purity of 98.6%. The C-terminal region of PEDF was isolated by low-pressure liquid chromatography, recovering around 4% of the recombinant molecule with a purity of 98%. The N-terminal region of PEDF was not secreted by any expression system assayed. The two isolated recombinant PEDF polypeptides inhibited in vitro endothelial cell migration, and full-length rPEDF also increased cerebellar granule cell survival, thus demonstrating their biological activity. These polypeptides can be used to investigate the therapeutic role of PEDF in cancer, neurodegenerative and ocular diseases, and stem cell-based therapies.  相似文献   

5.
Kir3 channels control heart rate and neuronal excitability through GTP-binding (G) protein and phosphoinositide signaling pathways. These channels were the first characterized effectors of the βγ subunits of G proteins. Because we currently lack structures of complexes between G proteins and Kir3 channels, their interactions leading to modulation of channel function are not well understood. The recent crystal structure of a chimera between the cytosolic domain of a mammalian Kir3.1 and the transmembrane region of a prokaryotic KirBac1.3 (Kir3.1 chimera) has provided invaluable structural insight. However, it was not known whether this chimera could form functional K(+) channels. Here, we achieved the functional reconstitution of purified Kir3.1 chimera in planar lipid bilayers. The chimera behaved like a bona fide Kir channel displaying an absolute requirement for PIP(2) and Mg(2+)-dependent inward rectification. The channel could also be blocked by external tertiapin Q. The three-dimensional reconstruction of the chimera by single particle electron microscopy revealed a structure consistent with the crystal structure. Channel activity could be stimulated by ethanol and activated G proteins. Remarkably, the presence of both activated Gα and Gβγ subunits was required for gating of the channel. These results confirm the Kir3.1 chimera as a valid structural and functional model of Kir3 channels.  相似文献   

6.
Cell adhesion molecules and neurotrophin receptors are crucial for the development and the function of the nervous system. Among downstream effectors of neurotrophin receptors and recognition molecules are ion channels. Here, we provide evidence that G protein-coupled inwardly rectifying K+ channel Kir3.3 directly binds to the neural cell adhesion molecule (NCAM) and neurotrophin receptor TrkB. We identified the binding sites for NCAM and TrkB at the C-terminal intracellular domain of Kir3.3. The interaction between NCAM, TrkB, and Kir3.3 was supported by immunocytochemical co-localization of Kir3.3, NCAM, and/or TrkB at the surface of hippocampal neurons. Co-expression of TrkB and Kir3.1/3.3 in Xenopus oocytes increased the K+ currents evoked by Kir3.1/3.3 channels. This current enhancement was reduced by the concomitant co-expression with NCAM. Both surface fluorescence measurements of microinjected oocytes and cell surface biotinylation of transfected CHO cells indicated that the cell membrane localization of Kir3.3 is regulated by TrkB and NCAM. Furthermore, the level of Kir3.3, but not of Kir3.2, at the plasma membranes was reduced in TrkB-deficient mice, supporting the notion that TrkB regulates the cell surface expression of Kir3.3. The premature expression of developmentally late appearing Kir3.1/3.3 in hippocampal neurons led to a reduction of NCAM-induced neurite outgrowth. Our observations indicate a decisive role for the neuronal K+ channel in regulating NCAM-dependent neurite outgrowth and attribute a physiologically meaningful role to the functional interplay of Kir3.3, NCAM, and TrkB in ontogeny.  相似文献   

7.
All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.  相似文献   

8.
Inward rectifier potassium (Kir) channels play important roles in the maintenance and control of cell excitability. Both intracellular trafficking and modulation of Kir channel activity are regulated by protein-protein interactions. We adopted a proteomics approach to identify proteins associated with Kir2 channels via the channel C-terminal PDZ binding motif. Detergent-solubilized rat brain and heart extracts were subjected to affinity chromatography using a Kir2.2 C-terminal matrix to purify channel-interacting proteins. Proteins were identified with multidimensional high pressure liquid chromatography coupled with electrospray ionization tandem mass spectrometry, N-terminal microsequencing, and immunoblotting with specific antibodies. We identified eight members of the MAGUK family of proteins (SAP97, PSD-95, Chapsyn-110, SAP102, CASK, Dlg2, Dlg3, and Pals2), two isoforms of Veli (Veli-1 and Veli-3), Mint1, and actin-binding LIM protein (abLIM) as Kir2.2-associated brain proteins. From heart extract purifications, SAP97, CASK, Veli-3, and Mint1 also were found to associate with Kir2 channels. Furthermore, we demonstrate for the first time that components of the dystrophin-associated protein complex, including alpha1-, beta1-, and beta2-syntrophin, dystrophin, and dystrobrevin, interact with Kir2 channels, as demonstrated by immunoaffinity purification and affinity chromatography from skeletal and cardiac muscle and brain. Affinity pull-down experiments revealed that Kir2.1, Kir2.2, Kir2.3, and Kir4.1 all bind to scaffolding proteins but with different affinities for the dystrophin-associated protein complex and SAP97, CASK, and Veli. Immunofluorescent localization studies demonstrated that Kir2.2 co-localizes with syntrophin, dystrophin, and dystrobrevin at skeletal muscle neuromuscular junctions. These results suggest that Kir2 channels associate with protein complexes that may be important to target and traffic channels to specific subcellular locations, as well as anchor and stabilize channels in the plasma membrane.  相似文献   

9.
Inward rectifier potassium (Kir) channels regulate cell excitability and transport K+ ions across membranes. Homotetrameric models of three mammalian Kir channels (Kir1.1, Kir3.1, and Kir6.2) have been generated, using the KirBac3.1 transmembrane and rat Kir3.1 intracellular domain structures as templates. All three models have been explored by 10 ns molecular dynamics simulations in phospholipid bilayers. Analysis of the initial structures revealed conservation of potential lipid interaction residues (Trp/Tyr and Arg/Lys side chains near the lipid headgroup-water interfaces). Examination of the intracellular domains revealed key structural differences between Kir1.1 and Kir6.2 which may explain the difference in channel inhibition by ATP. The behavior of all three models in the MD simulations revealed that they have conformational stability similar to that seen for comparable simulations of, for example, structures derived from cryoelectron microscopy data. Local distortions of the selectivity filter were seen during the simulations, as observed in previous simulations of KirBac and in simulations and structures of KcsA. These may be related to filter gating of the channel. The intracellular hydrophobic gate does not undergo any substantial changes during the simulations and thus remains functionally closed. Analysis of lipid-protein interactions of the Kir models emphasizes the key role of the M0 (or "slide") helix which lies approximately parallel to the bilayer-water interface and forms a link between the transmembrane and intracellular domains of the channel.  相似文献   

10.
Bacterial glutamate decarboxylase (GAD) is a homohexameric enzyme of about 330 kDa. Plant GAD differs from the bacterial enzyme in having a C-terminal extension of 33 amino acids within which resides a calmodulin (CaM)-binding domain. In order to assess the role of the C-terminal extension in the formation of GAD complexes and in activation by Ca2+/CaM, we examined complexes formed with the purified full-length recombinant petunia GAD expressed in E. coli, and with a 9 amino acid C-terminal deletion mutant (GADDeltaC9). Size exclusion chromatography revealed that the full-length GAD formed complexes of about 580 kDa and 300 kDa in the absence of Ca2+/CaM, whereas in the presence of Ca2+/CaM all complexes shifted to approximately 680 kDa. With deletion of 9 amino acids from the C-terminus (KKKKTNRVC(500)), the ability to bind CaM in the presence of Ca2+, and to purify it by CaM-affinity chromatography was retained, but the formation of GAD complexes larger than 340 kDa and enzyme activation by Ca2+/CaM were completely abolished. Hence, responsiveness to Ca2+/CaM is associated with the formation of protein complexes of 680 kDa, and requires some or all of the nine C-terminal amino acid residues. We suggest that evolution of plant GAD from a bacterial ancestral enzyme involved the formation of higher molecular weight complexes required for activation by Ca2+/CaM.  相似文献   

11.
Although most L-type calcium channel alpha(1C) subunits isolated from heart or brain are approximately 190-kDa proteins that lack approximately 50 kDa of the C terminus, the C-terminal domain is present in intact cells. To test the hypothesis that the C terminus is processed but remains functionally associated with the channels, expressed, full-length alpha(1C) subunits were cleaved in vitro by chymotrypsin to generate a 190-kDa C-terminal truncated protein and C-terminal fragments of 30-56 kDa. These hydrophilic C-terminal fragments remained membrane-associated. A C-terminal proline-rich domain (PRD) was identified as the mediator of membrane association. The alpha(1C) PRD bound to SH3 domains in Src, Lyn, Hck, and the channel beta(2) subunit. Mutant alpha(1C) subunits lacking either approximately 50 kDa of the C terminus or the PRD produced increased barium currents through the channels, demonstrating that these domains participate in the previously described (Wei, X., Neely, a., Lacerda, A. E. Olcese, r., Stefani, E., Perez-Reyes, E., and Birnbaumer, L. (1994) J. Biol. Chem. 269, 1635-1640) inhibition of channel function by the C terminus.  相似文献   

12.
We previously showed that activation of the human endothelin A receptor (HETAR) by endothelin-1 (Et-1) selectively inhibits the response to mu opioid receptor (MOR) activation of the G-protein-gated inwardly rectifying potassium channel (Kir3). The Et-1 effect resulted from PLA2 production of an eicosanoid that inhibited Kir3. In this study, we show that Kir3 inhibition by eicosanoids is channel subunit-specific, and we identify the site within the channel required for arachidonic acid sensitivity. Activation of the G-protein-coupled MOR by the selective opioid agonist D-Ala(2)Glyol, enkephalin, released Gbetagamma that activated Kir3. The response to MOR activation was significantly inhibited by Et-1 activation of HETAR in homomeric channels composed of either Kir3.2 or Kir3.4. In contrast, homomeric channels of Kir3.1 were substantially less sensitive. Domain deletion and channel chimera studies suggested that the sites within the channel required for Et-1-induced inhibition were within the region responsible for channel gating. Mutation of a single amino acid in the homomeric Kir3.1 to produce Kir3.1(F137S)(N217D) dramatically increased the channel sensitivity to arachidonic acid and Et-1 treatment. Complementary mutation of the equivalent amino acid in Kir3.4 to produce Kir3.4(S143T)(D223N) significantly reduced the sensitivity of the channel to arachidonic acid- and Et-1-induced inhibition. The critical aspartate residue required for eicosanoid sensitivity is the same residue required for Na(+) regulation of PIP(2) gating. The results suggest a model of Kir3 gating that incorporates a series of regulatory steps, including Gbetagamma, PIP(2), Na(+), and arachidonic acid binding to the channel gating domain.  相似文献   

13.
We have previously demonstrated that Kir3.1 channels and Gβ1γ2 subunits initially interact in the endoplasmic reticulum (ER). To elucidate the role that anterograde protein trafficking pathways may play in the formation of these complexes, we used dominant negative (DN) mutants of the small G proteins Sar 1 and various compartment-specific Rabs which impede anterograde protein trafficking at different steps. Sar 1 H79G and Rab 1 S25N mutants efficiently blocked the plasma membrane trafficking of the Kir3.1/Kir3.4 complex however they did not block the Gβ1γ2/Kir3.1 interaction as measured using bioluminescence resonance energy transfer (BRET). This interaction was also insensitive to the presence of DN Rabs 2, 6, 8, and 11. These results confirm that Gβγ/Kir3 complexes form early during channel biosynthesis and trafficking. Using a combination of BRET, protein complementation assays and co-immunoprecipitation, we demonstrate that Gβ1-4 can interact with Kir3.1 in the absence of Kir3.4. Gβ5 does not directly interact with the channel but can still be co-immunoprecipated as part of a larger complex. The interaction between Gβ and Kir3.1 was selectively fostered by co-expression with different Gγ subunits. When Gγ1 or Gγ11 was co-expressed with eGFP-Gβ3 or eGFP-Gβ4, the interaction with the effector was lost. Kir3.2 was capable of interacting with Gβ1-3 and not Gβ4 or Gβ5. These interactions were again fostered by co-expression with Gγ and were also insensitive to DN Sar 1 or Rab 1. Taken together, our data show that these “precocious” channel/G protein interactions are specific and may have implications beyond their basic function in signalling events.  相似文献   

14.
Bax is a proapoptotic ion channel forming protein of the Bcl-2 family. In cells the protein is found in the cytosol and in the mitochondria membrane where it presumably is involved during apoptosis in disruption of the mitochondrial membrane potential and release of cytochrome c. The protein has a hydrophobic domain at the C-terminus, which renders it a limited solubility. Thus, all studies on recombinant Bax has so far been performed on C-terminal truncated protein. We have expressed and purified the full-length human Bax alpha. The protein was expressed with a His tag at the N-terminus and purified by affinity chromatography on Ni-NTA-agarose followed by ion-exchange chromatography on Q-Sepharose. The protein was more than 98% pure on SDS-PAGE and in the presence of 1% (w/v) octyl glucoside it could be concentrated up to 0.5 mg/ml. Full-length Bax was 25-fold more efficient, compared to C-terminal truncated Bax, in forming ion channels and trigger carboxyfluorescein release from liposomes.  相似文献   

15.
Mutations in Kir2.1 inwardly rectifying potassium channels are associated with Andersen syndrome, a disease characterized by potentially fatal cardiac arrhythmias. While several Andersen-associated mutations affect membrane expression, the cytoplasmic signals that regulate Kir2.1 trafficking are poorly understood. Here, we investigated whether the Rho-family of small GTPases regulates trafficking of Kir2.1 channels expressed in HEK-293 cells. Treatment with Clostridium difficile toxin B, an inhibitor of Rho-family GTPases, or co-expression of the dominant-negative mutant of Rac1 (Rac1(DN)) increased Kir2.1 channels approximately 2-fold. However, the dominant-negative forms of other Rho-family GTPases, RhoA or Cdc42, did not alter Kir2.1 currents, suggesting a selective effect of Rac1 on Kir2.1 channels. Single-channel properties (gamma, tau(o), tau(c)) and total protein levels of Kir2.1 were unchanged with co-expression of Rac1(DN); however, studies using TIRF microscopy and CFP-tagged Kir2.1 revealed increased channel surface expression. Immunohistochemical detection of extracellularly tagged HA-Kir2.1 channels showed that Rac1(DN) reduced channel internalization when co-expressed. Finally, the dominant-negative mutant of dynamin, which interferes with endocytosis, occluded the Rac1(DN)-induced potentiation of Kir2.1 currents. These data suggest that inhibition of Rac1 increases Kir2.1 surface expression by interfering with endocytosis, likely via a dynamin-dependent pathway. Surprisingly, Rac1(DN) did not alter Kir2.2 current density or internalization, suggesting subunit specific modulation of Kir2.1 channels. Consistent with this, construction of Kir2.1/2.2 chimeras implicated the C-terminal domain of Kir2.1 in mediating the potentiating effect of Rac1(DN). This novel pathway for regulating surface expression of cardiac Kir2.1 channels could have implications for normal and diseased cardiac states.  相似文献   

16.
17.
The C-terminal domain of lipoprotein lipase (LPL) is involved in several important interactions. To assess its contribution to the binding ability of full-length LPL we have determined kinetic constants using biosensor technique. The affinity of the C-terminal domain for heparin was about 500-fold lower than that of full-length LPL (K(d) = 1.3 microM compared to 3.1 nM). Replacement of Lys403, Arg405 and Lys407 by Ala abolished the heparin affinity, whereas replacement of Arg420 and Lys422 had little effect. The C-terminal domain increased binding of chylomicrons and VLDL to immobilized heparin relatively well, but was less than 10% efficient in binding of LDL compared to full-length LPL. Deletion of residues 390-393 (WSDW) did not change the affinity to heparin and only slightly decreased the affinity to lipoproteins. We conclude that the C-terminal folding domain contributes only moderately to the heparin affinity of full-length LPL, whereas the domain appears important for tethering triglyceride-rich lipoproteins to heparin-bound LPL.  相似文献   

18.
We have investigated protein interactions involved in pancreatic beta-cell ATP-sensitive potassium channel assembly. These channels, which are of key importance for control of insulin release, are a hetero-oligomeric complex of pore-forming Kir6.2 subunits and sulfonylurea receptor (SUR1) subunits with two nucleotide-binding domains (NBD1 and NBD2). We divided SUR1 into two halves at Pro-1042. Expression of either the individual N- or C-terminal domain in a baculovirus expression system did not lead to glibenclamide binding activity, although studies with green fluorescent protein fusion proteins showed that both half-molecules were inserted into the plasma membrane. However, significant glibenclamide binding activity was observed when the half-molecules were co-expressed (even when NBD2 was deleted from the C-terminal half-molecule). Simultaneous expression of Kir6.2 resulted in enhanced glibenclamide binding activity. We conclude that the glibenclamide-binding site includes amino acid residues from both halves of the molecule, that there is strong interaction between different regions of SUR1, that NBD2 is not essential for glibenclamide binding, and that interactions between Kir6.2 and SUR1 participate in ATP-sensitive potassium channel assembly. Investigation of NBD1-green fluorescent protein fusion protein distribution inside insect cells expressing C-terminal halves of SUR1 demonstrated strong interaction between NBD1 and NBD2. We also expressed and purified NBD1 from Escherichia coli. Purified NBD1 was found to exist as a tetramer indicating strong homomeric attractions and a possible role for NBD1 in SUR1 assembly.  相似文献   

19.
The 220-kDa Bordetella pertussis filamentous hemagglutinin (FHA) is the major exported protein found in culture supernatants. The structural gene of FHA has a coding potential for a 367-kDa protein, and the mature form constitutes the N-terminal 60% of the 367-kDa precursor. The C-terminal domain of the precursor was found to be important for the high-level secretion of full-length FHA but not of truncated analogs (80 kDa or less). The secretion of full-length and truncated FHA polypeptides requires the presence of the approximately 100-amino-acid N-terminal domain and the outer membrane protein FhaC, homologous to the N-terminal domains of the Serratia marcescens and Proteus mirabilis hemolysins and their accessory proteins, respectively. By analogy to these hemolysins, it is likely that the N-terminal domain of the FHA precursor interacts, directly or indirectly, with the accessory protein during FHA biogenesis. However, immunogenicity and antigenicity studies suggest that the N-terminal domain of FHA is masked by its C-terminal domain and therefore should not be available for its interactions with FhaC. These observations suggest a model in which the C-terminal domain of the FHA precursor may play a role as an intramolecular chaperone to prevent premature folding of the protein. Both heparin binding and hemagglutination are expressed by the N-terminal half of FHA, indicating that this domain contains important functional regions of the molecule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号