首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The newly discovered endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) are potent opioid peptides with the highest affinity and selectivity for the mu receptor among all known endogenous ligands. To investigate a possible correlation between these biological properties and the conformational preferences of the small peptides, a comparative structural analysis was performed of endomorphin-1 in aqueous buffer and in membrane-mimicking SDS and AOT normal and reverse micelles by the use of CD, FT-IR, fluorescence and(1)H-NMR spectroscopy. It is well established for opioid peptides that, independently of the receptor selectivity, the Tyr1 residue plays the role of the primary pharmacophore and that the orientation of the second aromatic pharmacophore relative to the tyrosine side-chain dictates the mu or delta-receptor selectivity. By varying the environment of endomorphin-1 from water to the amphipathic SDS micelles and even more efficiently to the AOT reverse micelles, the display of the aromatic side-chains changes from an interaction of the Tyr1 and Phe4 residues to a switch of the Trp3 indole group into close contact with the phenolic moiety to prevent this type of interaction and to force an orientation of the Phe4 side-chain into the opposite direction. This conformational switch is accompanied by a stabilization of the cis -Pro2 isomer and the resulting spatial array of the pharmacophoric groups correlate well with the structural model of mu receptor-bound opioid peptides. The results indicate that AOT reverse micelles with a woof 10, where almost exclusively ordered water is secluded in the cavity, constitute with their electrostatic and hydrophobic potential an excellent mimetic of amphipathic surfaces as present on lipid bilayers and on ligand-recognition and ligand-binding sites of proteins.  相似文献   

2.
Lipid-peptide interaction has been investigated using cationic amphiphilic alpha-helical peptides and systematically varying their hydrophobic-hydrophilic balance (HHB). The influence of the peptides on neutral and acidic liposomes was examined by 1) Trp fluorescence quenched by brominated phospholipid, 2) membrane-clearing ability, 3) size determination of liposomes by dynamic light scattering, 4) morphological observation by electron microscopy, and 5) ability to form planar lipid bilayers from channels. The peptides examined consist of hydrophobic Leu and hydrophilic Lys residues with ratios 13:5, 11:7, 9:9, 7:11, and 5:13 (abbreviated as Hels 13-5, 11-7, 9-9, 7-11, and 5-13, respectively; Kiyota, T., S. Lee, and G. Sugihara. 1996. Biochemistry. 35:13196-13204). The most hydrophobic peptide (Hel 13-5) induced a twisted ribbon-like fibril structure for egg PC liposomes. In a 3/1 (egg PC/egg PG) lipid mixture, Hel 13-5 addition caused fusion of the liposomes. Hel 13-5 formed ion channels in neutral lipid bilayer (egg PE/egg PC = 7/3) at low peptide concentrations, but not in an acidic bilayer (egg PE/brain PS = 7/3). The peptides with hydrophobicity less than Hel 13-5 (Hels 11-7 and Hel 9-9) were able to partially immerse their hydrophobic part of the amphiphilic helix in lipid bilayers and fragment liposome to small bicelles or micelles, and then the bicelles aggregated to form a larger assembly. Peptides Hel 11-7 and Hel 9-9 each formed strong ion channels. Peptides (Hel 7-11 and Hel 5-13) with a more hydrophilic HHB interacted with an acidic lipid bilayer by charge interaction, in which the former immerses the hydrophobic part in lipid bilayer, and the latter did not immerse, and formed large assemblies by aggregation of original liposomes. The present study clearly showed that hydrophobic-hydrophilic balance of a peptide is a crucial factor in understanding lipid-peptide interactions.  相似文献   

3.
Tachyplesin I is a cyclic beta-sheet antimicrobial peptide isolated from the hemocytes of Tachypleus tridentatus. The four cysteine residues in tachyplesin I play a structural role in imparting amphipathicity to the peptide which has been shown to be essential for its activity. We investigated the role of amphipathicity using an analogue of tachyplesin I (TP-I), CDT (KWFRVYRGIYRRR-NH(2)), in which all four cysteines were deleted. Like TP-I, CDT shows antimicrobial activity and disrupts Escherichia coli outer membrane and model membranes mimicking bacterial inner membranes at micromolar concentrations. The CDT peptide does not cause hemolysis up to 200 microg/mL while TP-I showed about 10% hemolysis at 100 microg/mL and about 25% hemolysis at 150 microg/mL. Peptide-into-lipid titrations under isothermal conditions reveal that the interaction of CDT with lipid membranes is an enthalpy-driven process. Binding assays performed using fluorometry demonstrate that the peptide CDT binds and inserts into only negatively charged membranes. The peptide-induced thermotropic phase transition of MLVs formed of DMPC and the DMPC/DMPG (7:3) mixture suggests specific lipid-peptide interactions. The circular dichroism study shows that the peptide exists as an unordered structure in an aqueous buffer and adopts a more ordered beta-structure upon binding to negatively charged membrane. The NMR data suggest that CDT binding to negatively charged bilayers induces a change in the lipid headgroup conformation with the lipid headgroup moving out of the bilayer surface toward the water phase, and therefore, a barrel stave mechanism of membrane disruption is unlikely as the peptide is located near the headgroup region of lipids. The lamellar phase (31)P chemical shift spectra observed at various concentrations of the peptide in bilayers suggest that the peptide may function neither via fragmentation of bilayers nor by promoting nonlamellar structures. NMR and fluorescence data suggest that the presence of cholesterol inhibits the peptide binding to the bilayers. These properties help to explain that cysteine residues may not contribute to antimicrobial activity and that the loss of hemolytic activity is due to lack of hydrophobicity and amphipathicity.  相似文献   

4.
The binding of basic amphipathic fluorescent peptides to lipid bilayers was studied in relation to their antimicrobial activity. Four fluorescent peptides containing pyrenylalanine or tryptophan in an amphipathic basic peptide (4(4] consisting of four repeated units of tetrapeptide, -L-Leu-L-Ala-L-Arg-L-Leu-, were found to have antimicrobial activities against Gram-positive bacteria and to take conformations with fairly high alpha-helical content both in aqueous solutions and liposomes. The fluorescence spectroscopic data suggested that the pyrenylalanine-peptide existed as a monomer in methanol or liposomes but as an oligomer in aqueous solutions to form an excimer between pyrenylalanyl residues. Upon binding with liposomes, the fluorescence spectra of the tryptophan-containing peptide shifted to a shorter wavelength, indicating the change in the state of tryptophan from hydrophilic environment to hydrophobic one. The analytical data for the quenching of tryptophan fluorescence by I- anion suggest that the tryptophan residue in the peptide is not deeply buried in the hydrophobic core of the bilayers. Based on these findings, it is suggested that the peptides may interact with liposomes in such a manner that they lie parallel to the surface of the lipid bilayers with their hydrophobic regions shallowly in the amphipathic moiety of the bilayers.  相似文献   

5.
To examine the relationship between peptide sequence and the interaction of amphipathic alpha-helical peptides with phosphatidylcholines, various methods of mixing the peptide and lipid were explored. A series of amphipathic alpha-helical peptides containing from 10 to 18 residues were synthesized by solid-phase techniques. An 18-residue peptide and two relatively hydrophobic 10-residue peptides did not disrupt dimyristoylphosphatidylcholine liposomes when added to the lipid in buffer. However, when the peptides were premixed with lipid in a suitable organic solvent and then reconstituted with aqueous buffer, clear micelles were formed, indicating association of the amphipathic alpha-helical peptide with lipid. In general, the best solvent for this purpose was trifluoroethanol. The circular dichroic and fluorescence spectra of peptides which readily formed clear mixtures when mixed in buffer with dimyristoylphosphatidylcholine liposomes were similar when prepared either by the alternative pathway technique using trifluoroethanol or by a cholate removal technique. For the peptides which did not clear liposomes in buffer, first mixing with dimyristoylphosphatidylcholine in trifluoroethanol resulted in an increase in the alpha-helicity of the peptides as judged by circular dichroic spectra and a blue-shift in the fluorescence emission maxima of the single tryptophan residue in each peptide. These data are consistent with formation of an amphipathic alpha-helix in lipid by peptides which based on mixing experiments with dimyristoylphosphatidylcholine liposomes in buffer at the phase transition temperature of the lipid would be considered ineffective in lipid binding. Thus, simple mixing of peptides with liposomes may give misleading results concerning the intrinsic affinity of a particular peptide sequence for lipid. In addition, the data demonstrate that relatively hydrophobic amphipathic alpha-helical peptides which do not form small micelles with dimyristoylphosphatidylcholine spontaneously in aqueous solution may interact with lipid as typical amphipathic alpha-helices when mixed by an alternative pathway.  相似文献   

6.
The human and simian immunodeficiency virus envelope glycoproteins, which mediate virus-induced cell fusion, contain two putative amphipathic helical segments with large helical hydrophobic moments near their carboxyl-terminal ends. In an attempt to elucidate the biological role of these amphipathic helical segments, we have synthesized peptides corresponding to residues 768-788 and 826-854 of HIV-1/WMJ-22 gp160. Circular dichroism studies of the peptides showed that the alpha helicity of the peptides increased with the addition of dimyristoyl phosphatidylcholine (DMPC) indicating that the peptides form lipid-associating amphipathic helixes. The peptides solubilized turbid suspensions of DMPC vesicles, and electron microscopy of peptide-DMPC mixtures revealed the formation of discoidal complexes, suggesting that the peptides bind to and perturb lipid bilayers. The peptides were found to lyse lipid vesicles and caused carboxyfluorescein leakage from dye-entrapped egg phosphatidylcholine liposomes. The peptides also lysed human erythrocytes and were found to be toxic to cell cultures. At subtoxic concentrations, the peptides effectively inhibited the fusion of CD4+ cells infected with recombinant vaccinia virus expressing human immunodeficiency virus (HIV)-1 envelope proteins. Based on these results, and reported studies on the mutational analysis of HIV envelope proteins, we suggest that the amphipathic helical segments near the carboxyl terminus of HIV envelope proteins may play a role in lysis of HIV-infected cells and also may modulate the extent of cell fusion observed during HIV infection of CD4+ cells.  相似文献   

7.
In this study, we investigated the extent to which different aromatic and positively charged side chains, which often flank transmembrane segments of proteins, can influence lipid-peptide interactions. Model systems consisting of phosphatidylcholine and hydrophobic alpha-helical peptides with different flanking residues were investigated. The peptides were incorporated in relatively thick and in relatively thin lipid bilayers to create a peptide-bilayer hydrophobic mismatch, and the compensating effects on lipid structure were analyzed. When relatively long with respect to the thickness of the bilayer, the peptides that are flanked by the aromatic side chains, Trp, Tyr, and Phe, all induce a significant ordering of the lipid acyl chains, while the peptides flanked by the charged residues Lys, Arg, and His do not. However, when the peptides are relatively short with respect to the thickness of the bilayer, their effect on lipid organization does not depend primarily on their aromatic or charged character. Peptides flanked by Trp, Tyr, Lys, or (at low pH) His residues are effective in inducing mismatch-relieving cubic and inverted hexagonal phases, while analogues flanked by Phe, Arg, or (at neutral pH) His residues cannot induce an inverted hexagonal phase. The different responses to mismatch might reflect the different interfacial affinities of the residues that were investigated.  相似文献   

8.
The design of amphipathic peptides resulted in a novel peptide with a selective ability to destabilize lipid bilayers of acidic liposomes. The newly synthesized peptide, termed mast 21, is a 21-residue long amino acid chain and can only act effectively on acidic liposomes lacking cholesterol. Moreover, mast 21 killed gram-positive and gram-negative bacteria, and it had no hemolytic activity. The antimicrobial and hemolytic activities paralleled the results of membrane destabilizing activity using liposomes. Circular dichroism and Trp-fluorescence emission spectra showed changes in the peptide conformation and circumstances around the peptide during interaction with liposomes. These changes were consistent with an increased alpha-helical content and a less polar environment for the tryptophan residue of the peptide. Mast 21 was observed under dark-field microscopy in real time attacking liposomes. Acidic liposomes were attacked, which resulted in peeling of the lipid bilayer with its subsequent destruction.  相似文献   

9.
Lung surfactant protein, SP-B, and synthetic amphipathic peptides derived from SP-B were studied in model lung surfactant lipid bilayers by immunofluorescent labeling. Liposomes were formed by hydrating a lipid film on the glass viewing port of a temperature controlled flow chamber. Membrane associated peptides were detected by epifluorescence optical microscopy of the binding of anti-peptide polyclonal monospecific antibodies and FITC-conjugated secondary antibodies added to buffer contained in the flow chamber. Liposomes were bound by antibody to residues 1-25 of SP-B if formed from lipid films containing the 1-25 peptide, (SP-B(1-25)), or if SP-B(1-25) was added to already formed liposomes in buffer solution. The distribution of antigen-antibody complex was temperature dependent with aggregation occurring at greater than or equal to 30 degrees C. Surface association was not detected in liposomes formed from lipid films containing the 49-66 peptides (SP-B(49-66)), using an antibody to the 49-66 peptide, or to a synthetic version of the SP-B protein, (SP-B(1-78)), using both antibodies to the 49-66 peptide and the 1-25 peptide. The detection of SP-B(1-78) with antibody to the 49-66 sequence was only possible after reducing SP-B(1-78) with dithiothreitol, suggesting that the COOH-terminus of the full monomer protein is accessible to the bulk aqueous environment unlike the COOH-terminal peptide. The size, number of layers, and fluidity of the liposomes were not altered by protein or peptides, although they were affected by lipid composition and temperature.  相似文献   

10.
The cytotoxic activity of 10 analogs of the idealized amphipathic helical 21-mer peptide (KAAKKAA)3, where three of the Ala residues at different positions have been replaced with Trp residues, has been investigated. The peptide's cytotoxic activity was found to be markedly dependent upon the position of the Trp residues within the hydrophobic sector of an idealized α-helix. The peptides with Trp residues located opposite the cationic sector displayed no antitumor activity, whereas those peptides with two or three Trp residues located adjacent to the cationic sector exhibited high cytotoxic activity when tested against three different cancer cell lines. Dye release experiments revealed that in contrast to the peptides with Trp residues located opposite the cationic sector, the peptides with Trp residues located adjacent to the cationic sector induced a strong permeabilizing activity from liposomes composed of a mixture of zwitterionic phosphatidylcholine and negatively charged phosphatidylserine (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)) (2:1) but not from liposomes composed of zwitterionic phosphatidylcholine, POPC. Fluorescence blue shift and quenching experiments revealed that Trp residues inserted deeper into the hydrophobic environment of POPC/POPS liposomes for peptides with high cytotoxic activity. Through circular dichroism studies, a correlation between the cytotoxic activity and the α-helical propensity was established. Structural studies of one inactive and two active peptides in the presence of micelles using NMR spectroscopy showed that only the active peptides adopted highly coiled to helical structures when bound to a membrane surface.  相似文献   

11.
The peptide-lipid interaction of a β-hairpin antimicrobial peptide tachyplesin-1 (TP-1) and its linear derivatives are investigated to gain insight into the mechanism of antimicrobial activity. 31P and 2H NMR spectra of uniaxially aligned lipid bilayers of varying compositions and peptide concentrations are measured to determine the peptide-induced orientational disorder and the selectivity of membrane disruption by tachyplesin. The disulfide-linked TP-1 does not cause any disorder to the neutral POPC and POPC/cholesterol membranes but induces both micellization and random orientation distribution to the anionic POPE/POPG membranes above a peptide concentration of 2%. In comparison, the anionic POPC/POPG bilayer is completely unaffected by TP-1 binding, suggesting that TP-1 induces negative curvature strain to the membrane as a mechanism of its action. Removal of the disulfide bonds by substitution of Cys residues with Tyr and Ala abolishes the micellization of POPE/POPG bilayers but retains the orientation randomization of both POPC/POPG and POPE/POPG bilayers. Thus, linear tachyplesin derivatives have membrane disruptive abilities but use different mechanisms from the wild-type peptide. The different lipid-peptide interactions between TP-1 and other β-hairpin antimicrobial peptides are discussed in terms of their molecular structure.  相似文献   

12.
The disruption of intracellular calcium homeostasis plays a central role in the pathology of Alzheimer's disease, which is also characterized by accumulation of the amyloid-beta peptides Abeta40 and Abeta42. These amphipathic peptides may become associated with neuronal membranes and affect their barrier function, resulting in the loss of calcium homeostasis. This suggestion has been extensively investigated by exposing protein-free model membranes, either vesicles or planar bilayers, to soluble Abeta. Primarily unstructured Abeta has been shown to undergo a membrane-induced conformational change to either primarily beta-structure or helical structure, depending, among other factors, on the model membrane composition. Association of Abeta renders lipid bilayers permeable to ions but there is dispute whether this is due to the formation of discrete transmembrane ion channels of Abeta peptides, or to a non-specific perturbation of bilayer integrity by lipid head group-associated Abeta. Here, we have attempted incorporation of Abeta in the hydrophobic core of zwitterionic bilayers, the most simple model membrane system, by preparing proteoliposomes by hydration of a mixed film of Abeta peptides and phosphatidylcholine (PC) lipids. Despite the use of a solvent mixture in which Abeta40 and Abeta42 are almost entirely helical, the Abeta analogs were beta-structured in the resulting vesicle dispersions. When Abeta40-containing vesicles were fused into a zwitterionic planar bilayer, the typical irregular "single channel-like" conductance of Abeta was observed. The maximum conductance increased with additional vesicle fusion, while still exhibiting single channel-like behavior. Supported bilayers formed from Abeta40/PC vesicles did not exhibit any channel-like topological features, but the bilayer destabilized in time. Abeta40 was present primarily as beta-sheets in supported multilayers formed from the same vesicles. The combined observations argue for a non-specific perturbation of zwitterionic bilayers by surface association of small amphipathic Abeta40 assemblies.  相似文献   

13.
Designed to model ideally amphipathic beta-sheets, the minimalist linear (KL)(m)K peptides (m=4-7) were synthesized and proved to form stable films at the air/water interface, they insert into compressed dimyristoylphosphatidylcholine monolayers and interact with egg phosphatidylcholine vesicles. Whatever the interface or the lateral pressure applied to the films, FT-IR and polarization-modulated IRRAS spectroscopy developed in situ on the films indicated that all the peptides totally fold into intermolecular antiparallel beta-sheets. Calculated spectra of the amide region allowed us to define the orientation of the beta-strands compared to the interface. It is concluded that such beta-sheets remain flat-oriented without deep perturbation of zwitterionic phospholipids. Dansyl labelling at the N-terminus indicates that all the peptides are monomeric at a low concentration in aqueous buffer and bind to lipids with similar Dns burying. The affinities for zwitterionic lecithin mono- and bilayers, quantitatively estimated from buffer to lipid partition constants, monotonically increased with peptide length, indicating that hydrophobicity is a limiting parameter for lipid and membrane affinities. Peptides induced permeability increases on zwitterionic liposomes, they are strongly hemolytic towards human erythrocytes and their activity increases concurrently with length. Taking into account the lipid affinity, a hemolytic efficiency can be defined: at the same amount of peptide bound, this efficiency strongly increases with the peptide length. It is proposed that the first determinant step of membrane disturbance is the invasion of the outer membrane leaflet by these ideally amphipathic beta-sheeted structures lying flat at the interface, like large rafts depending on the number of beta-strands.  相似文献   

14.
The peptide-lipid interaction of a beta-hairpin antimicrobial peptide tachyplesin-1 (TP-1) and its linear derivatives are investigated to gain insight into the mechanism of antimicrobial activity. (31)P and (2)H NMR spectra of uniaxially aligned lipid bilayers of varying compositions and peptide concentrations are measured to determine the peptide-induced orientational disorder and the selectivity of membrane disruption by tachyplesin. The disulfide-linked TP-1 does not cause any disorder to the neutral POPC and POPC/cholesterol membranes but induces both micellization and random orientation distribution to the anionic POPE/POPG membranes above a peptide concentration of 2%. In comparison, the anionic POPC/POPG bilayer is completely unaffected by TP-1 binding, suggesting that TP-1 induces negative curvature strain to the membrane as a mechanism of its action. Removal of the disulfide bonds by substitution of Cys residues with Tyr and Ala abolishes the micellization of POPE/POPG bilayers but retains the orientation randomization of both POPC/POPG and POPE/POPG bilayers. Thus, linear tachyplesin derivatives have membrane disruptive abilities but use different mechanisms from the wild-type peptide. The different lipid-peptide interactions between TP-1 and other beta-hairpin antimicrobial peptides are discussed in terms of their molecular structure.  相似文献   

15.
Hitz T  Luisi PL 《Biopolymers》2000,55(5):381-390
The main question of this paper is whether and to what extend lipid bilayers can aid in the polycondensation of amino acids and peptides. This means in particular how such bilayers can favor the selection of certain sequences out of a large number of theoretical possible ones. In a first series of experiments we started from a library of Trp-containing dipeptides of the type Trp-X where X is an amino acid residue; and we could show that, when adding this mixture to the POPC liposomes containing a hydrophobic quinoline condensing agent (EEDQ), only the hydrophobic Trp-Trp dipeptide is selected out by the liposomes and transformed into a longer oligomer. Trp-oligomers up to 29 monomers long (water insoluble) could be obtained by using the matrix support of liposomes. Mixed POPC/DDAB liposomes (positive charge) were used to produce co-oligopeptides that contain Trp and Glu residues in the same sequence. Arg/Trp and His/Trp containing sequences were obtained in presence of negatively charged liposomes (mixed POPC/DOPA-liposomes). The polycondensation of racemic NCA-amino acids has been studied to clarify if homochiral sequences are produced preferentially in presence or absence of liposomes. LC-MS and isotope labeling of the L-amino acid, participating in the polymerization reaction achieved this on the level of a direct product analysis. So the individual stereoisomer distribution up to a polymerization degree of 10 (in the case of Trp) could be determined. The data for Trp and other amino acids (Leu, Ile) and amino acid mixtures (Trp/Leu, Trp/Ile, Leu/Ile and Trp/Leu/Ile) show that homochiral sequences are produced preferentially if compared with a random (Bernoulli) distribution.  相似文献   

16.
Staphylococcal delta-toxin, a 26-residue amphiphilic peptide is lytic for cells and phospholipid vesicles and is assumed to insert as an amphipathic helix and oligomerize in membranes. For the first time, the relationship between these properties and toxin structure is investigated by means of eight synthetic peptides, one identical in sequence to the natural toxin, five 26-residue analogues and two shorter peptides corresponding to residues 1-11 and 11-26. These peptides were designed by the Edmundson wheel axial projection in order to maintain: (a) the hydrophilic/hydrophobic balance while rationalizing the sequence, (b) the alpha-helical configuration and (c) the common epitopic structure. The fluorescence of the single Trp residue was used to monitor the behaviour of the natural toxin and analogues. All 26-residue analogues were hemolytically active although to a lesser extent than natural toxin. The peptide of residues 11-26 bound lipids weakly and was hemolytic at high concentration. The peptide of residues 1-11 did not bind lipids and was hemolytically inactive. All peptides except the latter cross-reacted in immunoprecipitation tests with the natural toxin. The study of a 26-residue analogue by circular dichroism revealed an alpha-helical configuration in both the free and lipid-bound state. Changes in the fluorescence of the peptides in the presence of lipid micelles and bilayers varied according to the position of the reporter group. When bound to lipids, Trp5, Trp16 and the Fmoc-1 positions of the analogues became buried while Trp15 of the natural toxin and its synthetic replicate remained more exposed. All changes are rationalized by the proposal of an amphipathic helix whose hydrophobic face is embedded within the apolar core of bilayers while the hydrophilic and charged face remains more exposed to solvent.  相似文献   

17.
Cytolytic lymphocytes are endowed with a pore-forming protein called perforin. Recently, a cytolytic domain was located in the first 34 residues of the perforin N-terminus. It has been proposed that the first 19 residues are composed of a 3-domain structure including a putative amphipathic beta-sheet and that the 19 residues are sufficient for cytolytic activity. This model has now been tested by synthesizing peptides covering different portions of the N-terminus, and testing their ability to lyse lipid vesicles or increase the conductance of lipid bilayers or plasma membranes. It was found that the putative beta-sheet is indispensable for lytic activity and that the first 19 residues of the N-terminus are required for optimal lytic activity but that shorter peptides, containing only 16 residues, can form pores in lipid bilayers and cell membranes. A putative amphipathic alpha-helix from the central portion of perforin, homologous to complement C9, is nonlytic to lipid vesicles, but it can form pores in lipid bilayers. Taken together, these results support the model that the perforin N-terminus is important in initial pore formation and that the putative alpha-helical domain may be involved in subsequent perforin polymerization into large pores.  相似文献   

18.
We analyzed transport into liposomes and proteoliposomes, separated the free and internalized radioactively labeled substrates by size-exclusion chromatography (SEC) and observed a net influx owing to nonfacilitated diffusion across the lipid bilayers during the separation. The permeabilities (10(-9) cm/s) of glucose transporter (GLUT1) proteoliposomes were estimated to be 4.6, 1.0, 1.4 and 2.1 for D-glucose, L-glucose, L-Tyr and L-Trp, respectively; 15, 3.3, 5.1 and 2.1 times higher than the corresponding permeabilities of liposomes. These values indicated that GLUT1 did not transport Tyr or Trp, or transported Tyr, and only Tyr, slowly. This interpretation was supported by further analyses. Dihydrocytochalasin B inhibited the transport of Tyr and, partially, Trp into human red blood cells (centrifugal analyses). It did not inhibit Tyr and Trp influx into GLUT1 proteoliposomes, but partitioned strongly into the bilayers and seemed to make them fragile. The GLUT1 inhibitor cytochalasin B and the GLUT1 substrate 2-deoxy-D-glucose did not inhibit Tyr transport into the cells. Upon immobilized biomembrane affinity chromatography, Trp decreased the cytochalasin B retardation by GLUT1 only at levels far above the physiological Trp concentration. Ethanol (commonly added to aqueous solutions for enhancing a compound's solubility) halved the retardation at 4% (v/v) concentration. Drastic modification of the SEC method is required to allow permeability measurements with nonlabeled and highly permeable substrates.  相似文献   

19.
To gain insight into how the N-terminal three-stranded beta-sheet-like domain in pediocin-like antimicrobial peptides positions itself on membranes, residues in the well-conserved (Y)YGNGV-motif in the domain were substituted and the effect of the substitutions on antimicrobial activity and binding of peptides to liposomes was determined. Peptide-liposome interactions were detected by measuring tryptophan-fluorescence upon exposing liposomes to peptides in which a tryptophan residue had been introduced in the N-terminal domain. The results revealed that the N-terminal domain associates readily with anionic liposomes, but not with neutral liposomes. The electrostatic interactions between peptides and liposomes facilitated the penetration of some of the peptide residues into the liposomes. Measuring the antimicrobial activity of the mutated peptides revealed that the Tyr2Leu and Tyr3Leu mutations resulted in about a 10-fold reduction in activity, whereas the Tyr2Trp, Tyr2Phe, Tyr3Trp and Tyr3Phe mutations were tolerated fairly well, especially the mutations in position 3. The Val7Ile mutation did not have a marked detrimental effect on the activity. The Gly6Ala mutation was highly detrimental, consistent with Gly6 being in one of the turns in the beta-sheet-like N-terminal domain, whereas the Gly4Ala mutation was tolerated fairly well. All mutations involving Asn5, including the conservative mutations Asn5Gln and Asn5Asp, were very deleterious. Thus, both the polar amide group on the side chain of Asn5 and its exact position in space were crucial for the peptides to be fully active. Taken together, the results are consistent with Val7 positioning itself in the hydrophobic core of target membranes, thus forcing most of the other residues in the N-terminal domain into the membrane interface region: Tyr3 and Asn5 in the lower half with their side chains pointing downward and approaching the hydrophobic core, Tyr2, Gly4 and His8 and 12 in the upper half, Lys1 near the middle of the interface region, and the side chain of Lys11 pointing out toward the membrane surface.  相似文献   

20.
Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study the molecular structures of surfaces and interfaces in different chemical environments. This review summarizes recent SFG studies on hybrid bilayer membranes and substrate-supported lipid monolayers and bilayers, the interaction between peptides/proteins and lipid monolayers/bilayers, and bilayer perturbation induced by peptides/proteins. To demonstrate the ability of SFG to determine the orientations of various secondary structures, studies on the interactions between different peptides/proteins (melittin, G proteins, alamethicin, and tachyplesin I) and lipid bilayers are discussed. Molecular level details revealed by SFG in these studies show that SFG can provide a unique understanding on the interactions between a lipid monolayer/bilayer and peptides/proteins in real time, in situ and without any exogenous labeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号