首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The present study examined changes in the levels of plasma catecholamines and myocardial histamine, guanylate cyclase activity, cyclic nucleotides, calcium, calmodulin, and norepinephrine following chronic administration of doxorubicin (DXR). In addition, changes in myocardial alpha 1-adrenergic receptor density and dissociation constant were measured. Rats received DXR (2 mg/kg) or vehicle weekly by the SC route for 2, 4, 8, and 13 weeks. Rats were sacrificed one week after their last dose. One group of rats treated for 13 weeks was sacrificed at 19 weeks, six weeks after the last dose. Heart histamine was unchanged at 3, 5, 9, and 19 weeks, yet at 14 weeks it was significantly elevated in DXR-treated rats over controls. Cardiac calcium, norepinephrine, and cyclic GMP levels were unchanged throughout the course of the study. Cardiac cAMP and calmodulin levels were unchanged at 3, 5, 9, and 14 weeks. At 19 weeks in DXR-treated rats, cAMP was depressed while calmodulin was elevated. Plasma catecholamines and myocardial guanylate cyclase activity examined at 14 weeks were unchanged. In contrast, alpha 1 receptor density examined at 14 weeks in DXR-treated rats was significantly depressed while the dissociation constant was unchanged. Changes in cAMP and calmodulin are suggestive of a redistribution of calcium, although total levels of calcium were unchanged. The depression of cAMP indicates damage to the membrane bound enzyme, adenylate cyclase, and that the membrane interaction of doxorubicin appears to be an integral part of the biochemical mechanism of its toxicity.  相似文献   

2.
The current work planned to assess the protecting properties of nimbolide against doxorubicin (DOX)‐treated myocardial damage. Myocardial damage was produced with 2.5 mg/kg of DOX given on alternative days (14 days). Thiobarbituric acid reactive substances (TBARS) levels of a lipid peroxidative marker were elevated, whereas reduced body weight, heart weight, blood pressure indices and reduced levels of antioxidants like glutathione‐S‐transferase, superoxide dismutase, catalase, glutathione peroxidase, glutathione, and glutathione reductase were observed in the heart tissue of DOX‐treated animals. DOX‐treated animals showed augmented levels of cardiac markers likes monocyte chemotactic protein‐1, interferon‐gamma, aspartate transferase, creatine kinase, lactate dehydrogenase, creatine kinase‐muscle/brain, heart‐type fatty acid‐binding protein, glycogen phosphorylase isoenzyme BB, transforming growth factor‐β, brain natriuretic peptide, myoglobin, and cTnI in serum. Histopathological assessment confirmed the DOX‐induced cardiotoxicity. Furthermore, DOX‐induced rats showed augmented inflammatory mediators (nuclear factor‐κB [NF‐kB], tumor necrosis factor‐α [TNF‐α], and interleukin‐1β [IL‐1β]) and increased PI3K/Akt signaling proteins (PI3K, p‐Bad/Bad, caspase‐3, and p‐Akt), whereas decreased oxidative markers (HO‐1 and NQO‐1) and p‐PTEN were observed. Nimbolide‐supplemented rats showed reduced activity/levels of cardiac markers and TBARS levels in serum and heart tissue. Levels of enzymatic and nonenzymatic antioxidants were augmented in the heart tissue of nimbolide‐supplemented rats. Nimbolide influence decreased apoptosis, inflammation, and enhanced antioxidant markers through the modulation of p‐Bad/Bad, caspase‐3, PI3K, p‐Akt, TNF‐α, NF‐kB, IL‐1β, HO‐1, NQO‐1, and p‐PTEN markers. The histopathological explanations were observed to be in line with biochemical analysis. Therefore, the finding of current work was that nimbolide has a defensive effect on the myocardium against DOX‐induced cardiac tissue damage.  相似文献   

3.
4.
Cardiomyocyte apoptosis in heart failure has been the topic of research in many recent studies. In the present investigation, the potential cardioprotective effect of gymnemic acid phospholipid complex (GPC) on myocardial apoptosis and cardiac function was studied in doxorubicin (DOX; 30 mg/kg/ip/single dose)-induced cardiomyopathy model in rats. Doxorubicin induced cardiomyopathy was evidenced by significant hemodynamic changes (increased systolic, diastolic, mean arterial pressure and heart rate), decreased heart weight to body weight ratio, increase in serum lactate dehydrogenase (LDH) and Ca2+ levels and decrease in myocardial Na+/K+ ATPase levels along with caspase-3 activation. A marked reduction in glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, superoxide dismutase and catalase levels along with increase in the levels of thiobarbituric acids (TBARS) were also observed in rat myocardium. In addition, DNA laddering observed on agarose gel electrophoresis and cardiac histopathology study further supplemented myocardial apoptosis. Pre-treatment with GPC significantly reduced DOX-induced cardiac toxicity, including improvement of hemodynamic variables and heart weight to body weight ratio, decreased serum Ca2+ level and LDH levels, myocardial caspase-3 levels, increased Na+/K+ ATPase levels and decreased myocardial TBARS levels and elevated antioxidant enzymes as compared to pathogenic control group. Further, the anti-apoptotic effect of GPC was verified by prevention of internucleosomal DNA laddering on agarose gel electrophoresis and attenuation of histopathological perturbations by doxorubicin. These observations demonstrate that GPC might serve as a cardioprotective formulation in DOX-induced cardiomyopathy in rats.  相似文献   

5.
The hypothesis that copper (Cu) alters drug metabolizing enzymes and functions as an antioxidant nutrient in doxorubicin cardiotoxicity was tested. Male Sprague-Dawley rats were fed Cu adequate (+Cu; 5 mg Cu/kg of diet), marginally Cu deficient (MCu; 1.2 mg Cu/kg of diet), or severely Cu deficient (Cu; 0.5 mg Cu/kg of diet) diets for 6 wk. Doxorubicin (1, 2, or 4 mg/kg body wt) or saline were administered intraperitoneally 1 time/wk for 4 wk. Compared to control hearts, Cu, Zn superoxide dismutase activity was decreased by 9% in MCu rats and by 21–40% inCu rats. Glutathione peroxidase activity was elevated 5–15% inCu rats. Doxorubicin administration increased heart Cu, Zn superoxide dismutase activity in+Cu andCu rats 18 h after the last of 4 injections, but not 18 h after 1 injection. There was no synergism between doxorubicin and Cu deficiency on lipid peroxidation, plasma creatine phosphokinase, cardiac hypertrophy, electrocardiographic abnormalities, or morphological changes. Heart glutathione S-transferase activity was decreased by Cu deficiency, and like Cu, Zn superoxide dismutase activity, returned to normal inCu rats given doxorubicin. Thus, the Cu deficient rat heart may be able to compensate for doxorubicin-induced oxidant stress by increasing the activity of Cu,Zn superoxide dismutase and glutathione S-transferase.  相似文献   

6.
The effects of multiple doses of doxorubicin (DXR) on myocardial beta-adrenergic receptor density and dissociation constant were investigated in male Sprague Dawley rats. The rats received DXR (2 mg/kg) or vehicle weekly by the SC route for 13 weeks. One group of DXR-treated rats plus corresponding controls were sacrificed at 14 weeks, one week after the last dose. Another group of DXR-treated rats plus corresponding controls were sacrificed at 19 weeks, six weeks after the last dose. The myocardial beta-adrenergic receptor was characterized by radio-ligand binding studies using [125I]iodocyanopindolol. Beta--receptor densities in DXR-treated rats of 7.0 and 7.4 fm/mg protein were unchanged from control levels of 7.2 fm/mg protein at both 14 and 19 weeks, respectively. Receptor dissociation constants in DXR-treated rats of 36.7 and 36.9 pM were increased over control levels of 24.6 and 30.0 pM at 14 and 19 weeks, respectively. However, the change in dissociation constant is only significant at 14 weeks. The increased dissociation constants suggest diminished agonist binding affinity of the myocardial beta-receptor. This impaired response of the receptor to catecholamines would tend to diminish the ability of myocardium to adequately respond to adrenergic stimuli.  相似文献   

7.
Myocardial infarction continues to be a leading cause of mortality world-wide. Novel therapies are needed to treat the myocardial ischemia. This study was undertaken to evaluate the cardioprotective role of hesperidin on isoproterenol-induced myocardial ischemia in rats. Myocardial ischemia was induced by subcutaneous injection of isoproterenol hydrochloride (85 mg/kg body weight), for two consecutive days. Isoproterenol-administered rats showed elevated levels of cardiac markers (aspartate transaminase, alanine transaminase, lactate dehydrogenase, creatine kinase, creatine kinase-MB, cardiac troponins T and I) when compared with control and hesperidin treatment groups (100, 200 and 400 mg/kg body weight). The serum levels of cardiac markers were significantly reduced at the doses of 200 mg and 400 mg. All further experiments were carried out at the 200 mg dose. Lipid peroxidation markers (thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes) were elevated significantly in the plasma and heart whereas non-enzymic antioxidants (vitamin C, vitamin E and reduced glutathione) were decreased significantly. Activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase declined significantly in the heart of ischemic rats. However, after hesperidin treatment, all the above parameters reverted to normal levels. This study demonstrated that the cardioprotective effect of hesperidin on ischemic rats could be due to its anti-lipid peroxidative and antioxidant properties.  相似文献   

8.
The possible protective effects of resveratrol (RVT) against cardiotoxicity were investigated in Wistar albino rats treated with saline, saline+doxorubicin (DOX; 20 mg/kg) or RVT (10 mg/kg)+DOX. Blood pressure and heart rate were recorded on the 1st week and on the 7th week, while cardiomyopathy was assessed using transthoracic echocardiography before the rats were decapitated. DOX-induced cardiotoxicity resulted in decreased blood pressure and heart rate, but lactate dehydrogenase, creatine phosphokinase, total cholesterol, triglyceride, aspartate aminotransferase and 8-OHdG levels were increased in plasma. Moreover, DOX caused a significant decrease in plasma total antioxidant capacity along with a reduction in cardiac superoxide dismutase, catalase and Na+,K+-ATPase activities and glutathione contents, while malondialdehyde, myelopreoxidase activity and the generation of reactive oxygen species were increased in the cardiac tissue. On the other hand, RVT markedly ameliorated the severity of cardiac dysfunction, while all oxidant responses were prevented; implicating that RVT may be of therapeutic use in preventing oxidative stress due to DOX toxicity.  相似文献   

9.
The protective effect of the synthetic aminothiol, N-(2-mercaptopropionyl) glycine (MPG) on adriamycin (ADR) induced acute cardiac and hepatic oxidative toxicity was evaluated in rats. ADR toxicity, induced by a single intraperitoneal injection (15 mg/kg), was indicated by an elevation in the level of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), creatine kinase isoenzyme (CK-MB), and lactic dehydrogenase (LDH). ADR produced significant elevation in thiobarbituric acid reactive substances (TBARS), indicating lipid peroxidation, and significantly inhibited the activity of superoxide dismutase (SOD) in heart and liver tissues. In contrast, a single injection of ADR did not affect the cardiac or hepatic glutathione (GSH) content and cardiac catalase (CAT) activity but elevated hepatic CAT. Pretreatment with MPG, (2.5 mg/kg) intragastrically, significantly reduced TBARS concentration in both heart and liver and ameliorated the inhibition of cardiac and hepatic SOD activity. In addition, MPG significantly decreased the serum level of GOT, GPT, CK-MB, and LDH of ADR treated rats. These results suggest that MPG exhibited antioxidative potentials that may protect heart and liver against ADR-induced acute oxidative toxicity. This protective effect might be mediated, at least in part, by the high redox potential of sulfhydryl groups that limit the activity of free radicals generated by ADR.  相似文献   

10.
The protective effect of the synthetic aminothiol, N-(2-mercaptopropionyl) glycine (MPG) on adriamycin (ADR) induced acute cardiac and hepatic oxidative toxicity was evaluated in rats. ADR toxicity, induced by a single intraperitoneal injection (15 mg/kg), was indicated by an elevation in the level of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), creatine kinase isoenzyme (CK-MB), and lactic dehydrogenase (LDH). ADR produced significant elevation in thiobarbituric acid reactive substances (TBARS), indicating lipid peroxidation, and significantly inhibited the activity of superoxide dismutase (SOD) in heart and liver tissues. In contrast, a single injection of ADR did not affect the cardiac or hepatic glutathione (GSH) content and cardiac catalase (CAT) activity but elevated hepatic CAT. Pretreatment with MPG, (2.5 mg/kg) intragastrically, significantly reduced TBARS concentration in both heart and liver and ameliorated the inhibition of cardiac and hepatic SOD activity. In addition, MPG significantly decreased the serum level of GOT, GPT, CK-MB, and LDH of ADR treated rats. These results suggest that MPG exhibited antioxidative potentials that may protect heart and liver against ADR-induced acute oxidative toxicity. This protective effect might be mediated, at least in part, by the high redox potential of sulfhydryl groups that limit the activity of free radicals generated by ADR.  相似文献   

11.
Alloxan-diabetic rats and age-matched controls were killed after 6 weeks of diabetes; heart and kidneys were removed and assayed for thiobarbituric acid-reactive substances (TBARS), lipid hydroperoxides, lipid phosphorus, total fatty acid composition and glutathione. Tissue homogenates from a second group of diabetic and control rats were incubated in oxygen-saturated buffer with and without the free radical generating system Fe2+/ascorbate (0.1/1.0 mM) and were assayed for lipid peroxidation. Diabetic hearts contained markedly lower levels of TBARS and lipid hydroperoxides (40% and 18%, respectively) than control hearts, whereas differences in TBARS were less pronounced in kidneys (9%). Incubation of homogenates of both organs in the presence or absence of Fe2+/ascorbate for up to 2 h yielded significantly lower levels of TBARS and lipid hydroperoxides with diabetic tissue. Diabetic hearts and kidneys contained higher levels of glutathione (28% and 13% over controls) and both diabetic tissues showed much higher linoleate/arachidonate ratios than did the controls (9.86 vs. 2.56 for heart, 2.01 vs. 0.86 for kidney). We conclude that diabetic tissues develop enhanced defense systems against oxidative stress and we assume tha the lower levels of arachidonate contribute to their resistance to lipid peroxidation as well.  相似文献   

12.
The present study was designed to evaluate the protective effect of ursolic acid (UA) against isoproterenol-induced myocardial infarction. Myocardial infarction was induced by subcutaneous injection of isoproterenol hydrochloride (ISO) (85 mg/kg BW), for two consecutive days. ISO-induced rats showed elevated levels of cardiac troponins T (cTn T) and I (cTn I) and increased activity of creatine kinase-MB (CK-MB) in serum. Lipid peroxidative markers (thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and lipid hydroperoxides (HP)) elevated in the plasma and heart tissue whereas decreased activities of enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR)) in erythrocytes and heart tissue of ISO-induced rats. Non-enzymatic antioxidants (vitamin C, vitamin E and reduced glutathione (GSH)) levels were decreased significantly in the plasma and heart tissue of ISO-induced rats. Furthermore, ISO-induced rats showed increased DNA fragmentation, upregulations of myocardial pro-apoptotic B-cell lymphoma-2 associated-x (Bax), caspase-3, -8 and -9, cytochrome c, tumor necrosis factor-α (TNF-α), Fas and down-regulated expressions of anti-apoptotic B-cell lymphoma-2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xL). UA-administered rats showed decreased levels/activity of cardiac markers, DNA fragmentation and the levels of lipid peroxidative markers in the plasma and heart tissue. Activities of enzymatic antioxidants were increased significantly in the erythrocytes and heart tissue and also non-enzymatic antioxidants levels were increased significantly in the plasma and heart tissue in UA-administered rats. UA influenced decreased DNA fragmentation and an apoptosis by upregulation of anti-apoptotic proteins such as Bcl-2, Bcl-xL and down-regulation of Bax, caspase-3, -8 and -9, cytochrome c, TNF-α, Fas through mitochondrial pathway. Histopathological observations were also found in line with biochemical parameters. Thus, results of the present study demonstrated that the UA has anti-apoptotic properties in ISO-induced rats.  相似文献   

13.
Treatment with antioxidants may act more effectively to alter markers of free radical damage in combinations than singly. This study has determined whether treatment with combinations of pycnogenol, beta-carotene, and alpha-lipoic acid was more effective at reducing oxidative stress in diabetic rats than treatment with these antioxidants alone. It is not feasible, based on this study, to assume that there are interactive effects that make combinations of these antioxidants more effective than any one alone to combat oxidative stress. Female Sprague-Dawley rats, normal and streptozotocin-induced diabetic, were treated (10 mg/kg/day ip for 14 days) with pycnogenol, beta-carotene, pycnogenol + beta-carotene, or pycnogenol + beta-carotene + alpha-lipoic acid; controls were untreated. Concentrations of thiobarbituric acid reactive substances, glutathione and glutathione disulfide, and activities of glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase were measured in liver, kidney, and heart. Four types of effects were observed: (1) treatment with beta-carotene alone either reversed (cardiac glutathione disulfide) or elevated (cardiac glutathione, hepatic glutathione peroxidase activity) levels seen in diabetic animals; (2) beta-carotene alone produced no effect, but pycnogenol both alone and in combinations elevated (renal glutathione peroxidase and glutathione reductase activities, hepatic glutathione reductase activity and glutathione disulfide) or depressed (cardiac glutathione disulfide) levels seen in untreated diabetic animals; (3) all treatments with antioxidants, either alone or in combination, either normalized (lipid peroxidation in all tissues), elevated (hepatic GSH, cardiac glutathione peroxidase activity), or had no effect on (activities of hepatic catalase and superoxide dismutase in all tissues) levels seen in diabetic animals; (4) in only one case (cardiac glutathione reductase activity) levels in diabetic animals treated with combinations of antioxidants were normal, but elevated in animals treated with either antioxidant alone. Antioxidant effects seem to be dependent on the nature of the antioxidant used and not on combination effects.  相似文献   

14.
The possible effectiveness of resveratrol, a polyphenol present in different plants comprising berries, grapes and peanuts, on the prevention of doxorubicin-induced cardiac toxicity and fibrosis was investigated. Forty adult male Wistar albino rats were divided into four groups. Group I received normal saline, group II gavaged with resveratrol (20 mg/kg, daily for 4 weeks), group III received doxorubicin (2.5 mg/kg i.p. in six injections for 2 weeks; accumulative dose of 15 mg/kg), and group IV received doxorubicin?+?resveratrol (starting resveratrol intake 2 weeks before doxorubicin administration). Resveratrol significantly alleviated the increase in left ventricular lipid peroxidation, hydroxyproline, and tumor necrosis factor alpha levels as well as serum creatine kinase-myocardial band (CK-MB) activity and prevented the decrease in body and heart weights in doxorubicin-treated group. However, a marked protection against reduced glutathione content depletion and superoxide dismutase activity reduction was observed in the left ventricles of rats pretreated with resveratrol in combination with doxorubicin. Resveratrol also ameliorated the up-regulation of left ventricular caspase-3 and transforming growth factor-beta1 gene expression as well as left ventricular histopathological changes including necrosis and fibrosis induced by doxorubicin. Collectively, our results suggest that resveratrol provides a significant protection against doxorubicin-induced cardiotoxicity and fibrosis in rats. Therefore, it may be used as a promising cardioprotective agent in patients treated with doxorubicin due to malignant diseases. So, further clinical trials are required to confirm these findings.  相似文献   

15.
Othman AI  El-Missiry MA  Amer MA  Arafa M 《Life sciences》2008,83(15-16):563-568
AIM: Chemotherapy with adriamycin (ADR) is limited by its iron-mediated pro-oxidant toxicity. Because melatonin (MLT) is a broad spectrum antioxidant, we investigated the ability of MLT to control iron, its binding proteins, and the oxidative damage induced by ADR. MAIN METHODS: ADR was given as single i.p. dose of 10 mg kg(-1) body weight into male rats. MLT at a dose of 15 mg kg(-1) was injected daily for 5 days before ADR treatment followed by another injection for 5 days. Biochemical methods were used for this investigation. KEY FINDINGS: ADR injection caused elevations in plasma creatine kinase isoenzyme, lactic dehydrogenase, and aminotransferases, iron, ferritin, and transferrin. These changes were associated with increases in lipid peroxidation and protein oxidation as well as decreases in glutathione (GSH) levels and glutathione-S-transferase (GST) activity, while glutathione peroxidase (GSH-Px), and catalase (CAT) activity were elevated in the heart and liver of ADR treated rats. In the MLT+ADR group, the cardiac and hepatic function parameters and the levels of iron, transferrin and ferritin in plasma were normalized to control levels. The rats that were subjected to MLT+ADR had normalized CAT and GSH-Px activity and decreased TBARS and protein carbonyl levels compared the group only treated with ADR. GST activity and GSH concentration in the heart and liver were normalized when MLT accompanied ADR treatment. SIGNIFICANCE: MLT ameliorated oxidative stress by controlling iron, and binding protein levels in ADR treated rats demonstrating the usefulness of adriamycin in cancer chemotherapy and allowing a better management of iron levels.  相似文献   

16.
Treatment with antioxidants may act more effectively to alter markers of free radical damage in combinations than singly. This study has determined whether treatment with combinations of pycnogenol, β‐carotene, and α‐lipoic acid was more effective at reducing oxidative stress in diabetic rats than treatment with these antioxidants alone. It is not feasible, based on this study, to assume that there are interactive effects that make combinations of these antioxidants more effective than any one alone to combat oxidative stress. Female Sprague‐Dawley rats, normal and streptozotocin‐induced diabetic, were treated (10 mg/kg/day ip for 14 days) with pycnogenol, β‐carotene, pycnogenol + β‐carotene, or pycnogenol + β‐carotene + α‐lipoic acid; controls were untreated. Concentrations of thiobarbituric acid reactive substances, glutathione and glutathione disulfide, and activities of glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase were measured in liver, kidney, and heart. Four types of effects were observed: (1) treatment with β‐carotene alone either reversed (cardiac glutathione disulfide) or elevated (cardiac glutathione, hepatic glutathione peroxidase activity) levels seen in diabetic animals; (2) β‐carotene alone produced no effect, but pycnogenol both alone and in combinations elevated (renal glutathione peroxidase and glutathione reductase activities, hepatic glutathione reductase activity and glutathione disulfide) or depressed (cardiac glutathione disulfide) levels seen in untreated diabetic animals; (3) all treatments with antioxidants, either alone or in combination, either normalized (lipid peroxidation in all tissues), elevated (hepatic GSH, cardiac glutathione peroxidase activity), or had no effect on (activities of hepatic catalase and superoxide dismutase in all tissues) levels seen in diabetic animals; (4) in only one case (cardiac glutathione reductase activity) levels in diabetic animals treated with combinations of antioxidants were normal, but elevated in animals treated with either antioxidant alone. Antioxidant effects seem to be dependent on the nature of the antioxidant used and not on combination effects. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 18:345–352, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20046  相似文献   

17.
Administration of a single dose of doxorubicin (DOX) (7.5 mg/kg, i.v.) produces cardiotoxicity, manifested biochemically by significant decrease in blood glutathione (GSH) and tissue GSH along with elevated levels of serum lactate dehydrogenase (LDH) and serum creatine phosphokinase (CPK). In addition, cardiotoxicity was further confirmed by significant increase in lipid peroxides expressed as malondialdehyde (MDA, secondary indicator of lipid peroxidation), tissue catalase and tissue superoxide dismutase (SOD). Administration ofA. vera gel (100 and 200 mg/kg) orally for 10 days produced a significant protection against cardiotoxicity induced by DOX evidenced by significant reductions in serum LDH, serum CPK, cardiac lipid peroxides, tissue catalase and tissue SOD along with increased levels of blood and tissue GSH. The results revealed that A. vera gel produced a dose dependent protection against DOX induced cardiotoxiaty.  相似文献   

18.
The present experiments were designed to evaluate the effects of pifithrin-alpha (PFT-alpha), which is a p53 inhibitor, on doxorubicin (DOX)-induced apoptosis and cardiac injury. Administration of DOX (22.5 mg/kg ip) in mice upregulated the mRNA levels of Bax and MDM2, whereas PFT-alpha attenuated those levels when administered at a total dose of 4.4 mg/kg at 30 min before and 3 h after DOX challenge. DOX treatment led to an upregulation of p53 protein levels, which was preceded by elevated levels of phosphorylated p53 at Ser15. PFT-alpha had no effect on the level of p53 or its phosphorylated form. The protein levels of Bax and MDM2 were elevated by DOX and attenuated by PFT-alpha. DOX gave rise to increased apoptosis-positive nuclei in cardiac cells, elevated serum creatine phosphokinase, ultrastructural alterations, and cardiac dysfunction. PFT-alpha offered protection against all of the aforementioned changes. Finally, PFT-alpha did not interfere with the antitumor potency of DOX. This study demonstrates that PFT-alpha effectively inhibits DOX-induced cardiomyocyte apoptosis, which suggests that PFT-alpha has the potential to protect cancer patients against DOX-induced cardiac injury.  相似文献   

19.
Cardiac necrosis was produced in rats by administering isoproterenol sulphate (85 mg/kg, sc for 4 days). The myocardial damage was proved by observing the elevated levels of serum aspartate amino-transferase, lactate dehydrogenase and creatine phosphokinase and the changes were confirmed by histopathology of the tissue. Both aspartate and glutamate (100 mg/kg, ip) significantly reduced the elevated levels of these enzymes. The average degree of cardiac necrosis produced in these rats when observed macroscopically and histologically was also found to be significantly reduced on pretreatment with aspartate and glutamate.  相似文献   

20.
Grape seed proanthocyanidins (GSPE) and ginkgo biloba extract (EGb761) are considered to have protective effects against several diseases. The cardiotoxicity of doxorubicin (DOX) has been reported to be associated with oxidative damage. This study was conducted to evaluate the cardioprotective effects of GSPE and EGb761 against DOX‐induced heart injury in rats. DOX was administered as a single i.p. dose (20 mg kg–1) to adult male rats. DOX‐intoxicated rats were orally administered GSPE (200 mg kg–1 day–1) or EGb761 (100 mg kg–1 day–1) for 15 consecutive days, starting 10 days prior DOX injection. DOX‐induced cardiotoxicity was evidenced by a significant increase in serum aspartate transaminase (AST), creatine phosphokinase isoenzyme (CK‐MB), lactate dehydrogenase (LDH), total cholesterol (TC) and triglyceride (TG) activities and levels. Increased oxidative damage was expressed by the depletion of cardiac reduced glutathione (GSH), elevation of cardiac total antioxidant (TAO) level and accumulation of the lipid peroxidation product, malondialdehyde (MDA). Significant rises in cardiac tumour necrosis factor‐alpha (TNF‐α) and caspase‐3 levels were noticed in DOX‐intoxicated rats. These changes were ameliorated in the GSPE and EGb761‐treated groups. Histopathological analysis confirmed the cardioprotective effects of GSPE and EGb761. In conclusion, GSPE and EGb761 mediate their protective effect against DOX‐induced cardiac injury through antioxidant, anti‐inflammatory and antiapoptotic mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号