首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Replication of HIV-1 in non-dividing and slowly proliferating cell populations depends on active import of the viral pre-integration complex (PIC) into the cell nucleus. While it is commonly accepted that this process is mediated by an interaction between the HIV-1 PIC and the cellular nuclear import machinery, controversial results have been reported concerning the mechanisms of this interaction. Here, we demonstrate that a recently identified nuclear localization signal within the HIV-1 matrix protein (MA), MA NLS-2, together with previously described MA NLS-1, mediates nuclear import of the HIV-1 PIC. Inactivation of both MA NLSs precluded nuclear translocation of MA and rendered the virus defective in nuclear import and replication in non-dividing macrophage cultures, even when functional Vpr and integrase (IN), two more viral proteins implicated in HIV-1 nuclear import, were present. Taken together, these results indicate that Vpr does not function as an independent nuclear import factor and demonstrate that HIV-1 MA, by virtue of its two nuclear localization signals, regulates HIV-1 nuclear import.  相似文献   

2.
3.
4.
Vpr, an accessory protein of human immunodeficiency virus type 1, is a multifunctional protein that plays an important role in viral replication. We have previously shown that the region between residues 17 and 74 of Vpr (Vpr(N17C74)) contained a bona fide nuclear localization signal and it is targeted Vpr(N17C74) to the nuclear envelope and then imported into the nucleus by importin α (Impα) alone. The interaction between Impα and Vpr is important not only for the nuclear import of Vpr but also for HIV-1 replication in macrophages; however, it was unclear whether full-length Vpr enters the nucleus in a manner similar to Vpr(N17C74). This study investigated the nuclear import of full-length Vpr using the three typical Impα isoforms, Rch1, Qip1 and NPI-1, and revealed that full-length Vpr is selectively imported by NPI-1, but not Rch1 and Qip1, after it makes contact with the perinuclear region in digitonin-permeabilized cells. A binding assay using the three Impα isoforms showed that Vpr bound preferentially to the ninth armadillo repeat (ARM) region (which is also essential for the binding of CAS, the export receptor for Impα) in all three isoforms. Comparison of biochemical binding affinities between Vpr and the Impα isoforms using surface plasmon resonance analysis demonstrated almost identical values for the binding of Vpr to the full-length isoforms and to their C-terminal domains. By contrast, the data showed that, in the presence of CAS, Vpr was released from the Vpr/NPI-1 complex but was not released from Rch1 or Qip1. Finally, the NPI-1-mediated nuclear import of Vpr was greatly reduced in semi-intact CAS knocked-down cells and was recovered by the addition of exogenous CAS. This report is the first to show the requirement for and the regulation of CAS in the functioning of the Vpr-Impα complex.  相似文献   

5.
6.
The subunits of complex I encoded by the mammalian nuclear genes NDUFS4 (AQDQ protein) and NDUFB11 (ESSS protein) contain serine/threonine consensus phosphorylation sequences (CPS) in their presequence, the first also in the C-terminus. We have studied the impact of PKA mediated phosphorylation on the mitochondrial import of in vitro and in vivo synthesized NDUFS4 protein. The intramitochondrial accumulation of the mature form of in vitro synthesized NDUFS4 protein, but not that of ESSS protein, was promoted by PKA and depressed by alkaline phosphatase (AP). In HeLa cells, control or transfected with the NDUFS4 cDNA construct, the mitochondrial level of mature NDUFS4 protein was promoted by 8-Br-cAMP and depressed by H89. Ser173Ala mutagenesis in the C-terminus CPS abolished the appearance in mitochondria of the mature form of NDUFS4 protein. The promoting effect of PKA on the mitochondrial accumulation of mature NDUFS4 protein appears to be due to inhibition of its retrograde diffusion into the cytosol.  相似文献   

7.
The karyophilic properties of the human immunodeficiency virus, type I (HIV-1) pre-integration complex (PIC) allow the virus to infect non-dividing cells. To better understand the mechanisms responsible for nuclear translocation of the PIC, we investigated nuclear import of HIV-1 integrase (IN), a PIC-associated viral enzyme involved in the integration of the viral genome in the host cell DNA. Accumulation of HIV-1 IN into nuclei of digitonin-permeabilized cells does not result from passive diffusion but rather from an active transport that occurs through the nuclear pore complexes. HIV-1 IN is imported by a saturable mechanism, implying that a limiting cellular factor is responsible for this process. Although IN has been previously proposed to contain classical basic nuclear localization signals, we found that nuclear accumulation of IN does not involve karyopherins alpha, beta1, and beta2-mediated pathways. Neither the non-hydrolyzable GTP analog, guanosine 5'-O-(thiotriphosphate), nor the GTP hydrolysis-deficient Ran mutant, RanQ69L, significantly affects nuclear import of IN, which depends instead on ATP hydrolysis. Therefore these results support the idea that IN import is not mediated by members of the karyopherin beta family. More generally, in vitro nuclear import of IN does not require addition of cytosolic factors, suggesting that cellular factor(s) involved in this active but atypical pathway process probably remain associated with the nuclear compartment or the nuclear pore complexes from permeabilized cells.  相似文献   

8.
9.
Human immunodeficiency virus type 1 (HIV-1) commandeers host cell proteins and machineries for its replication. Our earlier work showed that HIV-1 induced the cytoplasmic retention of nucleocytoplasmic shuttling and ribonucleic acid (RNA)-binding proteins. This retention is dependent on nuclear export of the viral genomic RNA and on changes in the localization and expression level of the nucleoporin (Nup) p62 (Nup62). To further characterize the extent of perturbation induced by HIV-1, we performed proteomics analyses of nuclear envelopes (NEs) isolated from infected T cells. Infection induced extensive changes in the composition of the NE and its associated proteins, including a remarkable decrease in the abundance of Nups. Immunogold electron microscopy revealed the translocation of Nups into the cytoplasm. Nup62 was identified as a component of purified virus, and small interfering RNA depletion studies revealed an important role for this Nup in virus gene expression and infectivity. This detailed analysis highlights the profound effects on NE composition induced by HIV-1 infection, providing further evidence of the magnitude of viral control over the cell biology of its host.  相似文献   

10.

Background  

Tpr is a large protein with an extended coiled-coil domain that is localized within the nuclear basket of the nuclear pore complex. Previous studies [1] involving antibody microinjection into mammalian cells suggested a role for Tpr in nuclear export of proteins via the CRM1 export receptor. In addition, Tpr was found to co-immunoprecipitate with importins α and β from Xenopus laevis egg extracts [2], although the function of this is unresolved. Yeast Mlp1p and Mlp2p, which are homologous to vertebrate Tpr, have been implicated in mRNA surveillance to retain unspliced mRNAs in the nucleus[3, 4]. To augment an understanding of the role of Tpr in nucleocytoplasmic trafficking, we explored the interactions of recombinant Tpr with the karyopherins CRM1, importin β and importin α by solid phase binding assays. We also investigated the conditions required for nuclear import of Tpr using an in vitro assay.  相似文献   

11.
12.
13.
Oxysterol binding proteins (OSBPs) comprise a large conserved family of proteins in eukaryotes. Their ubiquity notwithstanding, the functional activities of these proteins remain unknown. Kes1p, one of seven members of the yeast OSBP family, negatively regulates Golgi complex secretory functions that are dependent on the action of the major yeast phosphatidylinositol/phosphatidylcholine Sec14p. We now demonstrate that Kes1p is a peripheral membrane protein of the yeast Golgi complex, that localization to the Golgi complex is required for Kes1p function in vivo, and that targeting of Kes1p to the Golgi complex requires binding to a phosphoinositide pool generated via the action of the Pik1p, but not the Stt4p, PtdIns 4-kinase. Localization of Kes1p to yeast Golgi region also requires function of a conserved motif found in all members of the OSBP family. Finally, we present evidence to suggest that Kes1p may regulate adenosine diphosphate-ribosylation factor (ARF) function in yeast, and that it may be through altered regulation of ARF that Kes1p interfaces with Sec14p in controlling Golgi region secretory function.  相似文献   

14.
15.
Syntenin-1 is a cytosolic adaptor protein involved in several cellular processes requiring polarization. Human immunodeficiency virus type 1 (HIV-1) attachment to target CD4(+) T-cells induces polarization of the viral receptor and coreceptor, CD4/CXCR4, and cellular structures toward the virus contact area, and triggers local actin polymerization and phosphatidylinositol 4,5-bisphosphate (PIP(2)) production, which are needed for successful HIV infection. We show that syntenin-1 is recruited to the plasma membrane during HIV-1 attachment and associates with CD4, the main HIV-1 receptor. Syntenin-1 overexpression inhibits HIV-1 production and HIV-mediated cell fusion, while syntenin depletion specifically increases HIV-1 entry. Down-regulation of syntenin-1 expression reduces F-actin polymerization in response to HIV-1. Moreover, HIV-induced PIP(2) accumulation is increased in syntenin-1-depleted cells. Once the virus has entered the target cell, syntenin-1 polarization toward the viral nucleocapsid is lost, suggesting a spatiotemporal regulatory role of syntenin-1 in actin remodeling, PIP(2) production, and the dynamics of HIV-1 entry.  相似文献   

16.
The human deubiquitinase USP1 plays important roles in cancer-related processes, such as the DNA damage response, and the maintenance of the undifferentiated state of osteosarcoma cells. USP1 deubiquitinase activity is critically regulated by its interaction with the WD40 repeat-containing protein UAF1. Inhibiting the function of the USP1/UAF1 complex sensitizes cancer cells to chemotherapy, suggesting that this complex is a relevant anticancer target. Intriguingly, whereas UAF1 has been reported to locate in the cytoplasm, USP1 is a nuclear protein, although the sequence motifs that mediate its nuclear import have not been functionally characterized. Here, we identify two nuclear localization signals (NLSs) in USP1 and show that these NLSs mediate the nuclear import of the USP1/UAF1 complex. Using a cellular relocation assay based on these results, we map the UAF1-binding site to a highly conserved 100 amino acid motif in USP1. Our data support a model in which USP1 and UAF1 form a complex in the cytoplasm that subsequently translocates to the nucleus through import mediated by USP1 NLSs. Importantly, our findings have practical implications for the development of USP1-directed therapies. First, the UAF1-interacting region of USP1 identified here might be targeted to disrupt the USP1/UAF1 interaction with therapeutic purposes. On the other hand, we describe a cellular relocation assay that can be easily implemented in a high throughput setting to search for drugs that may dissociate the USP1/UAF1 complex.  相似文献   

17.
HIV-1 genome nuclear import is mediated by a central DNA flap   总被引:41,自引:0,他引:41  
  相似文献   

18.
展鹏  刘新泳 《生命的化学》2006,26(5):399-402
病毒蛋白R(viral protein regulatory,Vpr)是HIV-1的辅助蛋白,它可以调节逆转录的保真性,促进整合前复合物的核运输,影响细胞周期进程,诱导细胞凋亡,并对宿主及病毒的基因表达具有调节作用。它的多重作用使人们对HIV-1生命周期及与细胞的关系有了更新的认识,启发人们发现基于Vpr蛋白的新型抗HIV-1疗法。该文介绍Vpr蛋白在HIV-1生命周期中的各种作用。  相似文献   

19.
Ubiquitination regulates PTEN nuclear import and tumor suppression   总被引:12,自引:0,他引:12  
The PTEN tumor suppressor is frequently affected in cancer cells, and inherited PTEN mutation causes cancer-susceptibility conditions such as Cowden syndrome. PTEN acts as a plasma-membrane lipid-phosphatase antagonizing the phosphoinositide 3-kinase/AKT cell survival pathway. However, PTEN is also found in cell nuclei, but mechanism, function, and relevance of nuclear localization remain unclear. We show that nuclear PTEN is essential for tumor suppression and that PTEN nuclear import is mediated by its monoubiquitination. A lysine mutant of PTEN, K289E associated with Cowden syndrome, retains catalytic activity but fails to accumulate in nuclei of patient tissue due to an import defect. We identify this and another lysine residue as major monoubiquitination sites essential for PTEN import. While nuclear PTEN is stable, polyubiquitination leads to its degradation in the cytoplasm. Thus, we identify cancer-associated mutations of PTEN that target its posttranslational modification and demonstrate how a discrete molecular mechanism dictates tumor progression by differentiating between degradation and protection of PTEN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号