首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Low levels of CD2 have been described on subsets of monocytes, macrophages, and dendritic cells. CD2 is expressed on about one-third of circulating monocytes, at levels one-half log lower than on T or NK cells, representing 2-4% of PBMC. FACS analysis of CD2+ and CD2- monocytes revealed no significant difference in the expression of adhesion molecules (CD11a/b/c), class II Ags (HLA-DR, -DQ, -DP), myeloid Ags (CD13, CD14, CD33), or costimulatory molecules (CD80, CD86). Freshly isolated CD2+ and CD2- monocytes were morphologically indistinguishable by phase contrast microscopy. However, scanning electron microscopy revealed large prominent ruffles on CD2+ monocytes in contrast to small knob-like projections on CD2- monocytes. After 2 days of culture, the CD2+ monocytes largely lost CD14 expression and developed distinct dendrites, whereas the CD2- monocytes retained surface CD14 and remained round or oval. Freshly isolated CD2+ monocytes were more potent inducers of the allogeneic MLR and more efficiently induced proliferation of naive T cells in the presence of HIV-1 gp120 than did CD2- monocytes. After culture in the presence of GM/CSF and IL-4, CD2+ monocytes were up to 40-fold more potent than monocyte-derived dendritic cells or CD2- monocytes at inducing allogeneic T cell proliferation. These findings suggest that circulating CD2+ and CD2- monocytes are dendritic cells and the precursors of macrophages, respectively. Thus, dendritic cells are far more abundant in the blood than previously thought, and they and precursors of macrophages exist in the circulation as phenotypically, morphologically, and functionally distinct monocyte populations.  相似文献   

4.
Autoantibodies associated with herpes gestationis (HG), a pregnancy-associated autoimmune skin disease, target the hemidesmosomal protein BP180. It was shown that the major noncollagenous stretch of the BP180 ectodomain (NC16A) harbors epitopes recognized by HG sera. Furthermore, Abs reactive with the homologous domain of murine BP180 are known to trigger a cutaneous blistering disease in mice by passive transfer experiments. The present study was aimed at characterizing the T cell responses and specificities of autoantibodies from two HG patients. Using immunoblotting and T cell proliferation assays, we have identified a 14-amino-acid stretch of the BP180 ectodomain (MCW-1; aa 507-520) that is recognized by both T cells and autoantibodies produced by the HG patients. The neonate born to one of these HG patients showed no signs of skin disease and had no detectable T cell response to the BP180 Ag, but did have a low titer of circulating anti-BP180 autoantibodies, presumably of maternal origin. BP180-specific T cell lines and clones developed from an HG patient specifically reacted with the MCW-1 epitope. The proliferative responses of these clones were restricted to HLA-DR, but not -DQ or -DP. These Ag-specific T cells expressed alpha/beta TCRs and a CD4 memory T cell phenotype and secreted IFN-gamma and IL-2, but not IL-4 or IL-6, suggesting that they are Th1-type lymphocytes. Further characterization of these Ag-specific T cells and autoantibodies will aid in elucidating the autoimmune mechanism(s) leading to the development of HG.  相似文献   

5.
The effect of recombinant immune interferon (IFN-gamma) on the expression and shedding of HLA antigens and of melanoma-associated antigens (MAA) by epidermal melanocytes was investigated by using serologic and immunochemical techniques. IFN-gamma enhances the expression and/or shedding of HLA class I antigens and of the cytoplasmic MAA defined by monoclonal antibody (MoAb) 465.12S and induces a slight reduction in the expression of the high m.w. melanoma-associated antigen (HMW-MAA). In agreement with the data in the literature, melanocytes incubated with IFN-gamma acquire HLA-DR, -DQ, and -DP antigens. Contrary to previous information in the literature, the effect is not restricted to HLA class II antigens, since IFN-gamma also induces the expression of the 96-kDa MAA recognized by MoAb CL203. The effect of IFN-gamma on HLA class II antigens and 96-kDa MAA is dose and time dependent and is specific, because recombinant leukocyte interferon affects the expression of neither type of antigen. In spite of the expression of HLA class II antigens, IFN-gamma-treated melanocytes do not acquire the ability to stimulate the proliferation of allogeneic lymphocytes. HLA-DR antigens are more susceptible to induction by IFN-gamma than HLA-DQ and -DP antigens, since the percentage of melanocytes acquiring HLA-DQ and -DP antigens is lower than that acquiring HLA-DR antigens. Furthermore, the dose of IFN-gamma is higher and the time of incubation is longer to induce HLA-DQ and -DP antigens than to induce HLA-DR antigens. The differential susceptibility of HLA-DR, -DQ, and -DP antigens as well as of melanocytes from various donors to the modulating effect of IFN-gamma may provide an explanation for the more frequent detection of HLA-DR than of HLA-DQ and -DP antigens in melanoma lesions and for the expression of HLA class II antigens by some, but not all, melanoma lesions.  相似文献   

6.
Cloned human CD4+ T cell lines specific for the house dust mite Dermatophagoides pteronyssinus were used to map minimal T cell activation-inducing epitopes on the Group I allergen in D. pteronyssinus extracts (Der p I) molecule. Most of these Der p I-specific T cell clones expressed different TCR V alpha and V beta gene products. Using recombinant deletion proteins, three T cell epitopes were identified on the Der p I molecule; p45-67 and p117-143 were recognized by HLA-DR7-restricted T cells, whereas p94-104 was recognized in the context of HLA-DR2, DRw11 (DR5), and -DR8 molecules. This degenerate class II MHC restriction appears to be due to shared Phe and Asp residues at positions 67 and 70, respectively, in the third variable domain of the HLA-DR beta chain. All three T cell epitopes induced Th2-like cytokine production profiles by the Der p I-specific T cell clones, which were characterized by the production of very high levels of IL-4 and IL-5, as compared with those secreted by tetanus toxin-specific T cell clones derived from the same patients, but no or low amounts of IL-2 and IFN-gamma. This Th2-like production profile was, however, not an intrinsic property of the Der p I-specific T cells, but was dependent upon their mode of activation. Stimulation with Con A also induced very low or no measurable levels of IL-2 and IFN-gamma, whereas activation with TPA and the calcium ionophore A23187 resulted in the production of high levels of IL-4, IL-5, IL-2, and IFN-gamma. These results indicate that Der p I-specific T cell clones are not defective in their capacity to produce high levels of Th1 cytokines.  相似文献   

7.
The self-restriction of Ag-specific T cell responses is interpreted as the result of a positive selection of the individual's T cell specificities for their compatibility with self-MHC molecules. If the T cell receptor (TCR) specificities in any given individual have an affinity for syngeneic MHC molecules, it is unclear how they interact with allogeneic MHC structures. To approach this question, we analyzed 123 alloreactive HLA-DR4 Dw4 or Dw14 specific T cell clones that were generated from responder/stimulator combinations with defined disparities in the HLA-DR beta 1-chain. Sets of T cell clones were established from three different HLA-Dw4+ responders and compared for their fine specificities. The majority of HLA-DR4 Dw14 specific T cell clones co-recognized HLA-DR1 Dw1+ (33 to 36% of all T cell clones) or HLA-DRw14 Dw16+ (26 to 33%) stimulators, both of which share very similar sequences in the third hypervariable region of the HLA-DR beta 1-chain with the HLA-DR4 alleles Dw4 and Dw14. These data suggest that sequence and structural similarities in the alpha-helical portions of the HLA-DR molecule impose a strong bias on the recognition of allotargets. The second haplotype of the responder did not appear to affect the typical fingerprint of T cell recognition except for the deletion of self-reactive TCR specificities. Nonrandom usage of TCR specificities in anti-HLA-DR responses was also found for HLA-DRw11/DRw13+ and HLA-DRw11/DR7+ T cell donors who did not share any obvious polymorphic sequence stretches with the allostimulators HLA-DR4 Dw4 or Dw14. T cell clones from an HLA-DRw11/DRw13+ responder functionally resembled the TCR specificities derived from the HLA-DR4 Dw4+ donors. T cell clones derived from an HLA-DRw11/DR7+ individual were characterized by a distinct cross-reactivity pattern preferring HLA-DRw13 Dw19+ (50 to 60%) and HLA-DR3+ (43 to 57%) stimulator cells. These findings suggest that the responder HLA-DR alleles influence the structural constraints in the recognition of allo-HLA-DR molecules in closely related and in completely disparate responder/stimulator combinations.  相似文献   

8.
A panel of 17 myelin basic protein (MBP)-specific T lymphocyte clones were generated from four multiple sclerosis (MS) patients. All T cell clones expressed CD4 phenotype and 14 clones exhibited substantial cytotoxic activity on MBP-coated target cells. T cell recognition sites of the clones on human MBP were identified by using MBP fragments and synthetic peptides. Despite the fact that at least three epitopes were defined, these T cell clones displayed a striking bias to the C-terminal peptide 149-171 independent of differences in HLA-DR and DQ expression. In addition, the T cell responses of the clones appeared to be restricted by HLA-DR molecules irrespective of peptide specificities. The present study suggests an immunodominant property of the C-terminal peptide for HLA-DR-restricted T cell responses to MBP. However, its association with encephalitogenicity in humans and its potential pathologic importance in MS await further clarification.  相似文献   

9.
Staphylococcal enterotoxins (SE) are known to stimulate a large proportion of T cells. SE bind to MHC-class II molecules on APC and a particular segment of certain TCR V beta and V gamma gene products. Resting human T cells do not express HLA class II Ag and therefore cannot present SE to T cells. Activated human T cells, however, do express HLA-DR, -DP, and -DQ Ag and could consequently serve as APC for SE. As such, local immune responses to SE might be regulated and/or abrogated by SE-mediated T-T cell interactions leading to T cell destruction. We have investigated if such SE-mediated T-T cell interactions can occur in vitro using human cytolytic TCR-alpha beta+ and TCR-gamma delta+ T cell clones. We demonstrate that the TCR-alpha beta+ T cell clones can efficiently present staphylococcal enterotoxin A (SEA) to each other: T cell clones coated with SEA are lysed by SEA-reactive T cell clones but not by a SEA-nonreactive T cell clone. Furthermore, the SEA-reactive TCR-alpha beta+ clones (but not the SEA-nonreactive clone) destruct themselves in the presence of SEA at low concentrations of SEA (less than 0.01 microgram/ml). Also, SEA-coated T cell clones can induce proliferative responses although such responses are much weaker than those induced when B cells are used as stimulator cells. In contrast, the SEA-reactive TCR-gamma delta+ T cell clones are resistant to autokilling in the presence of SEA and they do not lyse SEA-coated TCR-gamma delta+ targets. However, such targets can be lysed by TCR-alpha beta+ effector cells. These results indicate that TCR-gamma delta+ cells are relatively resistant to lysis and that during local nonspecific immune responses triggered by SE, which induces HLA-class II expression by the responding T cells, SE-mediated T-T cell interactions may play a role in the regulation and/or abrogation of these immune responses.  相似文献   

10.
CD4+ TCR-gamma delta+ T cells comprise a very small subset of TCR-gamma delta+ T cells. CD4+ TCR gamma delta+ T cell clones were established to study the phenotypical and functional characteristics of these cells. Thirty-four CD4+ TCR-gamma delta+ T cell clones were established after sorting CD4+ T cells from a pre-expanded TCR-gamma delta+ T cell population. These clones as well as the CD4- TCR-gamma delta+ T cells from the same donor used V gamma 2 and V delta 2. In a second cloning experiment CD4+ TCR-gamma delta+ T cells were cloned directly from freshly isolated TCR-gamma delta+ T cells using a cloning device coupled to a FACS sorter. Forty-three clones were obtained, which all expressed CD4 and TCR-gamma delta. Eleven of these clones used V delta 1 and three of them coexpressed V gamma 2. The other CD4+ TCR-gamma delta+ T cell clones used both V delta 2 and V gamma 2. CD4+ TCR-gamma delta+ T cell clones expressed CD28 irrespective of the V gamma or V delta usage, and were CD11b negative. Three CD4-CD8+ TCR-gamma delta+ clones expressed CD8 alpha but not CD8 beta and were CD11b positive. CD28 expression among CD4-CD8+ and CD4-CD8- was variable but lower than on CD4+ T cell clones. CD4- TCR-gamma delta+ T cell clones using V gamma 2 and V delta 2 specifically lyse the Burkitt lymphoma cell line Daudi and secrete low levels of IFN-gamma and granulocyte-macrophage-CSF upon stimulation with Daudi. In contrast, most CD4+ T cell clones that use V gamma 2 and V delta 2 had a very low lytic activity against Daudi cells and secrete high levels of IFN-gamma and granulocyte-macrophage-CSF after stimulation with Daudi cells. The NK-sensitive cell line K562 was killed efficiently by the CD4- TCR-gamma delta+ T cell clones, but not by CD4+ TCR-gamma delta+ T cell clones, and could not induce cytokine secretion in CD4+ or CD4- T cell clones. CD4+ TCR-gamma delta+ T cell clones, but not the CD4- clones, could provide bystander cognate T cell help for production of IgG, IgM, and IgA in the presence of IL-2 and IgE in the presence of IL-4. Thus, CD4+ TCR-gamma delta+ T cells are similar to CD4+ TCR-alpha beta+ T cells in their abilities to secrete high levels of cytokines and to provide T cell help in antibody production.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
When bone marrow (BM) lymphoid cells from 12 adult healthy donors were labeled by CD24 antibodies and analyzed by flow cytometry, two positive populations of cells were demonstrated in each sample (by a separated bimodal specific immunofluorescence). One population had intermediate CD24-Ag density (termed CD24+ cells) whereas the other had high CD24-Ag density (termed CD24(2+) cells). CD24+ cells represented 5.8 +/- 2.7% of the total lymphoid BM cells and CD24(2+) cells 5.6 +/- 2.5%. Using dual fluorescence analysis on eight samples, all CD24+ cells expressed the CD21 and CD37 mature B cell Ag and also surface IgM (sIgM), but this population lacked CD10 Ag. These cells also expressed CD19 Ag, and at a higher density than CD24(2+) cells. They were also positive for HLA-DR Ag. Conversely, CD24(2+) cells were shown to be early cells of the B cell lineage. While all the CD24(2+) cells were HLA-DR+ and CD19+, 64 +/- 16% of them expressed CD20 Ag (at a lower density than CD24+ cells), 65 +/- 21% CD10 Ag, and 22 +/- 8% were positive for cytoplasmic mu-chains (c mu). None of these cells expressed the CD21 and CD37 mature B cell Ag or sIgM. Additional experiments on four different healthy donors demonstrated that 30 +/- 9% of the CD24(2+) cells expressed the CD34 Ag and that the CD24+ cells did not express it. Thus, the CD24 Ag permits discrimination between two populations of the B cell lineage present in adult BM: 1) A CD24(2+) cell population including "pre" pre-B cells (HLA-DR+, CD19+, CD10+/-, CD20-, CD21-, CD34+, CD37-, c mu-), "intermediate" pre-B cells (HLA-DR+, CD19+, CD10+, CD20+, CD21-, CD34-, CD37-, c mu-), and "true" pre-B cells (HLA-DR+, CD19+, CD10+, CD20+, CD21-, CD34-, CD37-, c mu+). 2) A CD24+ cell population including B cells of the standard phenotype (HLA-DR+, CD19+, CD10-, CD20+, CD21+, CD34-, CD37+, c mu-, sIgM+).  相似文献   

12.
Peptide vaccines containing minimal epitopes of protective Ags provide the advantages of low cost, safety, and stability while focusing host responses on relevant targets of protective immunity. However, the limited complexity of malaria peptide vaccines raises questions regarding their equivalence to immune responses elicited by the irradiated sporozoite vaccine, the "gold standard" for protective immunity. A panel of CD4+ T cell clones was derived from volunteers immunized with a peptide vaccine containing minimal T and B cell epitopes of the Plasmodium falciparum circumsporozoite protein to compare these with previously defined CD4+ T cell clones from volunteers immunized with irradiated P. falciparum sporozoites. As found following sporozoite immunization, the majority of clones from the peptide-immunized volunteers recognized the T* epitope, a predicted universal T cell epitope, in the context of multiple HLA DR and DQ molecules. Peptide-induced T cell clones were of the Th0 subset, secreting high levels of IFN-gamma as well as variable levels of Th2-type cytokines (IL-4, IL-6). The T* epitope overlaps a polymorphic region of the circumsporozoite protein and strain cross-reactivity of the peptide-induced clones correlated with recognition of core epitopes overlapping the conserved regions of the T* epitope. Importantly, as found following sporozoite immunization, long-lived CD4+ memory cells specific for the T* epitope were detectable 10 mo after peptide immunization. These studies demonstrate that malaria peptides containing minimal epitopes can elicit human CD4+ T cells with fine specificity and potential effector function comparable to those elicited by attenuated P. falciparum sporozoites.  相似文献   

13.
When HLA-DR, -DQ, and -DP were cross-linked by solid-phase mAbs, monocytes produced monokines and only anti-DR markedly activated mitogen-activated protein (MAP) kinase extracellular signal-related kinase, whereas anti-DR, anti-DQ, and anti-DP all activated MAP kinase p38. Activation of extracellular signal-related kinase was not inhibited by neutralizing Ab to TNF-alpha. Anti-DR and DR-restricted T cells stimulated monocytes to produce relatively higher levels of proinflammatory monokines, such as IL-1beta, whereas anti-DQ/DP and DQ-/DP-restricted T cells stimulated higher levels of anti-inflammatory monokine IL-10. IL-10 production was abrogated by the p38 inhibitor SB203580, but rather enhanced by the MAP/extracellular signal-related kinase kinase-I-specific inhibitor PD98059, whereas IL-1beta was only partially abrogated by SB203580 and PD98059. Furthermore, DR-restricted T cells established from PBMC, which are reactive with mite Ags, purified protein derivative, and random 19-mer peptides, exhibited a higher IFN-gamma:IL-4 ratio than did DQ- or DP-restricted T cells. These results indicate that HLA-DR, -DQ, and -DP molecules transmit distinct signals to monocytes via MAP kinases and lead to distinct monokine activation patterns, which may affect T cell responses in vivo. Thus, the need for generation of a multigene family of class II MHC seems apparent.  相似文献   

14.
The expression of lymphokine mRNA by human CD4+CD45R+ and CD4+CD45R- Th cells was assessed after mitogen stimulation. These Ag have previously been shown to relate closely to virgin and primed T cells, respectively. CD4+CD45R+ (virgin) and CD4+CD45R- (primed) cell fractions were isolated by sorting double-labeled cells with a fluorescence-activated cell sorter. CD4+CD45R+ cells produced high levels of IL-2 mRNA when stimulated with either PMA together with calcium ionophore, or with PHA, but they expressed only trace quantities of mRNA for IL-4 or IFN-gamma. In contrast, CD4+CD45R- cells produced high levels of mRNA for IL-2, IL-4, and IFN-gamma. After 14 days of continuous culture, CD4+CD45R+ Th cells lost expression of the CD45R Ag, but gained high level expression of CDw29, such that they were indistinguishable from the cell population which originally expressed this Ag. At the same time, they acquired the ability to synthesize IL-4 mRNA. It seemed likely that the broad lymphokine profile of primed Th cells might mask clonal heterogeneity. Analysis of 122 CD4+ T cell clones showed that all of them synthesized IL-2 mRNA. One clone failed to express IL-4 mRNA, but did produce those for IL-2 and IFN-gamma. A total of 34 of the clones was investigated to determine expression of IFN-gamma mRNA; two of these clones were negative for IFN-gamma mRNA, and both expressed IL-2 and IL-4 message. These data suggest that while fresh virgin and primed peripheral blood T cells show a clear resolution of lymphokine production, a simple subdivision of human CD4+ T cell clones on the basis of their lymphokine production (such as that reported for mouse Th cell clones) is not possible.  相似文献   

15.
Control of hepatitis C virus (HCV) infection could be influenced by the timing and magnitude of CD4+ T cell responses against individual epitopes. We characterized CD4+ T cells targeting seven Pan troglodytes (Patr) class II-restricted epitopes during primary and secondary HCV infections of a chimpanzee. All Patr-DR-restricted HCV epitopes bound multiple human HLA-DR molecules, indicating the potential for overlap in epitopes targeted by both species. Some human MHC class II molecules efficiently stimulated IL-2 production by chimpanzee virus-specific T cell clones. Moreover, one conserved epitope designated NS3(1248) (GYKVLVLNPSV) overlapped a helper epitope that is presented by multiple HLA-DR molecules in humans who spontaneously resolved HCV infection. Resolution of primary infection in the chimpanzee was associated with an initial wave of CD4+ T cells targeting a limited set of dominant epitopes including NS3(1248.) A second wave of low-frequency CD4+ T cells targeting other subdominant epitopes appeared in blood several weeks later after virus replication was mostly contained. During a second infection 7 years later, CD4+ T cells against all epitopes appeared in blood sooner and at higher frequencies but the pattern of dominance was conserved. In summary, primary HCV infection in this individual was characterized by T cell populations targeting two groups of MHC class II-restricted epitopes that differed in frequency and kinetics of appearance in blood. The hierarchial nature of the CD4+ T cell response, if broadly applicable to other HCV-infected chimpanzees and humans, could be a factor governing the outcome of HCV infection.  相似文献   

16.
Because of the wide distribution of the survivin Ag in a variety of tumors, we have investigated the survivin-specific CD4+ T cell response in healthy donors and cancer patients. Screening of the entire sequence of survivin for HLA class II binding led to the identification of seven HLA-DR promiscuous peptides, including four HLA-DP4 peptides. All of the peptides were able to prime in vitro CD4+ T cells of eight different healthy donors. The peptide-specific T cell lines were stimulated by dendritic cells loaded with the recombinant protein or with the lysates of tumor cells. The high frequency of responders (i.e., immunoprevalence) was provided by a wide reactivity of multiple peptides. Six peptides were T cell stimulating in at least half of the donors and were close to CD8+ T cell epitopes. HLA-DR molecules were more frequently involved in T cell stimulation than were HLA-DP4 molecules, and hence immunoprevalence relies mainly on HLA-DR promiscuity in the survivin Ag. In two cancer patients a spontaneous CD4+ T cell response specific for one of these peptides was also observed. Based on these observations, the tumor-shared survivin does not appear to be the target of immune tolerance in healthy donors and cancer patients and is a relevant candidate for cancer vaccine.  相似文献   

17.
18.
In an attempt to determine whether factors other than interleukin (IL) 2 alone were necessary for the generation of autoreactive suppressive T cell clones, lymphocytes from HLA-Dw-matched allogeneic mixed leukocyte cultures (MLC) were propagated and cloned in purified IL 2, partially purified IL 2, conditioned medium (CM) from stimulated peripheral blood mononuclear cells (PBMC), or with purified IL 2 plus IL 3, IL 4, or interferon-gamma (IFN-gamma). Cloning efficiencies were very low in all cases (less than 10%) and of 48 clones tested only 6 were capable of autocrine proliferation after stimulation with autologous PBMC. Four of these clones were derived from populations expanded and cloned in CM, one from cultures with partially purified IL 2, and one with purified IL 2. All were CD4+ alpha/beta-T cell receptor. Their stimulation was blocked by anti-DR and broadly reactive MHC class II-specific monoclonal antibodies (mAb) but not by anti-DQ or anti-DP mAb. One clone was blocked exclusively by broad mAb but not by anti-DR, -DQ, or -DP mAb, and this was the only clone to suppress lymphocyte proliferation in allogeneic MLC, a property previously described for autoreactive clones derived under similar conditions detecting potentially novel lymphocyte activating determinants designated "DY." These results therefore suggest that DY-specific autoreactive suppressive clones are produced under these conditions only at a low frequency and that an unidentified factor other than IL 2, IL 3, IL 4, or IFN-gamma is involved in their generation.  相似文献   

19.
Tumor peptide-based vaccines are more effective when they include tumor-specific Th cell-defined as well as CTL-defined peptides. Presently, two overlapping wild-type sequences (wt) p53 helper peptides, p53(108-122) and p53(110-124), have been identified as HLA-DR1- and/or HLA-DR4-restricted epitopes. These HLA-DR alleles are expressed by approximately 35% of subjects with cancer. To identify Th cell-defined wt p53 peptides suitable for use on the remaining subject population, a dendritic cell (DC)-based coculture system was developed. CD4+ T cells isolated from PBMC obtained from HLA-DR4- normal donors were stimulated ex vivo with autologous DC transfected with wt p53 or mutant p53 cDNA. Reactivity of T cells was tested in ELISPOT IFN-gamma assays against DC pulsed individually with a panel of algorithm-predicted, multiple HLA-DR-binding wt p53 peptides. The wt p53(25-35) peptide was identified as capable of inducing and being recognized by CD4+ T cells in association, at a minimum, with HLA-DR7 and -DR11 molecules, each of which is expressed by approximately 15% of the population. In addition, the presence of anti-p53(25-35) CD4+ Th cells was shown to enhance the in vitro generation/expansion of HLA-A2-restricted, anti-wt p53(264-272) CD8+ T cells, which from one donor were initially "nonresponsive" to the wt p53(264-272) peptide. The wt p53(25-35) peptide has attributes of a naturally presented Th cell-defined peptide, which could be incorporated into antitumor vaccines applicable to a broader population of subjects for whom a wt p53 helper peptide is presently unavailable, as well as used for monitoring anti-p53 Th cell activity in cancer subjects receiving p53-based immunotherapy.  相似文献   

20.
Supernatants from activated human T cell clones were previously shown to contain B cell-activating factor (BCAF), an activity which results in polyclonal resting B cell stimulation. In the present study, we investigate the relationship between this activity and human interleukin-4 which was also shown to act on resting B cells. The supernatant of the T cell clone TT9 contains IL-4 but anti-IL-4 antiserum does not affect the response of B cells as measured by thymidine uptake or cell volume increase. Furthermore, IL-4 induces Fc epsilon-receptor (CD23) expression on 30% of unstimulated human B cells, whereas BCAF-containing supernatants from clone P2, that do not contain detectable amounts of IL-4, promote B cell proliferation without inducing CD23 expression. Our results therefore establish that IL-4 and BCAF are distinct activities and suggest that they trigger different activation pathways in human B cells. In addition, culture of B cells with T cell supernatants for 72 hr induces a three- to fourfold increase in the expression of HLA-DR, -DP, and -DQ antigens in 50% of B cells. The addition of inhibiting concentrations of anti-IFN-gamma, LT, or IL-4 antisera to the cultures does not change these results. Finally, 30% of B cells cultured with T cell supernatants leave the G1 phase of the cell cycle and 20% reach mitosis. Taken together, our findings further support the existence of a B cell-activating factor responsible for the activation of resting human B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号