首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A 6.5 kb region from the genome of the cyanobacterium, Anacystis nidulans 6301 was cloned using the tobacco chloroplast gene for ribosomal protein S12 as a probe. Sequence analysis revealed the presence of genes for ribosomal proteins S12 and S6 and elongation factors EF-G and EF-Tu in this DNA region. The arrangement is rps12 (124 codons)-167 bp spacer-rps7 (156 codons)-77 bp spacer-fus (694 codons)-26 bp spacer-tufA (409 codons), which is similar to that of the Escherichia coli str operon. The deduced amino acid sequences of the A. nidulans S12 and EF-Tu show high homology (72%–82%) with the E. coli and chloroplast counterparts while those of the A. nidulans S7 and EF-G give low homology (51%–59%). Striking structural homology was found between the potential S7 binding region of 16S rRNA and the beginning of S7 mRNA, suggesting that feedback regulation of rps7 expression operates in A. nidulans.  相似文献   

2.
The prokaryotic ribosomal operon, str, contains open reading frames for the two elongation factors, elongation factor G (EF-G) and elongation factor Tu (EF-Tu), and ribosomal proteins S7 and S12. The DNA sequence and predicted amino acid sequence for S7 from Chlamydia trachomatis are presented and compared with homologues from other prokaryotes. Also, the relationship of the S7 gene to the open reading frames for ribosomal protein S12 and EF-G is described. Significant amino acid homology is also noted when the amino-terminal sequence of chlamydial EF-G is compared with the cytoplasmic tetracycline resistance factors, tetM and tetO, from streptococci and Campylobacter jejuni. Related findings and possible resistance mechanisms for the newly recognized tetracycline-resistant clinical isolates of C. trachomatis are discussed.  相似文献   

3.
An Escherichia coli K12 strain, carrying the promotor and proximal portion of the 16-S rRNA gene from rrnB cloned in the high-copy-number plasmid psF2124, has been examined for abnormalities in ribosome biogenesis. Both ribosomal RNA accumulation and ribosome content are depressed in this strain as compared to the control strain carrying the plasmid vector alone. The rate of total protein synthesis, however, appears to be normal. In contrast, the rate of ribosomal protein synthesis, relative to total protein synthesis, is elevated. The rates of synthesis of individual ribosomal proteins were determined and found to vary greatly, ranging from severe under-synthesis (displayed especially by proteins L7/L12) to massive over-synthesis (displayed particularly in the case of protein S7). Analysis of the rates of synthesis of other proteins coded for by the S12 operon revealed that protein S12 was moderately over-produced, but elongation factors EF-G and EF-Tu appear to be synthesized at the same rate as EF-Ts, all three being moderately under-synthesized relative to total soluble proteins.  相似文献   

4.
Mutations in ribosomal proteins L7/L12 perturb EF-G and EF-Tu functions   总被引:8,自引:0,他引:8  
In vitro cycling rates of E. coli ribosomes and of elongation factors EF-Tu and EF-G have been obtained and these are compatible with translation rates in vivo. We show that the rate of translocation is faster than 50 s-1 and therefore that the EF-G function is not a rate limiting step in protein synthesis. The in vivo phenotype of some L7/L12 mutants could be accounted for by perturbed EF-Tu as well as EF-G functions. The S12 mutants that we studied were, in contrast, only perturbed in their EF-Tu function, while their EF-G interaction was not impaired in relation to wild type ribosomes.  相似文献   

5.
The binding of the EF-Tu.GTP.aminoacyl-tRNA ternary complex (EF, elongation factor) to the ribosome is known to be strengthened by a 2661G-to-C mutation in 23S ribosomal RNA, whereas the binding to normal ribosomes is weakened if the factor is in an appropriate mutant form (Aa). In this report we describe the mutual effects by the 2661C alteration in 23S rRNA and EF-Tu(Aa) on bacterial viability and translation efficiency in strains with normal or mutationally altered ribosomes. The rrnB(2661C) allele on a multicopy plasmid was introduced by transformation into Escherichia coli K-12 strains, harbouring either the wild-type or the mutant gene (tufA) for EF-Tu as well as normal or mutant ribosomal protein S12 (rpsL). Together with wild-type EF-Tu, the 2661C mutant ribosomes decreased the translation elongation rate in a rpsL+ strain or a non-restrictive rpsL224 strain. This reduction was not seen in strains which harbored EF-Tu(Aa) instead of EF-Tu(As) (As, wild-type form). Nonsense codon suppression by tyrT(Su3) suppressor tRNA was reduced by 2661C in a rpsL224 strain in the presence of EF-Tu(As) but not in the presence of EF-Tu(Aa). The lethal effect obtained by the combination of 2661C and a restrictive ribosomal protein S12 mutation (rpsL282) disappeared if EF-Tu(As) was replaced by EF-Tu(Aa) in the strain. In such a viable strain, 2661C had no effect on either the translation elongation rate or nonsense codon suppression. Our data suggest that the G base at position 2661 in 23S rRNA is important for binding of EF-Tu during protein synthesis in vivo. The interaction between this base and EF-Tu is strongly influenced by the structure of ribosomal protein S12.  相似文献   

6.
A 6.5 kb region from the genome of the cyanobacterium Spirulina platensis was cloned using as a probe the Escherichia coli gene for ribosomal protein S2. Sequence analysis revealed, in this region, the presence of the gene for ribosomal protein S2 and part of the gene for the elongation factor Ts (EF-Ts). The arrangement rpsB-spacer-tsf resembles that reported for E. coli. The deduced amino acid sequences of the platensis S2 and EF-Ts show significant homology with the E. coli counterparts.  相似文献   

7.
Summary The str operon of Escherichia coli contains genes for ribosomal proteins S12 and S7 and for elongation factors EF-G and EF-Tu (Jaskunas et al. 1975). We have subcloned various segments of DNA from this operon onto multicopy plasmids. We found that cells carrying a recombinant plasmid which lacks the major promoter for the str operon but contains the 5 portion of the EF-Tu gene synthesize a novel protein which we have identified as a truncated EF-Tu molecule. Moreover, cells carrying plasmids with an intact EF-Tu gene synthesize the elongation factor at a 3-to 5-fold higher rate than haploid cells. Thus the EF-Tu gene can be expressed in the absence of the major promoter for the str operon. This expression is not due to read-through from plasmid promoters, but it is dependent on the presence of the distal portion of the EF-G gene on the plasmids. These results indicate that there is a secondary promoter for EF-Tu expression, apparently located within the structural gene for elongation factor EF-G.  相似文献   

8.
9.
T Ohama  F Yamao  A Muto    S Osawa 《Journal of bacteriology》1987,169(10):4770-4777
The DNA sequence of the Micrococcus luteus str operon, which includes genes for ribosomal proteins S12 (str or rpsL) and S7 (rpsG) and elongation factors (EF) G (fus) and Tu (tuf), has been determined and compared with the corresponding sequence of Escherichia coli to estimate the effect of high genomic G + C content (74%) of M. luteus on the codon usage pattern. The gene organization in this operon and the deduced amino acid sequence of each corresponding protein are well conserved between the two species. The mean G + C content of the M. luteus str operon is 67%, which is much higher than that of E. coli (51%). The codon usage pattern of M. luteus is very different from that of E. coli and extremely biased to the use of G and C in silent positions. About 95% (1,309 of 1,382) of codons have G or C at the third position. Codon GUG is used for initiation of S12, EF-G, and EF-Tu, and AUG is used only in S7, whereas GUG initiates only one of the EF-Tu's in E. coli. UGA is the predominant termination codon in M. luteus, in contrast to UAA in E. coli.  相似文献   

10.
11.
12.
B Nag  D S Tewari  R R Traut 《Biochemistry》1987,26(2):461-465
Two monoclonal antibodies against different epitopes in Escherichia coli ribosomal protein L7/L12, one within residues 74-120 and the other within residues 1-73, shown before to inhibit the binding of EF-G, have been tested for their effects on the binding to E. coli ribosomes of EF-Tu-aminoacyl-tRNA-GTP ternary complex and on peptidyl transferase activity. Both antibodies inhibit the binding of ternary complex and EF-Tu-dependent GTPase but have no inhibitory effect on peptidyl transferase activity. The inhibition of binding of both elongation factors is indicative of overlapping binding sites for EF-G and EF-Tu. The inhibition by both antibodies implies the contribution of both domains of L7/L12 to this binding site. This implies the location of one or more of the C-terminal domains of L7/L12 on the body of the 50S subunit. The absence of any inhibition of peptidyl transferase activity shows distinct separation of this site from the factor binding site.  相似文献   

13.
14.
Ribosomal L10-L7/L12 protein complex and L11 bind to a highly conserved RNA region around position 1070 in domain II of 23 S rRNA and constitute a part of the GTPase-associated center in Escherichia coli ribosomes. We replaced these ribosomal proteins in vitro with the rat counterparts P0-P1/P2 complex and RL12, and tested them for ribosomal activities. The core 50 S subunit lacking the proteins on the 1070 RNA domain was prepared under gentle conditions from a mutant deficient in ribosomal protein L11. The rat proteins bound to the core 50 S subunit through their interactions with the 1070 RNA domain. The resultant hybrid ribosome was insensitive to thiostrepton and showed poly(U)-programmed polyphenylalanine synthesis dependent on the actions of both eukaryotic elongation factors 1alpha (eEF-1alpha) and 2 (eEF-2) but not of the prokaryotic equivalent factors EF-Tu and EF-G. The results from replacement of either the L10-L7/L12 complex or L11 with rat protein showed that the P0-P1/P2 complex, and not RL12, was responsible for the specificity of the eukaryotic ribosomes to eukaryotic elongation factors and for the accompanying GTPase activity. The presence of either E. coli L11 or rat RL12 considerably stimulated the polyphenylalanine synthesis by the hybrid ribosome, suggesting that L11/RL12 proteins play an important role in post-GTPase events of translation elongation.  相似文献   

15.
The sarcin-ricin loop (SRL) is one of the longest conserved sequences in the 23S ribosomal RNA. The SRL has been accepted as crucial for the activity of the ribosome because it is targeted by cytotoxins such as α-sarcin and ricin that completely abolish translation. Nevertheless, the precise functional role of the SRL in translation is not known. Recent biochemical and structural studies indicate that the SRL is critical for triggering GTP hydrolysis on elongation factor Tu (EF-Tu) and elongation factor G (EF-G). To determine the functional role of the SRL in the elongation stage of protein synthesis, we analyzed mutations in the SRL that are known to abolish protein synthesis and are lethal to cells. Here, we show that the SRL is not critical for GTP hydrolysis on EF-Tu and EF-G. The SRL also is not essential for peptide bond formation. Our results, instead, suggest that the SRL is crucial for anchoring EF-G on the ribosome during mRNA-tRNA translocation.  相似文献   

16.
Elongation factors (EFs) Tu and G are GTPases that have important functions in protein synthesis. The low intrinsic GTPase activity of both factors is strongly stimulated on the ribosome by unknown mechanisms. Here we report that isolated ribosomal protein L7/12 strongly stimulates GTP hydrolysis by EF-G, but not by EF-Tu, indicating a major contribution of L7/12 to GTPase activation of EF-G on the ribosome. The effect is due to the acceleration of the catalytic step because the rate of GDP-GTP exchange on EF-G, as measured by rapid kinetics, is much faster than the steady-state GTPase rate. The unique, highly conserved arginine residue in the C-terminal domain of L7/12 is not essential for the activation, excluding an "arginine finger"-type mechanism. L7/12 appears to function by stabilizing the GTPase transition state of EF-G.  相似文献   

17.
The gene encoding ribosome-bound ATPase (RbbA), which occurs bound to 70S ribosomes and 30S subunits, has been identified. The amino-acid sequence of RbbA reveals the presence of two ATP-binding domains in the N-terminal half of the protein. RbbA harbors an intrinsic ATPase activity that is stimulated by both 70S ribosomes and 30S subunits. Here we show that purified recombinant RbbA markedly stimulates polyphenylalanine synthesis in the presence of the elongation factors Tu and G (EF-Tu and EF-G) and that the hydrolysis of ATP by RbbA is required to stimulate synthesis. RbbA is reported to have affinity for EF-Tu but not for EF-G. Additionally, RbbA copurifies with 30S ribosomal subunits and can be crosslinked to the ribosomal protein S1. Studies using a spectrum of antibiotics, including some of similar function, revealed that hygromycin, which binds to the 30S subunit, has a significant effect on the ATPase activity and on the affinity of RbbA for ribosomes. A possible role for RbbA in protein-chain elongation is proposed.  相似文献   

18.
Summary A 5.3 kb DNA segment containing the str operon (ca. 4.5 kb) of the cyanobacterium Spirulina platensis has been sequenced. The str operon includes the structural genes rpsL (ribosomal protein S12), rpsG (ribosomal protein S7), fus (translation elngation factor EF-G) and tuf (translation elongation factor EF-Tu). From the nucleotide sequence of this operon, the primary structures of the four gene products have been derived and compared with the available corresponding structures from eubacteria, archaebacteria and chloroplasts. Extensive homologies were found in almost all cases and in the order S12>EF-Tu>EF-G>S7; the largest homologies were generally found between the cyanobacterial proteins and the corresponding chloroplast gene products. Overall codon usage in S. platensis was found to be rather unbiased.  相似文献   

19.
Abstract A Spirulina platensis gene library has been constructed using cosmid vector pMMB34. The cosmid bank was controlled for its random gene distribution by colony hybridization. Genes were identified using either homologous or heterologous probes of genes involved in photosynthesis (large and small subunit of d -ribulose 1,5-bisphosphate carboxylase, 32 kDa thylakoid protein, α, β subunits of C-phycocyanin) and protein synthesis (elongation factors EF-Tu, EF-G).  相似文献   

20.
The mammalian mitochondrial (mt) ribosome (mitoribosome) is a bacterial-type ribosome but has a highly protein-rich composition. Almost half of the rRNA contained in the bacterial ribosome is replaced with proteins in the mitoribosome. Escherichia coli elongation factor G (EF-G Ec) has no translocase activity on the mitoribosome but EF-G mt is functional on the E.coli ribosome. To investigate the functional equivalency of the mt and E.coli ribosomes, we prepared hybrid mt and E.coli ribosomes. The hybrid mitoribosome containing E.coli L7/12 (L7/12 Ec) instead of L7/12 mt clearly activated the GTPase of EF-G Ec and efficiently promoted its translocase activity in an in vitro translation system. Thus, the mitoribosome is functionally equivalent to the E.coli ribosome despite their distinct compositions. The mt EF-Tu-dependent translation activity of the E.coli ribosome was also clearly enhanced by replacing the C-terminal domain (CTD) of L7/12 Ec with the mt counterpart (the hybrid E.coli ribosome). This strongly indicates that the CTD of L7/12 is responsible for EF-Tu function. These results demonstrate that functional compatibility between elongation factors and the L7/12 protein in the ribosome governs its translational specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号