首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a novel method for micropatterning of active proteins on anti-fouling surfaces via spatially well-defined and dense binary poly(ethylene glycol)s (PEGs) brushes with controllable protein-docking sites. Binary brushes of poly(poly(ethylene glycol) methacrylate-co-poly(ethylene glycol)methyl ether methacrylate), or P(PEGMA-co-PEGMEMA), and poly(poly(ethylene glycol)methyl ether methacrylate), or P(PEGMEMA), were prepared via consecutive surface-initiated atom transfer radical polymerizations (SI-ATRPs) from a resist-micropatterned Si(100) wafer surface. The terminal hydroxyl groups on the side chains of PEGMA units in the P(PEGMA-co-PEGMEMA) microdomains were activated directly by 1,1'-carbonyldiimidazole (CDI) for the covalent coupling of human immunoglobulin (IgG) (as a model active protein). The resulting IgG-coupled PEG microdomains interact only and specifically with target anti-IgG, while the other PEG microregions effectively prevent specific and non-specific protein fouling. When extended to other active biomolecules, microarrays for specific and non-specific analyte interactions with a high signal-to-noise ratio could be readily tailored.  相似文献   

2.
This paper presents a comparative study on the antifouling properties of poly(ethylene glycol) (PEG)-based polymer coatings prepared by surface-initiated polymerization (SIP). Three types of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMEMA) polymer thin films of approximate 100 nm thickness were grafted from a catechol initiator that was immobilized on a Ti substrate. OEGMEMA monomers containing side chains of 4, 9, and 23 EG units were used in surface-initiated atom transfer radical polymerization (SI-ATRP) to form POEGMEMA-4, -9, and -23 polymer brushes. The chemical composition, thickness, and wettability of the polymer brushes were characterized by X-ray photoelectron spectroscopy (XPS), ellipsometry, and static water contact angle measurements, respectively. The dependence of antifouling performance on EG side chain length was systemically tested and compared by 3T3 fibroblast cell adhesion assays. Results from 4-h cell culture experiments revealed the complete absence of cell attachment on all the grafted Ti substrates. Excellent cell fouling resistance continued with little dependence on EG side chain length up to three weeks, after which long-term antifouling performance depended on the EG chain length as the grafted samples reached confluent cell coverage in 7, 10, and 11 weeks for POEGMEMA-4, -9, and -23, respectively.  相似文献   

3.
Liu Q  Singh A  Lalani R  Liu L 《Biomacromolecules》2012,13(4):1086-1092
In this work, polyacrylamide is investigated as an ultralow fouling surface coating to highly resist protein adsorption, cell adhesion, and bacterial attachment. Polyacrylamide was grafted on gold surfaces via surface-initiated atom transfer radical polymerization (ATRP). Protein adsorption from a wide range of biological media, including single protein solutions of fibrinogen, bovine serum albumin, and lysozyme, dilute and undiluted human blood serum, and dilute and undiluted human blood plasma, was studied by surface plasmon resonance (SPR). Dependence of the protein resistance on polyacrylamide film thickness was examined. With the optimal film thickness, the adsorption amount of all three single proteins on polyacrylamide-grafted surfaces was <3 pg/mm(2), close to the detection limit of SPR. The average nonspecific adsorptions from 10% plasma, 10% serum, 100% plasma, and 100% serum onto the polyacrylamide-grafted surfaces were 5, 6.5, 17, and 28 pg/mm(2), respectively, comparable (if not better) than the adsorption levels on poly(ethylene glycol) (PEG) and zwitterionic poly(sulfobetaine methacrylate) surfaces, the best antifouling materials known to date. The polyacrylamide-grafted surfaces were also shown strongly resistant to adhesion from bovine aortic endothelial cells and two bacterial species, Gram-positive Staphylococcus epidermidis ( S. epidermidis ) and Gram-negative Pseudomonas aeruginosa ( P. aeruginosa ). Strong hydrogen bond with water is considered the key attribute for the ultralow fouling properties of polyacrylamide. This is the first work to graft gold surfaces with polyacrylamide brushes via ATRP to achieve ultralow fouling surfaces, demonstrating that polyacrylamide is a promising alternative to traditional PEG-based antifouling materials.  相似文献   

4.
A new route for coating various substrates with antifouling polymer layers was developed. It consisted in deposition of an amino-rich adhesion layer by means of RF magnetron sputtering of Nylon 6,6 followed by the well-controlled, surface-initiated atom transfer radical polymerization of antifouling polymer brushes initiated by bromoisobutyrate covalently attached to amino groups present in the adhesion layer. Polymer brushes of hydroxy- and methoxy-capped oligoethyleneglycol methacrylate and carboxybetaine acrylamide were grafted from bromoisobutyrate initiator attached to a 15 nm thick amino-rich adhesion layer deposited on gold, silicon, polypropylene, and titanium-aluminum-vanadium alloy surfaces. Well-controlled polymerization kinetics made it possible to control the thickness of the brushes at a nanometer scale. Zero fouling from single protein solutions and a reduction of more than 90% in the fouling from blood plasma observed on the uncoated surfaces was achieved. The feasibility of functionalization with bioactive compounds was tested by covalent attachment of streptavidin onto poly(oligoethylene glycol methacrylate) brush and subsequent immobilization of model antibodies and oligonucleotides. The procedure is nondestructive and does not require any chemical preactivation or the presence of reactive groups on the substrate surface. Contrary to current antifouling modifications, the developed coating can be built on various classes of substrates and preserves its antifouling properties even in undiluted blood plasma. The new technique might be used for fabrication of biotechnological and biomedical devices with tailor-made functions that will not be impaired by fouling from ambient biological media.  相似文献   

5.
This work reports on a complementary use of surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D) technologies to study interactions between a peptide antigen and polyclonal antibodies, in an experimental format suitable for diagnostic assays of autoimmune diseases. In the chosen model, a synthetic peptide from the juxtamembrane region of IA-2 (a type 1 diabetes associated antigen) was immobilized by an optimized chemical protocol applicable to both BIACORE and QCM-D sensors. A thorough study of the peptide immobilization was performed to optimize the signal-to-noise ratio using mixed self-assembled monolayers (SAM) on a gold surface. Introduction of polyethylene glycol (EG6) chains into mixed SAM layers and addition of an anionic surfactant to the human serum reduced non-specific binding without modifying the viscoelasticity properties of the layer. Under our conditions, the antibody SPR detection limit was determined to be 0.2 nM in diluted human serum. This value is in agreement with the reported rank distribution of IA-2 antibodies in diabetic patient sera. Label-free and real-time technologies such as SPR and/or QCM-D could be precious tools in future diagnostic assays.  相似文献   

6.
WJ Yang  KG Neoh  ET Kang  SS Lee  SL Teo  D Rittschof 《Biofouling》2012,28(9):895-912
Dense and uniform polymer brush coatings were developed to combat marine biofouling. Nonionic hydrophilic, nonionic hydrophobic, cationic, anionic and zwitterionic polymer brush coatings were synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-hydroxyethyl methacrylate, 2,3,4,5,6-pentafluorostyrene, 2-(methacryloyloxy)ethyl trimethylammonium chloride, 4-styrenesulfonic acid sodium and N,N'-dimethyl-(methylmethacryloyl ethyl) ammonium propanesulfonate, respectively. The functionalized surfaces had different efficacies in preventing adsorption of bovine serum albumin (BSA), adhesion of the Gram-negative bacterium Pseudomonas sp. NCIMB 2021 and the Gram-positive Staphylococcus aureus, and settlement of cyprids of the barnacle Amphibalanus amphitrite (=Balanus amphitrite). The nonionic hydrophilic, anionic and zwitterionic polymer brushes resisted BSA adsorption during a 2?h exposure period. The nonionic hydrophilic, cationic and zwitterionic brushes exhibited resistance to bacterial fouling (24?h exposure) and cyprid settlement (24 and 48?h incubation). The hydrophobic brushes moderately reduced protein adsorption, and bacteria and cyprid settlement. The anionic brushes were least effective in preventing attachment of bacteria and barnacle cyprids. Thus, the best approach to combat biofouling involves a combination of nonionic hydrophilic and zwitterionic polymer brush coatings on material surfaces.  相似文献   

7.
This paper investigates the stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) (PPEGMA) brushes prepared by surface-initiated atom transfer radical polymerization from SiO(x) substrates modified with a trimethoxysilane-based ATRP initiator. At high chain densities, PPEGMA brushes were found to detach rapidly from glass or silicon substrates. Detachment of the PPEGMA brushes could be monitored with contact angle measurements, which indicated a decrease in the receding water contact angle upon detachment. Detachment of the PPEGMA brushes also resulted in an increase in nonspecific protein adsorption. The stability, and as a consequence the long-term nonfouling properties, of the PPEGMA brushes could be improved by tailoring the brush density and, to a lesser extent, the molecular weight of the polymer chains. By appropriate decrease of the grafting density, the stability of the brushes in cell culture medium could be improved from less than 1 to more than 7 days, without compromising the nonfouling properties.  相似文献   

8.
A novel water-compatible macroporous molecularly imprinted film (MIF) has been developed for rapid, sensitive, and label-free detection of small molecule testosterone in urine. The MIF was synthesized by photo copolymerization of monomers (methacrylic acid [MAA] and 2-hydroxyethyl methacrylate [HEMA]), cross-linker (ethylene glycol dimethacrylate, EGDMA), and polystyrene nanoparticles (PS NPs) in combination with template testosterone molecules. The PS NPs and template molecules were subsequently removed to form an MIF with macroporous structures and the specific recognition sites of testosterone. Incubation of artificial urine and human urine on the MIF and the non-imprinted film (NIF), respectively, indicated undetectable nonspecific adsorption. Accordingly, the MIF was applied on a surface plasmon resonance (SPR) sensor for the detection of testosterone in phosphate-buffered saline (PBS) and artificial urine with a limit of detection (LOD) down to 10−15 g/ml. To the best of our knowledge, the LOD is considered as one of the lowest among the SPR sensors for the detection of small molecules. The control experiments performed with analogue molecules such as progesterone and estradiol demonstrated the good selectivity of this MIF for sensing testosterone. Furthermore, this MIF-based SPR sensor shows high stability and reproducibility over 8 months of storage at room temperature, which is more robust than protein-based biosensors.  相似文献   

9.
10.
From glycosylated cell surfaces to sterically stabilized liposomes, polymers attached to membranes attract biological and therapeutic interest. Can the scaling laws of polymer "brushes" describe the physical properties of these coats? We delineate conditions where the Alexander-de Gennes theory of polymer brushes successfully fits the intermembrane distance versus applied osmotic stress data of Kenworthy et al. for poly(ethylene glycol)-grafted multilamellar liposomes. We establish that the polymer density and size in the brush must be high enough that, in a bulk solution of equivalent monomer density, the polymer osmotic pressure is independent of polymer molecular weight (the des Cloizeaux semidilute regime of bulk polymer solutions). The condition that attached polymers behave as semidilute bulk solutions offers a rigorous criterion for brush scaling-law behavior. There is a deep connection between the behaviors of semidilute polymer solutions in bulk and polymers grafted to a surface at a density such that neighbors pack to form a uniform brush. In this regime, two-parameter unconstrained fits of the Alexander-de Gennes brush scaling laws to the Kenworthy et al. data yield effective monomer lengths of 3.3-3.6 A, which agree with structural predictions. The fitted distances between grafting sites are larger than expected from the nominal mole fraction of poly(ethylene glycol)-lipids; the chains apparently saturate the surface. Osmotic stress measurements can be used to estimate the actual densities of membrane-grafted polymers.  相似文献   

11.
Ladd J  Zhang Z  Chen S  Hower JC  Jiang S 《Biomacromolecules》2008,9(5):1357-1361
This study examined six different polymer and self-assembled monolayer (SAM) surface modifications for their interactions with human serum and plasma. It was demonstrated that zwitterionic polymer surfaces are viable alternatives to more traditional surfaces based on poly(ethylene glycol) (PEG) as nonfouling surfaces. All polymer surfaces were formed using atom transfer radical polymerization (ATRP) and they showed an increased resistance to nonspecific protein adsorption compared to SAMs. This improvement is due to an increase in the surface packing density of nonfouling groups on the surface, as well as a steric repulsion from the flexible polymer brush surfaces. The zwitterionic polymer surface based on carboxybetaine methacrylate (CBMA) also incorporates functional groups for protein immobilization in the nonfouling background, making it a strong candidate for many applications such as in diagnostics and drug delivery.  相似文献   

12.
In this novel platform, a micropatterned polymer brush was obtained by grafting poly(poly(ethylene glycol) methyl ether methacrylate) (poly(PEGMA)) from a thin macroinitiator film using atom transfer radical polymerization (ATRP). A pattern of holes was formed in the macroinitiator film by taking advantage of its spontaneous dewetting above the glass transition temperature from a bottom polystyrene film, driven by unfavorable intermolecular forces. Patterning by dewetting can be achieved at length-scales from a few hundred nanometers to several tens of micrometers, by simply thermally annealing the bilayer above the glass transition temperature of the polymer. This approach is substrate-independent, as polymer films can be cast onto surfaces of different size, shape, or material. As a demonstration of its potential, proteins, and individual cells were attached on targeted bioadhesive polystyrene areas of the micropatterns within poly(PEGMA) protein-repellent brushes. We anticipate this approach will be suitable for the patterning of brushes, especially for biomedical applications such as in the study of single cells and of cell cocultures.  相似文献   

13.
Sensitive and quantitative nucleic acid testing from complex biological samples is now an important component of clinical diagnostics. Whereas nucleic acid amplification represents the gold standard, its utility in resource-limited and point-of-care settings can be problematic due to assay interferants, assay time, engineering constraints, and costs associated with both wetware and hardware. In contrast, amplification-free nucleic acid testing can circumvent these limitations by enabling direct target hybridization within complex sample matrices. In this work, we grew random copolymer brushes from the surface of silica-coated magnetic nanoparticles using azide-modified and hydroxyl oligo ethylene glycol methacrylate (OEGMA) monomers. The azide-functionalized polymer brush was first conjugated, via copper-catalyzed azide/alkyne cycloaddition (CuAAC), with herpes simplex virus (HSV)-specific oligonucleotides and then with alkyne-substituted polyethylene glycol to eliminate all residual azide groups. Our methodology enabled control over brush thickness and probe density and enabled multiple consecutive coupling reactions on the particle grafted brush. Brush- and probe-modified particles were then combined in a 20 min hybridization with fluorescent polystyrene nanoparticles modified with HSV-specific reporter probes. Following magnetic capture and washing, the particles were analyzed with an aggregate fluorescence measurement, which yielded a limit of detection of 6 pM in buffer and 60 pM in 50% fetal bovine serum. Adoption of brush- and probe-modified particles into a particle counting assay will result in the development of diagnostic assays with significant improvements in sensitivity.  相似文献   

14.
Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic force microscopy experiments, that using an immiscible polymer brush system terminating the substrate and the slider surfaces, respectively, can eliminate such interdigitation. As a consequence, wear in the contacts is reduced. Moreover, the friction force is two orders of magnitude lower compared to traditional miscible polymer brush systems. This newly proposed system therefore holds great potential for application in industry. Here, the methodology to construct an immiscible polymer brush system of two different brushes each solvated by their own preferred solvent is presented. The procedure how to graft poly(N-isopropylacrylamide) (PNIPAM) from a flat surface and poly(methyl methacrylate) (PMMA) from an atomic force microscopy (AFM) colloidal probe is described. PNIPAM is solvated in water and PMMA in acetophenone. Via friction force AFM measurements, it is shown that the friction for this system is indeed reduced by two orders of magnitude compared to the miscible system of PMMA on PMMA solvated in acetophenone.  相似文献   

15.
This paper introduces a novel and versatile method of grafting protein and cell-resistant poly(poly ethylene glycol methyl ether methacrylate) (PPEGMEMA) brushes on conducting Au surface. The process started with the electrochemical deposition and full characterization of an electro-active chain transfer agent (CTA) on the Au surface. The electrochemical behavior of the CTA was investigated by cyclic voltammetry (CV) while the deposition and stability of the CTA on the surface were confirmed by ellipsometry, contact angle, and X-ray photoelectron spectroscopy (XPS). The capability of the electrodeposited CTA to mediate surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization on both the polymethyl methacrylate (PMMA; model polymer) and PPEGMEMA brushes was demonstrated by the increase in thicknesses of the films after polymerization. Contact angles also decreased with the incorporation of the more hydrophilic brushes. Significant changes in the morphologies of the films before and after polymerization were also observed with atomic force microscopy (AFM) analyses. Furthermore, XPS results showed an increase in the O 1s peak intensity relative to C 1s after polymerizations, which confirmed the grafting of polyethyleneglycol (PEG) bearing brushes. The ability of the PPEGMEMA-modified Au surface to resist nonspecific adhesion of proteins and cells was monitored and confirmed by XPS, ellipsometry, contact angle, AFM, and fluorescence imaging. The new method presented has potential application as robust protein and cell-resistant coatings for electrically conducting electrodes and biomedical devices.  相似文献   

16.
The novel magnetic nanobeads with epoxy groups on the surface were prepared from glycidyl methacrylate (GMA), ethylene glycol dimethacrylate (EGDMA) and hydroxyethyl methacrylate (HEMA) via emulsifier-free emulsion polymerisation, and they were characterized by scanning electron microscopy and vibrating sample magnetometer. The magnetic poly(GMA-EDGMA-HEMA) nanobeads were used as support for covalent immobilization of Kluyveromyces fragilis β-galactosidase, the maximum amount enzyme attached onto the support was 145.6?mg/g with activity recovery of 72.6%. The loading capacity of this novel support for K. fragilis β-galactosidase was improved 2.6-folds compared with Eupergit(?) C (commercial epoxy support). The immobilized K. fragilis β-galactosidase exhibited high catalytic activity for the reaction of galacto-oligosaccharide (GOS) synthesis, and a total of 2,240?g GOS were produced per gram of immobilized enzyme during consecutive batch reaction of 10 times. The immobilized biocatalyst retained 81.5% of its original activity after 10 reaction cycles.  相似文献   

17.
In this study, we attempted to develop a surface plasmon resonance (SPR)-based immunoassay sensor to detect alpha-fetoprotein (AFP) in human plasma at the nanogram level, as is required for clinical diagnosis of hepatocellular tumors. A self-assembled monolayer (SAM) surface of tri(ethylene glycol) (TEG) and carboxyl group-terminated hexa(ethylene glycol) (HEG) was employed to suppress the nonspecific adsorption of plasma components onto the sensor surface. AFP was detected by a sandwich-type immunoassay using two kinds of antibodies, primary and secondary, in this system. The SPR signal shift was further enhanced by applying an antibody (polyclonal) against the second antibody. With this method, the SPR signals were highly intensified, and so nanogram levels (ng/ml) of AFP could be easily detected with a high signal/noise ratio, as is necessary for clinical diagnosis. It is expected that our SPR-based immunoassay method can also be applicable to the detection of several other tumor markers that are present in low concentrations in human blood.  相似文献   

18.
A magnetoelastic bioaffinity sensor coupled with biocatalytic precipitation is described for avidin detection. The non-specific adsorption characteristics of streptavidin on different functionalized sensor surfaces are examined. It is found that a biotinylated poly(ethylene glycol) (PEG) interface can effectively block non-specific adsorption of proteins. Coupled with the PEG immobilized sensor surface, alkaline phosphatase (AP) labeled streptavidin is used to track specific binding on the sensor. This mass-change-based signal is amplified by the accumulation on the sensor of insoluble products of 5-bromo-4-chloro-3-indolyl phosphate catalyzed by AP. The resulting mass loading on the sensor surface in turn shifts the resonance frequency of the magnetoelastic sensors, with an avidin detection limit of approximately 200 ng/ml.  相似文献   

19.
The sensitivity and specificity of a polyethylene glycol terminated alkanethiol mixed self-assembled monolayers (SAM) on surface plasmon resonance (SPR) immunosensor to detect Escherichia coli O157:H7 is demonstrated. Purified monoclonal (Mabs) or polyclonal antibodies (PAbs) against E. coli O157:H7 were immobilized on an activated sensor chip and direct and sandwich assays were carried to detect E. coli O157:H7. Effect of Protein G based detection and effect of concentrations of primary and secondary antibodies in sandwich assay were investigated. The sensor surface was observed under an optical microscope at various stages of the detection process. The sensor could detect as low as 10(3)CFU/ml of E. coli O157:H7 in a sandwich assay, with high specificity against Salmonella Enteritidis. The detection limit using direct assay and Protein G were 10(6)CFU/ml and 10(4)CFU/ml, respectively. Results indicate that an alkanethiol SAM based SPR biosensor has the potential for rapid and specific detection of E. coli O157:H7, using a sandwich assay.  相似文献   

20.
Peng J  Su Y  Shi Q  Chen W  Jiang Z 《Bioresource technology》2011,102(3):2289-2295
A mild and facile grafting of poly(ether glycol) methyl ether methacrylate (PEGMA) monomers onto polyethersulfone (PES) was carried out. Then, the PES-g-PEGMA membranes with integrally anisotropic morphology were fabricated through the coupling of non-solvent induced phase inversion and surface segregation. Compared with PES control membrane, the surface hydrophilicity of PES-g-PEGMA membranes was remarkably enhanced due to the drastic enrichment of poly(ethylene glycol) (PEG) segments on the membrane surface; protein adsorption was significantly inhibited due to the hydrogen bonding interactions between hydrophilic groups and water molecules. Ultrafiltration experiments were used to assess the permeability and protein fouling resistance of the PES-g-PEGMA membranes. It was found that the PES-g-PEGMA membranes with higher surface coverage of PEG segments displayed stronger antibiofouling property. Moreover, the stable antibiofouling property for PES-g-PEGMA membranes was acquired due to covalent bonding interactions between hydrophilic PEGMA side chains and PES main chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号