首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanocytes present in skin and other organs synthesize and store melanin pigment within membrane-delimited organelles called melanosomes. Exposure of human skin to ultraviolet radiation (UV) stimulates melanin production in melanosomes, followed by transfer of melanosomes from melanocytes to neighboring keratinocytes. Melanosomal function is critical for protecting skin against UV radiation, but the mechanisms underlying melanosomal movement and transfer are not well understood. Here we report a novel fluorescent melanosomal marker, which we used to measure real-time melanosomal dynamics in live human epidermal melanocytes (HEMs) and transfer in melanocyte-keratinocyte co-cultures. A fluorescent fusion protein of Ocular Albinism 1 (OA1) localized to melanosomes in both B16-F1 cells and HEMs, and its expression did not significantly alter melanosomal distribution. Live-cell tracking of OA1-GFP-tagged melanosomes revealed a bimodal kinetic profile, with melanosomes exhibiting combinations of slow and fast movement. We also found that exposure to UV radiation increased the fraction of melanosomes exhibiting fast versus slow movement. In addition, using OA1-GFP in live co-cultures, we monitored melanosomal transfer using time-lapse microscopy. These results highlight OA1-GFP as a specific and effective melanosomal marker for live-cell studies, reveal new aspects of melanosomal dynamics and transfer, and are relevant to understanding the skin's physiological response to UV radiation.  相似文献   

2.
3.
The murine homologue of the human glycoprotein (transmembrane) NMB (GPNMB) gene was identified by subtractive cloning from in vitro cultured murine primary osteoblast cells and subsequent RACE-PCR. GPNMB is a highly glycosylated type I transmembrane protein that shares significant sequence homology to several melanosomal proteins. Increasing expression of Gpnmb mRNA was observed during differentiation of murine primary osteoblast cell cultures. To address the potential functions of GPNMB we analysed its mRNA-expression during murine embryonic development. In early development Gpnmb mRNA is detected at high levels in the outer layer of the retina. Later in development expression gets restricted to the retinal pigment epithelium and iris. At the cytoplasmic domain of GPNMB, a conserved di-leucin-based endosomal/melanosomal-sorting signal (ExxPLL) was located, present as well in several known melanosomal proteins. To analyse the subcellular localization we used EGFP-tagged GPNMB transfected in COS7 and HEK293 cells. In both non-pigmented cell lines, the EGFP-GPNMB fusion protein was localized to vesicular, endosomal like structures. Sequence homology to known melanosomal proteins, mRNA expression and subcellular localization are suggestive for GPNMB as an intracellular, endosomal/melanosomal compartment specific protein important for melanin biosynthesis and the development of the retinal pigment epithelium and iris. As the gene coding for human GPNMB was localized to chromosome 7p15, a locus involved in the human inherited disease cystoid macular edema, also known as dominant cystoid macular dystrophy (OMIM 153880) we highly suggest that GPNMB is a candidate gene for this human inherited disease.  相似文献   

4.
The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH.  相似文献   

5.
Melanin, the major determinant of skin colour, is a tyrosine‐based heteropolymer of indeterminate molecular weight. In vivo, melanin synthesis occurs within highly specialized organelles called melanosomes. Coated vesicles encapsulating the enzyme tyrosinase and tyrosinase related proteins, fuse with premelanosomes that contain structural proteins to form mature melanosomes. Coated vesicles and premelanosomes have been shown to have only melanin monomers but not the polymer. Our earlier results have clearly shown that the presence of proteins other than tyrosinase are critical for the post‐tyrosinase steps of melanin polymerization at acidic pH. Proteins in melanosomes are difficult to purify because of their firm association with melanin. Thus, with progressive melanization, melanoproteins become progressively insoluble. In this paper, we discuss the isolation and purification of melanosomal proteins and their role in melanin polymerization. We have hypothesized that the initiation of polymerization and the binding of melanin to proteins are two discrete events and we have developed assays to quantify these events. Purified melanosomal proteins differ in their ability to polymerize melanin monomers. Further, we have also shown that two polypeptides (28 and 45 kDa) purified from melanosomes inhibit melanin polymerization but can bind preformed melanin. In conclusion, melanosomal proteins regulate melanin polymerization and differ in their ability to bind melanin. Polymerization and binding abilities of melanosomal proteins are specific to each protein and melanin–protein interaction is not nonspecific.  相似文献   

6.
In order to obtain information on the disputed nature of melanosomes a comparison was made between the localization of melanosomal markers with those of other well-defined subcellular organelles such as lysosomes and peroxisomes. The distribution of marker enzymes was studied using two different density gradient systems. i.e., Percoll and Nycodenz. Furthermore, the subcellular localization of various types of antigens was analyzed using indirect immunofluorescence and immuno-electron microscopy. All methods revealed the existence of partial co-localization of melanosomal and lysosomal proteins and different localization of peroxisomal markers. The results suggest that melanosomes may share a common origin with lysosomal structures.  相似文献   

7.
Assembly, target‐signaling and transport of tyrosinase gene family proteins at the initial stage of melanosome biogenesis are reviewed based on our own discoveries. Melanosome biogenesis involves four stages of maturation with distinct morphological and biochemical characteristics that reflect distinct processes of the biosynthesis of structural and enzymatic proteins, subsequent structural organization and melanin deposition occurring in these particular cellular compartments. The melanosomes share many common biological properties with the lysosomes. The stage I melanosomes appear to be linked to the late endosomes. Most of melanosomal proteins are glycoproteins that should be folded or assembled correctly in the ER through interaction with calnexin, a chaperone associated with melanogenesis. These melanosomal glycoproteins are then accumulated in the trans Golgi network (TGN) and transported to the melanosomal compartment. During the formation of transport vesicles, coat proteins assemble on the cytoplasmic face of TGN to select their cargos by interacting directly or indirectly with melanosomal glycoproteins to be transported. Adapter protein‐3 (AP‐3) is important for intracellular transport of tyrosinase gene family proteins from TGN to melanosomes. Tyrosinase gene family proteins possess a di‐leucine motif in their cytoplasmic tail, to which AP‐3 appears to bind. Thus, the initial cascade of melanosome biogenesis is regulated by several factors including: 1) glycosylation of tyrosinase gene family proteins and their correct folding and assembly within ER and Golgi, and 2) supply of specific signals necessary for intracellular transport of these glycoproteins by vesicles from Golgi to melanosomes.  相似文献   

8.
The skin pigment melanin is produced in melanocytes in highly specialized organelles known as melanosomes. Melanosomes are related to the organelles of the endosomal/lysosomal pathway and can have a low internal pH. In the present study we have shown that melanin synthesis in human pigment cell lysates is maximal at pH 6.8. We therefore investigated the role of intramelanosomal pH as a possible control mechanism for melanogenesis. To do this we examined the effect of neutralizing melanosomal pH on tyrosinase activity and melanogenesis in 11 human melanocyte cultures and in 3 melanoma lines. All melanocyte cultures (9 of 9) from Caucasian skin as well as two melanoma cell lines with comparable melanogenic activity showed rapid (within 24 h) increases in melanogenesis in response to neutralization of melanosomal pH. Chemical analysis of total melanin indicated a preferential increase in eumelanin production. Electron microscopy revealed an accumulation of melanin and increased maturation of melanosomes in response to pH neutralization. In summary, our findings show that: (i) near neutral melanosomal pH is optimal for human tyrosinase activity and melanogenesis; (ii) melanin production in Caucasian melanocytes is suppressed by low melanosomal pH; (iii) the ratio of eumelanin/phaeomelanin production and maturation rate of melanosomes can be regulated by melanosomal pH. We conclude that melanosomal pH is an essential factor which regulates multiple stages of melanin production. Furthermore, since we have recently identified that pink locus product (P protein) mediates neutralization of melanosomal pH, we propose that P protein is a key control point for skin pigmentation. We would further propose that the wide variations in both constitutive and facultative skin pigmentation seen in the human population could be associated with the high degree of P-locus polymorphism.  相似文献   

9.
Rab3A is a small guanosine triphosphate (GTP)-binding protein that has been recently implicated in intracellular vesicle transport and the secretion of neurotransmitters in neuronal cells. We demonstrate here that Rab3A is associated with melanosomes in pigment cells. Rab3A as well as Rabphilin3A, a putative target protein of Rab3A, were detected in the melanosome fraction, purified from B16 murine melanoma cells by sucrose density gradient ultracentrifugation. In contrast, Rab GDP dissociation inhibitor (GDI), a GDP/GTP exchange protein for Rab3A, was found in the cytosol fraction. Further studies using confocal laser scanning microscopy and immunoelectron microscopy revealed that immunoreactive Rab3A is localized in conjunction with the melanosomal membrane. These results suggest the possibility of involvement of Rab3A-Rabphilin3A complex, regulated by Rab GDI, in the intracellular transport of melanosomes in pigment cells.  相似文献   

10.
Melanin, the major determinant of skin colour, is a tyrosine-based heteropolymer of indeterminate molecular weight. In vivo, melanin synthesis occurs within highly specialized organelles called melanosomes. Coated vesicles encapsulating the enzyme tyrosinase and tyrosinase related proteins, fuse with premelanosomes that contain structural proteins to form mature melanosomes. Coated vesicles and premelanosomes have been shown to have only melanin monomers but not the polymer. Our earlier results have clearly shown that the presence of proteins other than tyrosinase are critical for the post-tyrosinase steps of melanin polymerization at acidic pH. Proteins in melanosomes are difficult to purify because of their firm association with melanin. Thus, with progressive melanization, melanoproteins become progressively insoluble. In this paper, we discuss the isolation and purification of melanosomal proteins and their role in melanin polymerization. We have hypothesized that the initiation of polymerization and the binding of melanin to proteins are two discrete events and we have developed assays to quantify these events. Purified melanosomal proteins differ in their ability to polymerize melanin monomers. Further, we have also shown that two polypeptides (28 and 45 kDa) purified from melanosomes inhibit melanin polymerization but can bind preformed melanin. In conclusion, melanosomal proteins regulate melanin polymerization and differ in their ability to bind melanin. Polymerization and binding abilities of melanosomal proteins are specific to each protein and melanin-protein interaction is not nonspecific.  相似文献   

11.
Melanin is a heterogeneous biopolymer produced only by specific cells termed melanocytes, which synthesize and deposit the pigment in specialized membrane-bound organelles known as melanosomes. Although melanosomes have been suspected of being closely related to lysosomes and platelets, the total number of melanosomal proteins is still unknown. Thus far, six melanosome-specific proteins have been identified, and the challenge is to characterize the complete proteome of the melanosome to further understand its mechanism of biogenesis. In this report, we used mass spectrometry and subcellular fractionation to identify protein components of early melanosomes. Using this approach, we have identified all 6 of the known melanosome-specific proteins, 56 proteins that are shared with other organelles, and confirmed the presence of 6 novel melanosomal proteins using western blotting and by immunohistochemistry.  相似文献   

12.
In melanocytes, enzymes involved in the generation of melanin monomers are present and active in coated vesicles which are known to be acidic. Melanin polymerization however, occurs only in melanosomes. In vitro, it is not possible to generate melanin at the acidic pH of melanosomes using 3,4-dihydroxyphenylalanine (DOPA) and tyrosinase alone whereas melanin readily forms at higher pH with these reagents. Dimerization and elongation of the melanin polymer is known to require deprotonation. We have hypothesized that the amino acid side chains of melanosomal proteins act as proton acceptors to initiate polymerization and that the protonated basic groups serve to attract the negatively charged oligomers thus aiding polymerization and binding to proteins. We show that basic model proteins and basic premelanosomal proteins promote polymerization at an acidic pH and that positively charged surfaces allow binding of the growing melanin polymer. With progressive polymerization and exhaustion of the proton abstracting ability of melanosomal proteins, melanosomal pH drops further, which, we argue, is an additional controlling step that limits tyrosinase activity and melanin polymerization.  相似文献   

13.
Mouse melanoma cells, B16-C2M in monolayer culture were treated with either lysosomotropic agent, 10 mM NH4Cl, or 20 microM chloroquine, an ionophore, or 10 microns monensin for 3 h at 37 degrees C, and examined with regard to the site of melanin deposition and numbers of melanized (type 1) and unmelanized (type 2) melanosomes under a transmission electron microscope. The numbers of these two types of melanosomes were counted on electron micrographs of thin sections of 20 to 40 cells for each experimental group and expressed in terms of number per unit area of sectioned cytoplasm. Although most melanosomes were largely swollen in monensin-treated cells, melanin deposition was apparently confined in melanosomes in all experimental groups. The compound melanosomes were scarcely found. The mean population density (number per unit cytoplasmic area) of type 1 melanosomes was highest in the NH4Cl-treated cell group followed by monensin-treated, chloroquine-treated, and control cell groups. When the relative abundance of type 1 melanosomes was expressed as a fraction of total number of type 1 and 2 melanosomes (melanosomal maturation index, MMI), the differences were much more evident. Type 1 melanosomes were found in every cell (MMI not equal to 0) of the groups treated with NH4Cl and chloroquine only, which suggested the existence of a subpopulation of cells responsive to lysosomotropic agents but not to monensin in regard to melanosome maturation. All these findings indicate that the stimulation of melanogenesis proceeds mainly through maturation of preexisting melanosomes under these conditions.  相似文献   

14.
Cell types that generate unique lysosome-related organelles (LROs), such as melanosomes in melanocytes, populate nascent LROs with cargoes that are diverted from endosomes. Cargo sorting toward melanosomes correlates with binding via cytoplasmically exposed sorting signals to either heterotetrameric adaptor AP-1 or AP-3. Some cargoes bind both adaptors, but the relative contribution of each adaptor to cargo recognition and their functional interactions with other effectors during transport to melanosomes are not clear. Here we exploit targeted mutagenesis of the acidic dileucine-based sorting signal in the pigment cell-specific protein OCA2 to dissect the relative roles of AP-1 and AP-3 in transport to melanosomes. We show that binding to AP-1 or AP-3 depends on the primary sequence of the signal and not its position within the cytoplasmic domain. Mutants that preferentially bound either AP-1 or AP-3 each trafficked toward melanosomes and functionally complemented OCA2 deficiency, but AP-3 binding was necessary for steady-state melanosome localization. Unlike tyrosinase, which also engages AP-3 for optimal melanosomal delivery, both AP-1- and AP-3-favoring OCA2 variants required BLOC-1 for melanosomal transport. These data provide evidence for distinct roles of AP-1 and AP-3 in OCA2 transport to melanosomes and indicate that BLOC-1 can cooperate with either adaptor during cargo sorting to LROs.  相似文献   

15.
Melanin within melanosomes exists as eumelanin or pheomelanin. Distributions of these melanins have been studied extensively within tissues, but less often within individual melanosomes. Here, we apply X‐ray fluorescence analysis with synchrotron radiation to survey the nanoscale distribution of metals within purified melanosomes of mice. The study allows a discovery‐based characterization of melanosomal metals, and, because Cu is specifically associated with eumelanin, a hypothesis‐based test of the ‘casing model’ predicting that melanosomes contain a pheomelanin core surrounded by a eumelanin shell. Analysis of Cu, Ca, and Zn shows variable concentrations and distributions, with Ca/Zn highly correlated, and at least three discrete patterns for the distribution of Cu vs. Ca/Zn in different melanosomes – including one with a Cu‐rich shell surrounding a Ca/Zn‐rich core. Thus, the results support predictions of the casing model, but also suggest that in at least some tissues and genetic contexts, other arrangements of melanin may co‐exist.  相似文献   

16.
Assembly, target-signaling and transport of tyrosinase gene family proteins at the initial stage of melanosome biogenesis are reviewed based on our own discoveries. Melanosome biogenesis involves four stages of maturation with distinct morphological and biochemical characteristics that reflect distinct processes of the biosynthesis of structural and enzymatic proteins, subsequent structural organization and melanin deposition occurring in these particular cellular compartments. The melanosomes share many common biological properties with the lysosomes. The stage I melanosomes appear to be linked to the late endosomes. Most of melanosomal proteins are glycoproteins that should be folded or assembled correctly in the ER through interaction with calnexin, a chaperone associated with melanogenesis. These melanosomal glycoproteins are then accumulated in the trans Golgi network (TGN) and transported to the melanosomal compartment. During the formation of transport vesicles, coat proteins assemble on the cytoplasmic face of TGN to select their cargos by interacting directly or indirectly with melanosomal glycoproteins to be transported. Adapter protein-3 (AP-3) is important for intracellular transport of tyrosinase gene family proteins from TGN to melanosomes. Tyrosinase gene family proteins possess a di-leucine motif in their cytoplasmic tail, to which AP-3 appears to bind. Thus, the initial cascade of melanosome biogenesis is regulated by several factors including: 1) glycosylation of tyrosinase gene family proteins and their correct folding and assembly within ER and Golgi, and 2) supply of specific signals necessary for intracellular transport of these glycoproteins by vesicles from Golgi to melanosomes.  相似文献   

17.
Oculocutaneous albinism type 2 is caused by defects in the gene OCA2, encoding a pigment cell-specific, 12-transmembrane domain protein with homology to ion permeases. The function of the OCA2 protein remains unknown, and its subcellular localization is under debate. Here, we show that endogenous OCA2 in melanocytic cells rapidly exits the endoplasmic reticulum (ER) and thus does not behave as a resident ER protein. Consistently, exogenously expressed OCA2 localizes within melanocytes to melanosomes, and, like other melanosomal proteins, localizes to lysosomes when expressed in nonpigment cells. Mutagenized OCA2 transgenes stimulate melanin synthesis in OCA2-deficient cells when localized to melanosomes but not when specifically retained in the ER, contradicting a proposed primary function for OCA2 in the ER. Steady-state melanosomal localization requires a conserved consensus acidic dileucine-based sorting motif within the cytoplasmic N-terminal region of OCA2. A second dileucine signal within this region confers steady-state lysosomal localization in melanocytes, suggesting that OCA2 might traverse multiple sequential or parallel trafficking routes. The two dileucine signals physically interact in a differential manner with cytoplasmic adaptors known to function in trafficking other proteins to melanosomes. We conclude that OCA2 is targeted to and functions within melanosomes but that residence within melanosomes may be regulated by secondary or alternative targeting to lysosomes.  相似文献   

18.
Melanosomes are a type of lysosome‐related organelle that is commonly defective in Hermansky–Pudlak syndrome. Biogenesis of melanosomes is regulated by BLOC‐1, ‐2, ‐3, or AP‐1, ‐3 complexes, which mediate cargo transport from recycling endosomes to melanosomes. Although several Rab GTPases have been shown to regulate these trafficking steps, the precise role of Rab9A remains unknown. Here, we found that a cohort of Rab9A associates with the melanosomes and its knockdown in melanocytes results in hypopigmented melanosomes due to mistargeting of melanosomal proteins to lysosomes. In addition, the Rab9A‐depletion phenotype resembles Rab38/32‐inactivated or BLOC‐3‐deficient melanocytes, suggesting that Rab9A works in line with BLOC‐3 and Rab38/32 during melanosome cargo transport. Furthermore, silencing of Rab9A, Rab38/32 or its effector VARP, or BLOC‐3‐deficiency in melanocytes decreased the length of STX13‐positive recycling endosomal tubules and targeted the SNARE to lysosomes. This result indicates a defect in directing recycling endosomal tubules to melanosomes. Thus, Rab9A and its co‐regulatory GTPases control STX13‐mediated cargo delivery to maturing melanosomes.  相似文献   

19.
20.
Proteolytic fragments of the pigment cell‐specific glycoprotein, PMEL, form the amyloid fibrillar matrix underlying melanins in melanosomes. The fibrils form within multivesicular endosomes to which PMEL is selectively sorted and that serve as melanosome precursors. GPNMB is a tissue‐restricted glycoprotein with substantial sequence homology to PMEL, but no known function, and was proposed to localize to non‐fibrillar domains of distinct melanosome subcompartments in melanocytes. Here we confirm that GPNMB localizes to compartments distinct from the PMEL‐containing multivesicular premelanosomes or late endosomes in melanocytes and HeLa cells, respectively, and is largely absent from fibrils. Using domain swapping, the unique PMEL localization is ascribed to its polycystic kidney disease (PKD) domain, whereas the homologous PKD domain of GPNMB lacks apparent sorting function. The difference likely reflects extensive modification of the GPNMB PKD domain by N‐glycosylation, nullifying its sorting function. These results reveal the molecular basis for the distinct trafficking and morphogenetic properties of PMEL and GPNMB and support a deterministic function of the PMEL PKD domain in both protein sorting and amyloidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号