首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimation in linear models with censored data   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
Approximate methods using ranks for regression with censored data   总被引:1,自引:0,他引:1  
PEITITT  A. N. 《Biometrika》1983,70(1):121-132
  相似文献   

4.
5.
6.
A Buckley-James-type estimator for the mean with censored data   总被引:2,自引:0,他引:2  
SUSARLA  V.; TSAI  W. Y.; VAN RYZIN  J. 《Biometrika》1984,71(3):624-629
  相似文献   

7.
Linear regression with censored data   总被引:29,自引:0,他引:29  
BUCKLEY  JONATHAN; JAMES  IAN 《Biometrika》1979,66(3):429-436
  相似文献   

8.
On estimating equations with censored data   总被引:1,自引:0,他引:1  
JAMES  IAN R. 《Biometrika》1986,73(1):35-42
  相似文献   

9.
On least-squares regression with censored data   总被引:4,自引:0,他引:4  
  相似文献   

10.
11.
12.
13.
14.
Confidence bands for a survival curve from censored data   总被引:3,自引:0,他引:3  
HALL  W. J.; WELLNER  JON A. 《Biometrika》1980,67(1):133-143
  相似文献   

15.
16.
Regression with censored data   总被引:9,自引:0,他引:9  
MILLER  RUPERT; HALPERN  JERRY 《Biometrika》1982,69(3):521-531
  相似文献   

17.
Least median of weighted squares in logistic regression with large strata   总被引:1,自引:0,他引:1  
CHRISTMANN  ANDREAS 《Biometrika》1994,81(2):413-417
  相似文献   

18.
Linear rank tests with right censored data   总被引:6,自引:0,他引:6  
PRENTICE  R. L. 《Biometrika》1978,65(1):167-179
  相似文献   

19.
Time-dependent ROC curves for censored survival data and a diagnostic marker   总被引:13,自引:0,他引:13  
Heagerty PJ  Lumley T  Pepe MS 《Biometrics》2000,56(2):337-344
ROC curves are a popular method for displaying sensitivity and specificity of a continuous diagnostic marker, X, for a binary disease variable, D. However, many disease outcomes are time dependent, D(t), and ROC curves that vary as a function of time may be more appropriate. A common example of a time-dependent variable is vital status, where D(t) = 1 if a patient has died prior to time t and zero otherwise. We propose summarizing the discrimination potential of a marker X, measured at baseline (t = 0), by calculating ROC curves for cumulative disease or death incidence by time t, which we denote as ROC(t). A typical complexity with survival data is that observations may be censored. Two ROC curve estimators are proposed that can accommodate censored data. A simple estimator is based on using the Kaplan-Meier estimator for each possible subset X > c. However, this estimator does not guarantee the necessary condition that sensitivity and specificity are monotone in X. An alternative estimator that does guarantee monotonicity is based on a nearest neighbor estimator for the bivariate distribution function of (X, T), where T represents survival time (Akritas, M. J., 1994, Annals of Statistics 22, 1299-1327). We present an example where ROC(t) is used to compare a standard and a modified flow cytometry measurement for predicting survival after detection of breast cancer and an example where the ROC(t) curve displays the impact of modifying eligibility criteria for sample size and power in HIV prevention trials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号