首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thioredoxins type h are classified into three subgroups. The subgroup II includes thioredoxins containing an N-terminal extension, the role of which is still unclear. Although thioredoxin secretion has been observed in animal cells, there is no evidence suggesting that any thioredoxin h is secreted in plants. In this study, we report that a thioredoxin h, subgroup II, from Nicotiana alata (NaTrxh) is secreted into the extracellular matrix of the stylar transmitting tract tissue. Fractionation studies showed that NaTrxh is extracted along with well characterized secretion proteins such as S-RNases and NaTTS (N. alata transmitting tissue-specific protein). Moreover, an NaTrxh-green fluorescent fusion protein transiently expressed in Nicotiana benthamiana and Arabidopsis thaliana leaves was also secreted, showing that NaTrxh has the required information for its secretion. We performed reduction assays in vitro to identify potential extracellular targets of NaTrxh. We found that S-RNase is one of the several potential substrates of the NaTrxh in the extracellular matrix. In addition, we proved by affinity chromatography that NaTrxh specifically interacts with S-RNase. Our findings showed that NaTrxh is a new thioredoxin h in Nicotiana that is secreted as well as in animal systems. Because NaTrxh is localized in the extracellular matrix of the stylar transmitting tract and its specific interaction with S-RNase to reduce it in vitro, we suggest that this thioredoxin h may be involved either in general pollen-pistil interaction processes or particularly in S-RNase-based self-incompatibility.  相似文献   

3.
Pollen from three S-genotypes of Nicotiana alata was grown in vitro in the presence of S-glycoproteins isolated from styles of the same three genotypes. Pollen germination was not affected by the presence of the S-glycoproteins, but pollen tube growth of all genotypes was inhibited. S2 pollen was preferentially inhibited by the S2-glycoprotein and S3 pollen by the S3-glycoprotein. The S6-glycoprotein preferentially inhibited growth of both S2 and S6 pollen over S3 pollen. Heat treatment dramatically increased the inhibitory activity of the S-glycoproteins as inhibitors both of pollen germination and tube growth; after heat treatment, S-allele specificity of pollen tube inhibition was not detected.  相似文献   

4.
Self-incompatibility in flowering plants of the family Solanaceae is mediated by the product of the S-allele. The allelic products of the S-gene in the female sexual tissues of the pistil are glycoproteins in the mol. wt range 28-32 kDa. These S-glycoproteins have been isolated from styles of Nicotiana alata, homozygous for the S1- and S2-alleles. Earlier studies have indicated that the single potential N-glycosylation site on the S1-glycoprotein bears a glycan chain, whereas of the four potential N-glycosylation sites on the S2-glycoprotein, three are glycosylated. This paper describes the purification and characterization of the N-linked glycan chains from these two glycoproteins. Oligosaccharides were cleaved off the glycoproteins using peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F (N-glycanase F) and separated by anion-exchange HPLC. Four types of hybrid structure were defined by chemical techniques, fast atom bombardment-mass spectrometry (FAB-MS) and 1H-NMR. Although the relative amounts differed, all four structures were found on both the S1- and S2-glycoproteins, and are heterogeneous at some N-glycosylation sites. No O-linked glycans were detected on the S2-glycoprotein. These results are discussed in relation to the potential of the structural diversity residing in this array of glycoforms to play a r?le in allelic specificity.  相似文献   

5.
In self-incompatible (SI) plants, the S locus acts to prevent growth of self-pollen and thus promotes outcrossing within the species. Interspecific crosses between SI and self-compatible (SC) species often show unilateral incompatibility that follows the SI x SC rule: SI species reject pollen from SC species, but the reciprocal crosses are usually compatible. The general validity of the SI x SC rule suggests a link between SI and interspecific pollen rejection; however, this link has been questioned because of a number of exceptions to the rule. To clarify the role of the S locus in interspecific pollen rejection, we transformed several Nicotiana species and hybrids with genes encoding SA2 or SC10 RNase from SI N. alata. Compatibility phenotypes in the transgenic plants were tested using pollen from three SC species showing unilateral incompatibility with N. alata. S RNase was implicated in rejecting pollen from all three species. Rejection of N. plumbaginifolia pollen was similar to S allele-specific pollen rejection, showing a requirement for both S RNase and other genetic factors from N. alata. In contrast, S RNase-dependent rejection of N. glutinosa and N. tabacum pollen proceeded without these additional factors. N. alata also rejects pollen from the latter two species through an S RNase-independent mechanism. Our results implicate the S locus in all three systems, but it is clear that multiple mechanisms contribute to interspecific pollen rejection.  相似文献   

6.
Wheeler D  Newbigin E 《Genetics》2007,177(4):2171-2180
The S locus of Nicotiana alata encodes a polymorphic series of ribonucleases (S-RNases) that determine the self-incompatibility (SI) phenotype of the style. The pollen product of the S locus (pollen S) in N. alata is unknown, but in species from the related genus Petunia and in self-incompatible members of the Plantaginaceae and Rosaceae, this function has been assigned to an F-box protein known as SLF or SFB. Here we describe the identification of 10 genes (designated DD1-10) encoding SLF-related proteins that are expressed in N. alata pollen. Because our approach to cloning the DD genes was based on sequences of SLFs from other species, we presume that one of the DD genes encodes the N. alata SLF ortholog. Seven of the DD genes were exclusively expressed in pollen and a low level of sequence variation was found in alleles of each DD gene. Mapping studies confirmed that all 10 DD genes were linked to the S locus and that at least three were located in the same chromosomal segment as pollen S. Finally, the different topologies of the phylogenetic trees produced using available SLF-related sequences and those produced using S-RNase sequences suggests that pollen S and the S-RNase have different evolutionary histories.  相似文献   

7.
Self-incompatibility in the Solanaceae is controlled by a single multiallelic genetic locus, the S locus. The stylar gene products of the S locus are abundant glycoproteins with ribonuclease activity, secreted in the transmitting tract tissue of the pistil. To investigate the structural and functional integrity and possible phenotypic effects of expression of the S-gene product in the male gametophyte, N. tabacum plants were transformed with a construct containing the genomic S 2 -RNase coding sequence from S. tuberosum under the control of the promoter of the pollen-specific LAT52 gene from tomato. The expression pattern of the S 2 RNase in the male gametophyte at both the protein and RNA level was found to be identical to that already reported for expression of the -glucuronidase (GUS) gene directed by the LAT52 promoter in transgenic tomato and tobacco. The S 2 -RNase gene fusion led to a tissue-specific and developmentally regulated accumulation of the S 2 polypeptide in pollen of transgenic tobacco plants. The transgenic protein product was of the same size and charge as the potato stylar product, had ribonuclease activity, and was glycosylated. The transgenic plants, however, did not show any morphological variations in their flower organs, and their fertility was not influenced by the accumulation of the S 2 -RNase protein in pollen.  相似文献   

8.
In self-incompatible plants of the Solanaceae, the specificity of pollen rejection is controlled by a single multiallelic S-locus. Pollen tube growth is inhibited in the style when its single S-allele matches either S-allele present in the diploid pistil. Each S-allele encodes an S-RNase with a unique sequence. S-RNases are secreted into the extracellular matrix of the transmitting tract which guides pollen tubes toward the ovary. Although it is known that S-RNases are the determinants of S-allele specificity in the pistil, it is not known how allele-specific information is encoded in the sequence. Therefore, we exchanged domains between S-RNases with different recognition specificities and expressed the chimeric proteins in transgenic plants to determine their effects on pollination behavior. Nine chimeric constructs were prepared in which domains from Nicotiana alata SA2- and SC10-RNases were exchanged. Among these nine constructs, the entire S-RNase sequence was sampled by exchanging single variable domains as well as larger blocks of contiguous sequences. The chimeric S-RNases retained enzymatic activity and were expressed at levels comparable to control transformants expressing SA2- and SC10-RNase. However, none of the chimeric S-RNases caused rejection of either SA2- or SC10-pollen. We conclude that the recognition function of S-RNases can be disrupted by alterations in many parts of the sequence. It appears that the recognition function of S-RNase is not localized to a specific domain.  相似文献   

9.
10.
The ornamental tobacco (Nicotiana alata) produces one 6-kDa chymotrypsin inhibitor and four 6-kDa trypsin inhibitors from a single 40.3-kDa precursor protein. Three different approaches have been used to assess the potential of these proteinase inhibitors (PIs) in insect control. The first was an in-vitro approach in which all five inhibitors, the single chymotrypsin inhibitor or three of the four trypsin inhibitors were tested for their ability to inhibit gut protease activity in insects from four orders. The second approach was to incorporate the N. alata PIs in the artificial diet of the native budworm (Helicoverpa punctigera) and the black field cricket (Teleogryllus commodus). H. punctigera larvae and T. commodus nymphs had a significant (P<0.01) reduction in growth after ingestion of the PI and were more lethargic than insects on the control diet. Several of the H. punctigera larvae also failed to complete moulting at the third or fourth instar. The third approach was to express the N. alata PIs in transgenic tobacco under the control of the 35S CaMV promoter. When H. punctigera larvae were fed tobacco leaves expressing the N. alata PIs at 0.2% soluble protein, significant (P<0.01) differences in mortality and/or growth rate were observed.  相似文献   

11.
Nicotiana tabacum and Nicotiana alata plants were transformed with genomic clones of two S-RNase alleles from N. alata. Neither the S 2 clone, with 1.6 kb of 5 sequence, nor the S 6 clone, with 2.8 kb of 5 sequence, were expressed at detectable levels in transgenic N. tabacum plants. In N. alata, expression of the S 2 clone was not detected, however the S 6 clone was expressed (at low levels) in three out of four transgenic plants. An S 6-promoter-GUS fusion gene was also expressed in transgenic N. alata but not N. tabacum. Although endogenous S-RNase genes are expressed exclusively in floral pistils, the GUS fusion was expressed in both styles and leaves.  相似文献   

12.
The gene coding for the secreted Serratia marcescens endonuclease was fused with the mannopine synthase promoter of Agrobacterium tumefaciens Ti plasmid and transferred to Nicotiana tabacum SR1 plants. The promoter is leaf- and root-specific. The resulting transgenic plants demonstrated elevated nuclease activity. The level of the transgene product was determined in the transgenic lines.  相似文献   

13.
The gene coding for the secreted Serratia marcescens endonuclease was fused with the mannopine synthase promoter of Agrobacterium tumefaciens Ti plasmid and transferred to Nicotiana tabacum SR1 plants. The promoter is leaf- and root-specific. The resulting transgenic plants demonstrated elevated nuclease activity. The level of the transgene product was determined in the transgenic lines.  相似文献   

14.
Tobacco was transformed with a gene coding for an S-locus-specific glycoprotein of Brassica oleracea. The resulting transgenic plants showed tissue-specific and developmentally regulated expression of the introduced gene. Immunolocalization experiments showed that the Brassica gene was expressed in the stylar transmitting tissue of the transgenic plants. The pattern of expression of the introduced gene was more similar to that of the S-associated genes of Nicotiana alata than to expression in Brassica. Self-incompatibility was not conferred by the introduced gene.  相似文献   

15.
采用玉米Ubi-1启动子获得低拷贝转基因玉米植株   总被引:7,自引:0,他引:7  
通过基因枪粒子轰击和草丁膦(PPT)选择获得可育的玉米转基因植株,并分析了外源基因在转化体中的拷贝数与启动子之间的关系。用玉米Ubi-1启动子驱动外源基因,玉米转化体中外源基因的拷贝数较低;可能的原因为Ubi-1启动子通过与其内部同源序列发生重组而被定点整合进玉米基因组,共转化的两种质粒DNA在整合至玉米染色体DNA之前已重构成为一个整体。结果显示使用某一植物自身基因的启动子可以降低外源基因在该物种转基因个体中的拷贝数,进而避免基因沉默现象的发生。目前已得到第二代转基因玉米种子。  相似文献   

16.
An efficient genetic transformation method for african tobacco Nicotiana africana Merxm. has been established. African tobacco is a valuable source for cytoplasmic male sterility (CMS) and nuclear encoded resistance to potato virus Y (PVY). N. africana transgenic plants have been obtained using both Agrobacterium-mediated and direct transformation of leaf explants with gold particle bombardment using particle inflow gun. Plasmid vectors containing phosphinothricin resistance gene (bar gene) coding region without promoter and independent 35S promoter between lox sites (lox-bar-35S-lox) and nptII gene were used. Transgenic plants were selected according to growth capacity on the selective medium containing 50 mg/l kanamycin. PCR analyses of kanamycin-resistant plants confirmed the presence of nptII and bar genes in their genome. Agrobacterium-mediated transformation of root explants has proved to be the most efficient transformation method for N. africana.  相似文献   

17.
A galactose-rich, cell-wall glycoprotein from styles of Nicotiana alata   总被引:4,自引:1,他引:3  
A basic, galactose-rich style glycoprotein (GaRSGP) encoded by a previously characterized style-specific cDNA (NaPRP4) has been isolated from the styles of Nicotiana alata and structurally characterized. The glycoprotein is associated with cell walls in the transmitting tract and is composed of approximately 25% (w/w) protein and 75% (w/w) carbohydrate. The purified glycoprotein appears as a smear of between 45–120 kDa on SDS—PAGE; the deglycosylated protein backbone has an apparent molecular weight of approximately 30 kDa. The glycoprotein is rich in the amino acids lysine, proline, and hydroxyproline and in the monosaccharides galactose and arabinose. It is one of only a few proline/hydroxyproline-rich glycoproteins (P/HRGPs) to be characterized both as a cDNA-clone and protein. Glycans are attached to the protein backbone through both O - and N -glycosidic linkages with the majority of the carbohydrate being O -linked and consisting of short, highly branched chains terminating primarily in galactose residues. A carbohydrate epitope(s) is found on both GaRSGP and another style-specific glycoprotein but not on glycoproteins from other tissues. This finding provides further evidence for the existence of a style-specific carbohydrate epitope(s) which may play a role in style function.  相似文献   

18.
 Style squashes and stylar grafts were used to examine the growth of Nicotiana alata pollen tubes in self-compatible and self-incompatible styles. Compatible tubes typically showed a uniform layer of callose deposition in the walls and in small plugs spaced at regular intervals within the tube. Incompatible tubes were characterised by the variability of callose deposition in the walls and by larger, closer and more irregularly spaced plugs. There was no difference in the growth rate of compatible and incompatible tubes during growth through the stigma, but within the style most compatible tubes grew 20–25 mm day-1 (maximum 30 mm day–1), whereas incompatible tubes grew 1.0–1.5 mm day-1 (maximum 5 mm day–1). Many incompatible tubes continued to grow until flowers senesced, and only a small proportion died as a consequence of tip bursting. Grafting compatibly pollinated styles onto incompatible styles showed that the incompatible reaction could occur in pollen tubes between 2 and 50 mm long, and that inhibition of pollen tube growth occurred in both the upper and lower parts of the transmitting tract. Grafting incompatibly pollinated styles onto compatible styles showed that the incompatible reaction was fully reversible in at least a proportion of the pollen tubes. The findings are not consistent with the cytotoxic model of inhibition of self-pollen tubes in solanaceous plants, which assumes that the incompatible response results from the degradation of a finite amount of rRNA present in the pollen tube. However, if pollen tubes do in fact synthesise rRNA, the findings become consistent with this model. Received: 23 May 1996 / Revision accepted: 22 August 1996  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号