首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fourier transform 13C NMR spectra of E. coli tRNA enriched on 13C in either position 2 of adenine (60 atom % 13C) or in position 2 of uracil (82%) and cytosine (63%) were taken at 25.16 MHz over the temperature range 10 degrees - 76 degrees. For C2 of adenine the peak as initially 5 ppm wide, but narrowed to 0.5 ppm as the molecule unfolded. C2 of uracil displayed behavior similar to that of adenine while the cytosine peak, initially relatively narrow at low temperature, sharpened less dramatically. Comparison of spectra at 26.16 MHz and 67.9 MHz showed that the peak widths for folded tRNA were determined largely by chemical shift non-equivalence. T2 T2 measurements suggested that intrinsic line widths of most cytosine C2 peaks were 4 Hz and 2-3 Hz for uracil. Adenine C2 with a directly bonded proton had resonances of about 40 Hz line width. T1 values were measured for C2 of adenine and the ribose carbons of tRNA. Consideration of dipolar relaxation and chemical shift anisotrophy led to a calculated rotational correlation time of 1.6 +/- 0.4 x 10(-8) sec for the adenines and 1.3 +/- 0.3 x 10(-8) sec for the ribose carbons.  相似文献   

2.
Malaisse WJ  Willem R 《Biochimie》2004,86(2):119-125
When liver cells from either normal or hereditarily diabetic rats are exposed to (13)C-enriched D-fructose (10 mM) and unlabelled D-glucose (also 10 mM) in the presence of D(2)O, the output of (13)C-enriched D-glucose generated from D-[1-(13)C]fructose is significantly lower than that from D-[2-(13)C]fructose. This coincides with a higher generation of (13)C-enriched L-lactate and L-alanine from D-[1-(13)C]fructose, as compared to D-[2-(13)C]fructose. In absolute terms, the mean paired difference in the output of (13)C-enriched D-glucose generated from D-[1-(13)C]fructose versus D-[2-(13)C]fructose is not significantly different from the mean paired difference in the production of (13)C-enriched L-lactate and L-alanine from the same precursors, with an overall mean value of 7.01 +/- 1.59 micromol (n = 8; P < 0.005). It is proposed that these findings indicate isotopic discrimination at the phosphoglucoisomerase level between (12)C and (13)C for the carbon atom in position 1 (as compared to that in position 2) of D-fructose 6-phosphate.  相似文献   

3.
Hepatocytes from fed rats were incubated for 120 min in the presence of alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM), both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM), alpha-D-glucose penta[2-13C]acetate (1.7 mM), or D-[1,2-13C]glucose (8.3 mM). The amounts of 13C-enriched L-lactate and D-glucose and those of acetate and beta-hydroxybutyrate recovered in the incubation medium were comparable under the first two experimental conditions. The vast majority of D-glucose isotopomers consisted of alpha- and beta-D[1,2-13C]glucose. The less abundant single-labeled isotopomers of D-glucose were equally labeled on each C atom. The output of 13C-labeled L-lactate, mainly L-[2-13C]lactate and L-[3-13C]lactate, was 1 order of magnitude lower than that found in hepatocytes exposed to 8.3 mM D-[1,2-13C]glucose, in which case the total production of the single-labeled species of D-glucose was also increased and that of the C3- or C4-labeled hexose was lower than that of the other 13C-labeled isotopomers. In cells exposed to alpha-D-glucose penta[2-13C]acetate, the large majority of 13C atoms was recovered as [2-13C]acetate and, to a much lesser extent, beta-hydroxybutyrate labeled in position 2 and/or 4. Nevertheless, L-[2-13C]lactate, L-[3-13C]lactate, and single-labeled D-glucose isotopomers were also produced in amounts higher or comparable to those found in cells exposed to alpha-D-[1,2-13C]glucose pentaacetate. However, a modest preferential labelling of the C6-C5-C4 moiety of D-glucose, relative to its C1-C2-C3 moiety, and a lesser isotopic enrichment of the C3 (or C4), relative to that of C1 (or C6) and C2 (or C5), were now observed. These findings indicate that, despite extensive hydrolysis of alpha-D-glucose pentaacetate (1.7 mM) in the hepatocytes, the catabolism of its D-glucose moiety is not more efficient than that of unesterified D-glucose, tested at the same molar concentration (1.7 mM) in the presence of the same molar concentration of unesterified acetate (8.5 mM), and much lower than that found at a physiological concentration of the hexose (8.3 mM). The present results also argue against any significant back-and-forth interconversion of D-glucose 6-phosphate and triose phosphates, under conditions in which sizeable amounts of D-glucose are formed de novo from 13C-enriched Krebs cycle intermediates generated from either D-[1,2-13C]glucose or [2-13C]acetate.  相似文献   

4.
In this paper we describe carbon-13 nuclear magnetic resonance results on 13C-enriched purified transfer RNAI(VAL) from from E. coli SO-187, a uracil requiring auxotroph. The organism was grown on uracil 90% 13C-enriched at the carbonyl C4 position. Transfer RNAI(Val) was purified from bulk tRNA by sequential chromatography on columns of BD cellulose, DEAE-Sephadex A-50 and reverse gradient sepharose 4B. Dihydrouridine, 4-thiouridine, and uridine 5-oxyacetic acid located at discrete positions in the polymer backbone were tentatively assigned in the highly resolved 25 MHz 13C-spectra. Chemical shift versus temperature plots reveal differential thermal perturbation of the ordered solution structure, evident in the large dispersion (ca 3-4 ppm) of the uridine C4 resonances. Over the range 26-68 degrees C, V in the anticodon displays the largest downfield shift. Whereas several uridine residues rapidly shift downfield between 50-68 degrees, one moves upfield beginning at 37 degrees. The results are qualitatively compared with proton NMR analysis of the three dimensional structure.  相似文献   

5.
Paracoccus denitrificans was grown on either unlabelled glucose, [1-13C]glucose or [6-13C]glucose as the sole carbon source for growth. The cells were then incubated with a range of 14C-glucose substrates to compare the 14CO2-evolution rates between cells grown on the glucose and the 13C-labelled glucose. Cells grown on 13C-glucose had significantly faster rates of 14CO2-evolution than those grown on unlabelled glucose. The % yields of 14CO2, per [1-14C]-, [6-14C]- and [U-14C]glucose supplied were also substantially greater than those measured for cells grown on unlabelled glucose. The data indicated that growth of Paracoccus on 13C-enriched glucose substrates resulted in cells with notably different 14C-glucose oxidation metabolism compared to that observed in cells grown on unlabelled glucose.  相似文献   

6.
UsingS-adenosyl-L-[Me-14C] methionine, rat cerebral cortex methyltransferase activity was determined during the early postnatal period in the absence of addedEscherichia coli tRNA and in its presence. [Me-14C] tRNA was purified from both systems and its [Me-14C] base composition determined. The endogenous formation of [Me-14C] tRNA (homologous tRNA methylation) was totally abolished in the presence of 2.5 mM spermidine, whereasE. coli B tRNA methylation (heterologous methylation) was markedly stimulated. Only [Me-14C] 1-methyl guanine and [Me-14C]N 2-methyl guanine were formed by homologous methylation, there being an inverse shift in their relative proportions with age. Heterologous tRNA methylation led, additionally, to the formation of [Me-14C]N 2 2 -dimethyl guanine, 5-methyl cytosine, 1-methyl adenine, 5-methyl uracil, 2-methyl adenine, and 1-methyl hypoxanthine. A comparison of heterologous tRNA methylation between the whole brain cortex (containing nerve and glial cells) and bulk-isolated nerve cell bodies revealed markedly lower proportions of [Me-14C]N 2-methyl andN 2 2 -dimethyl guanine and significantly higher proportions of [Me-14C] 1-methyl adenine in the neurons. The present findings suggest (1) that homologous tRNA methylation may provide developing brain cells with continuously changing populations of tRNA and (2) that neurons are enriched in adenine residue-specific tRNA methyltransferases that are highly sensitive to spermidine.This research was supported by grant NS-06294 of the United States Public Health Service.  相似文献   

7.
Yeast cells inhibited by benzimidazole accumulate hypoxanthine with associated efflux of xanthine. Unlike control cells, inhibited cells contain no detectable free UMP and CMP. Benzimidazole decreases uptake of [8-14C]hypoxanthine into the intracellular pool of hypoxanthine and xanthine but causes radioactive xanthine to accumulate in the medium. In inhibited cultures there is a threefold increase in incorporation of [8-14C]hypoxanthine into the total (intracellular plus extracellular) xanthine. Uptake of [8-14C]hypoxanthine into free nucleotides and into bound adenine and guanine was inhibited by 70%. Uptake of [U-14C]glycine into IMP, AMP, GMP, DNA and RNA was also substantially decreased. Incorporation of [2-14C]uracil into the intracellular uracil pool was inhibited by 30% and into free uridine and cytidine by over 90%. Benzimidazole inhibited incorporation of [8-3H]IMP into AMP and GMP, and decreased substantially the activity of glutamine-amidophosphoribosyltransferase (EC 2.4.2.14). Yeast cultures were shown to N-ribotylate benzimidazole. Results are consistent with benzimidazole inhibiting yeast growth by competing for P-rib-PP and so depriving other ribotylation processes such as the 'salvage' pathways and de novo synthesis of purines and pyrimidines.  相似文献   

8.
Isolated hepatocytes from fed rats were exposed for 120 min to D-glucose (10 mM) and either D-[1-13C]fructose, D-[2-13C]fructose or D-[6-13C]fructose (also 10 mM) in the presence of D2O. The identification and quantification of 13C-enriched D-fructose and its metabolites (D-glucose, L-lactate, L-alanine) in the incubation medium and the measurement of their deuterated isotopomers indicated, by comparison with a prior study conducted in the absence of exogenous D-glucose, that the major effects of the aldohexose were to increase the recovery of 13C-enriched D-fructose, decrease the production of 13C-enriched D-glucose, restrict the deuteration of the 13C-enriched isotopomers of D-glucose to those generated by cells exposed to D-[2-13C]fructose, and to accentuate the lesser deuteration of the C2 (as compared to C5) of 13C-enriched D-glucose derived from D-[2-13C]fructose. The ratio between C2-deuterated and C2-hydrogenated L-lactate, as well as the relative amounts of the CH3-, CH2D-, CHD2 and CD3- isotopomers of 13C-enriched L-lactate were not significantly different, however, in the absence or presence of exogenous D-glucose. These findings indicate that exogenous D-glucose suppressed the deuteration of the C1 of D-[1-13C]glucose generated by hepatocytes exposed to D-[1-13C]fructose or D-[6-13C]fructose, as otherwise attributable, in part at least, to gluconeogenesis from fructose-derived [3-13C]pyruvate, and apparently favoured the phosphorylation of D-fructose by hexokinase isoenzymes, probably through stimulation of D-fructose phosphorylation by glucokinase.  相似文献   

9.
Chloramphenicol produced by cultures of Streptomyces species 3022a supplemented with sodium [1,2-13C]acetate was labelled with 13C exclusively in the dichloromethine (2.6 +/- 0.1%) and carbonyl (0.59 +/- 0.05% carbon atoms. Satellite signals from 13C-13C coupling between covalently bonded 13C-enriched carbon atoms were too intense to be attributed to random combination of labelled atoms at the average enrichments measured, but their intensity relative to those of the signals for uncoupled 13C atoms indicated that most of the precursor had been incorporated after 13C-13C bond fission. Since [2,3-13c]succinic acid enriched only the carbonyl carbon atom of chloramphenicol, these results suggest that neither acetate nor a Krebs cycle intermediate is a direct precursor of the dichloroacetyl group. Cultures supplemented with [2-3h]-or [2h2]-dichloroacetic acid incorporated negligible amounts of isotope into the antibiotic; on this evidence, the free acid is not an intermediate in chloramphenicol biosynthesis and the acylation step may precede chlorination.  相似文献   

10.
The anomeric specificity of D-glucose metabolism in intact hepatocytes remains a matter of debate. This issue was further investigated in the present study, which is based on the quantification of the alpha- and beta-anomers of the 13C-enriched isotopomers of D-glucose generated by rat liver cells exposed to either D-[1-13C] fructose or D-[2-13C] fructose in the presence of D2O. The D-[1-13C]glucose/D-[6-13C]glucose paired ratios found in the cells exposed to D-[1-13C] fructose and the D-[2-13C]glucose/D-[5-13C]glucose paired ratios found in the cells exposed to D-[2-13C] fructose yielded a paired beta/alpha ratio averaging (mean +/- S.E.M.) 79.3 +/- 6.1%. In the case of the isotopomers of D-glucose formed by gluconeogenesis, the D-[2-13C]glucose/D-[5-13C]glucose and D-[3-13C]glucose/D-[4-13C]glucose paired ratios found in cells exposed to D-[1-13C] fructose, as well as the D-[1-13C]glucose/D-[6-13C]glucose and D-[3-13C]glucose/D-[4-13C]glucose paired ratios found in cells exposed to D-[2-13C]fructose, yielded an alpha/beta paired ratio averaging 75.0 +/- 5.8%. Last, in the cells exposed to D-[2-13C]fructose, the beta/alpha ratio for the C2-deuterated isotopomers of D-[2-13C]glucose represented 78.9 +/- 3.7% of that for the C5-deuterated isotopomers of D-[5-13C]glucose. The three values representative of the anomeric specificity of D-glucose production by liver cells were not significantly different from one another, with an overall mean value of 76.9 +/- 3.6%. These findings unambiguously document that the anomeric specificity of phosphoglucoisomerase is operative in intact hepatocytes, resulting in a preferential output of the alpha-anomer of 13C-enriched D-glucose under the present experimental conditions.  相似文献   

11.
The adaptation of Neurospora crassa mycelium to growth on acetate as the sole carbon source was examined by using 13C nuclear magnetic resonance. Extracts were examined by nuclear magnetic resonance at various times after transfer of the mycelium from medium containing sucrose to medium containing [2-13C]acetate as the sole carbon source. The label was initially seen to enter the alanine, glutamate, and glutamine pools, and after 6 h 13C-enriched trehalose was evident, indicating that gluconeogenesis was occurring. Analysis of the isotopomer ratios in the alanine and glutamate-glutamine pools indicated that substantial glyoxylate cycle activity became evident between 2 and 4 h after transfer. Immediately after transfer of the mycelium to acetate medium, the alanine pool increased to about four times its previous level, only a small fraction of which was enriched with 13C. The quantity of 13C-enriched alanine remained almost constant between 2 and 7.5 h after the transfer, whereas the overall alanine pool decreased to its original level. The selective catabolism of the unenriched alanine leads us to suggest that the alanine pool is partitioned into two compartments during adaptation. Two acetate-nonutilizing mutants were also studied by this technique. An acu-3 strain, deficient for isocitrate lyase (EC 4.1.3.1) activity, showed metabolic changes consistent with this lesion. An acp strain, previously thought to be deficient in an inducible acetate permease, took up [2-13C]acetate but showed no evidence of glyoxylate cycle activity despite synthesizing the necessary enzymes; the lesion was therefore reinterpreted.  相似文献   

12.
We have studied the relative roles of the glutaminase versus glutamate dehydrogenase (GLDH) and purine nucleotide cycle (PNC) pathways in furnishing ammonia for urea synthesis. Isolated rat hepatocytes were incubated at pH 7.4 and 37 degrees C in Krebs buffer supplemented with 0.1 mM L-ornithine and 1 mM [2-15N]glutamine, [5-15N]glutamine, [15N]aspartate, or [15N]glutamate as the sole labeled nitrogen source in the presence and absence of 1 mM amino-oxyacetate (AOA). A separate series of incubations was carried out in a medium containing either 15N-labeled precursor together with an additional 19 unlabeled amino acids at concentrations similar to those of rat plasma. GC-MS was utilized to determine the precursor product relationship and the flux of 15N-labeled substrate toward 15NH3, the 6-amino group of adenine nucleotides ([6-15NH2]adenine), 15N-amino acids, and [15N]urea. Following 40 min incubation with [15N]aspartate the isotopic enrichment of singly and doubly labeled urea was 70 and 20 atom % excess, respectively; with [15N]glutamate these values were approximately 65 and approximately 30 atom % excess for singly and doubly labeled urea, respectively. In experiments with [15N]aspartate as a sole substrate 15NH3 enrichment exceeded that in [6-NH2]adenine, indicating that [6-15NH2]adenine could not be a major precursor to 15NH3. Addition of AOA inhibited the formation of [15N]glutamate, 15NH3 and doubly labeled urea from [15N]aspartate. However, AOA had little effect on [6-15NH2]adenine production. In experiments with [15N]glutamate, AOA inhibited the formation of [15N]aspartate and doubly labeled urea, whereas 15NH3 formation was increased. In the presence of a physiologic amino acid mixture, [15N]glutamate contributed less than 5% to urea-N. In contrast, the amide and the amino nitrogen of glutamine contributed approximately 65% of total urea-N regardless of the incubation medium. The current data indicate that when glutamate is a sole substrate the flux through GLDH is more prominent in furnishing NH3 for urea synthesis than the flux through the PNC. However, in experiments with medium containing a mixture of amino acids utilized by the rat liver in vivo, the fraction of NH3 derived via GLDH or PNC was negligible compared with the amount of ammonia derived via the glutaminase pathway. Therefore, the current data suggest that ammonia derived from 5-N of glutamine via glutaminase is the major source of nitrogen for hepatic urea-genesis.  相似文献   

13.
The mass production of pure gibberellin A1 (GA1) by shake-culturing Phaeosphaeria sp. L487 was investigated. Its GA1 production was markedly influenced by natural nitrogen sources and NH4NO3. When the fungus was cultured in an 8% glucose-1.5% oatmeal-0.1% NH4NO3-0.5% KH2PO4-0.1% MgSO4 x 7H2O medium for 3 weeks, the amount of GA1 in the culture filtrate was up to ca. 200 microg/ml: the addition of safflower oil to the culture medium two weeks after inoculation prolonged the GA1-production period to produce 300 microg/ml. Further preparation of [U-13C]GA, as a tool for the analysis of a complex of GA1 and its binding protein was attempted by using the fungus. The fungal culture in a [U-13C]glucose-oatmeal medium gave 6 mg of crystalline 13C-enriched GA1. Its 13C-enrichment of ca. 75% and 1J(CC) values were determined by NMR spectrometry.  相似文献   

14.
A Kjellberg  A Weintraub  G Widmalm 《Biochemistry》1999,38(38):12205-12211
The structure of the O-antigenic polysaccharide from the enterohemorrhagic Escherichia coli O91 has been determined using primarily NMR spectroscopy on the (13)C-enriched polysaccharide. The O-antigen is composed of pentasaccharide repeating units with the following structure: -->4)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->4)-beta-D-GlcpA-6-N- Gly -(1-->3)-beta-D-GlcpNAc-(1-->4)-alpha-D-Quip-3-N-[(R)-3-hydroxy butyra mido]-(1-->. The bacterium was grown with D-[UL-(13)C]glucose in the medium which resulted in an overall degree of labeling of approximately 65% in the sugar residues and approximately 50% in the N-acyl substituents, indicating some metabolic dilution in the latter. The (13)C-enrichment of the polysaccharide proved valuable since NMR assignments could be made on the basis of (13)C, (13)C-connectivity in uniformly labeled residues. The biosynthesis of the (R)-3-hydroxybutyramido substituent via C(2) fragments was identified by NMR spectroscopy. The (R)-configuration at C3 is in accord with fatty acid biosynthesis. Additional cultures with specifically labeled D-[1-(13)C]glucose or D-[6-(13)C]glucose corroborated the direct incorporation of glucose as the building block for the hexose skeletons in the polysaccharide and the biosynthesis of acyl substituents occurring via the triose pool followed by decarboxylation to give acetyl building blocks labeled with (13)C at the methyl group.  相似文献   

15.
16.
The 13C spectra of β-NADH, NADHX, and the primary acid product of NADH were obtained and assigned. The conversion of the NADHX isomers to the two isomers of NADH acid product is demonstrated through the use of 13C-enriched compounds. The structure of NADHX is assigned as β-6-hydroxy-1,4,5,6-tetrahydronicotinamide adenine dinucleotide and the structures of the primary acid products of NADH are assigned as α-O2′-6B-cyclotetrahydronicotinamide adenine dinucleotide and α-O2′-6A-cyclotetrahydronicotinamide adenine dinucleotide.The structures of NADHX and the major isomer of the primary acid product, derived from studies of model compounds, are consistent with those proposed by Oppenheimer and Kaplan [Biochemistry (1974) 13, 4675, 4685]. However, the spectra of 13C-enriched primary acid product also demonstrated the existence of the A isomer which was not observed in the latter 1H study. The A and B isomers were found to exist in the same ratio even when the primary acid product was formed directly from NADHX. This observation is discussed in terms of the previously proposed mechanism for the acid decomposition of NADH.  相似文献   

17.
Malaise  W.J.  Ladrière  L.  Jijakli  H.  Laatikainen  R.  Niemitz  M.  Verbruggen  I.  Biesernans  M.  Willem  R. 《Molecular and cellular biochemistry》1998,189(1-2):137-144
Hepatocytes prepared from overnight fasted rats were incubated for 120 min in the presence of the dimethyl ester of [2,3-13C]succinic acid (10 mM). The identification and quantification of 13C-enriched metabolites in the incubation medium were performed by a novel computational strategy for the deconvolution of NMR spectra with multiplet structures and constraints. The generation of 13C-labelled metabolites, including succinate, fumarate, malate, lactate, alanine, aspartate and glucose accounted for about half of the initial amount of the ester present in the incubation medium. A fair correlation was observed between the experimental abundance of each 13C-labelled glucose isotopomer and the corresponding values derived from a model for the metabolism of [2,3-13C]succinate. Newly formed glucose was more efficiently labelled in the carbon C5 than C2, as well as the carbon C6 than C1, supporting the concept that D-glyceraldehyde-3-phosphate may undergo enzyme-to-enzyme channelling between glyceraldehyde-3-phosphate dehydrogenase and phosphofructoaldolase.  相似文献   

18.
The biosynthesis of the pyrimidinyl amino acid lathyrine by seedlings of Lathyrus tingitanus L. was shown to be stimulated by uracil. [6(-14)C]Orotate, [2(-14)C]uracil and [3(-14)C]serine were incorporated into lathyrine; the incorporation of [6(-14)C]orotate was substantially decreased in the presence of uracil. Chemical degradation to locate the 14C incorporated from labelled precursors showed that 90% of the radioactivity incorporated into lathyrine from [3(-14)C]serine could be recovered in the alanine side chain. Over 80% of the radioactivity incorporated from [2(-14)C]uracil was shown to be located in C-2 of lathyrine. It is concluded that under the conditions studied, lathyrine arises from a preformed pyrimidine arising via the orotate pathway. Paradoxically, it was also possible to confirm previous reports that radioactivity from L-[guanidino-14C]homoarginine is incorporated into lathyrine and gamma-hydroxyhomoarginine. However, as homoarginine and gamma-hydroxyhomoarginine are also both labelled by [2(-14)C]uracil, it is suggested that they are products of the ring-opening of lathyrine and that reversibility of this process accounts, at least in part, for their observed experimental incorporation into lathyrine.  相似文献   

19.
The enrichment of tRNA at specific sites with carbon-13 has been accomplished in vivo using a mutant of Escherichia coli. A relaxed strain of E. coli auxotrophic for methionine was grown in a specifically defined medium supplemented with either [14C] or [13C]-methyl labeled methionine. Cells were collected at the end of the log-phase of growth and tRNA was extracted. Analysis of the radioactivity of the [14C]-labeled tRNA established an incorporation ratio of three labeled carbons per tRNA molecule. Incorporation of the [14C]-label in vivo was confined to the methylation of nucleotides as determined by thin layer chromatography of nucleotides resulting from a ribonuclease digestion of [14C]-labeled tRNA. The carbon-13 NMR spectrum of [13C]-enriched tRNA indicated a similar degree of incorporation into the methylated nucleotides by the substantial enhancement of [13C]-methyl NMR signals only. Assignment of signals has been made for the methyl groups of ribothymidine and N7-methylguanosine in E. coli tRNA.  相似文献   

20.
The biogenetic origin of the carbon atoms in tenellin has been established by adding 13C-enriched compounds to cultures of Beauveria bassiana, and determining the isotopic distribution in the metabolite by 13C nuclear magnetic resonance spectrometry. Tenellin is formed by condensation of an acetate-derived polyketide chain with a phenylpropanoid unit that may be phenylalanine. Alternate carbon atoms of the polyketide chain were labelled with sodium [1(-13C)]- and [2-(13C]-acetate; sodium [1,2-(13C)]acetate was incorporated as intact two-carbon units, the presence of which in tenellin was apparent from coupling between adjacent 13C-enriched carbons. Substituent methyl groups of the polyketide-derived alkenyl chain were labelled with L-[Me-13C]methionine. The labelling patterns from DL-[carboxy-13C]phenylalanine and DL-[alpha-13C]phenylalanine indicated a rearrangement of the propanoid component at some stage in the synthesis. The mass spectrum of tenellin from cultures administered L-[15N]phenylalanine showed isotopic enrichment similar to that obtained with 13C- or 14C-labelled phenylalanine. During incorporation of L-[carboxy-14C, beta-3H]phenylalanine 96% of the tritium label was lost, discounting the possibility of a 1,2-hydride shift during biosynthesis of the metabolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号