首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pike LJ  Casey L 《Biochemistry》2002,41(32):10315-10322
A variety of signal transduction pathways including PI turnover, MAP kinase activation, and PI 3-kinase activation have been shown to be affected by changes in cellular cholesterol content. However, no information is available regarding the locus (or loci) in the pathways that are susceptible to modulation by cholesterol. We report here that depletion of cholesterol with methyl-beta-cyclodextrin increases cell surface (125)I-EGF binding by approximately 40% via a mechanism that does not involve externalization of receptors from an internal pool. Cholesterol depletion also enhances in vivo EGF receptor autophosphorylation 2-5-fold without altering the rate of receptor dephosphorylation. In vitro kinase assays, which are done under conditions where phosphotyrosine phosphatases are inhibited and receptor trafficking cannot occur, demonstrate that treatment with methyl-beta-cyclodextrin leads to an increase in intrinsic EGF receptor tyrosine kinase activity. EGF receptors are localized in cholesterol-enriched lipid rafts but are released from this compartment upon treatment with methyl-beta-cyclodextrin. These data are consistent with the interpretation that localization to lipid rafts partially suppresses the binding and kinase functions of the EGF receptor and that depletion of cholesterol releases the receptor from lipid rafts, relieving the functional inhibition of the receptor. Cholesterol depletion also inhibits EGF internalization and down-regulation of the EGF receptor, and this likely contributes to the enhanced ability of EGF to stimulate downstream signaling pathways such as the activation of MAP kinase.  相似文献   

2.
In A431 cells, depletion of cholesterol with methyl-beta-cyclodextrin induced an increase in both basal and epidermal growth factor (EGF)-stimulated EGF receptor phosphorylation. This increase in phosphorylation was site-specific, with significant increases occurring at Tyr845, Tyr992, and Tyr1173, but only minor changes at Tyr1045 and Tyr1068. The elevated level of receptor phosphorylation was associated with an increase in the intrinsic kinase activity of the EGF receptor kinase, possibly as a result of the cyclodextrin-induced enhancement of the phosphorylation of Tyr845, a site in the kinase activation loop known to be phosphorylated by pp60src. Cholesterol and its enantiomer (ent-cholesterol) were used to investigate the molecular basis for the modulation of EGF receptor function by cholesterol. Natural cholesterol (nat-cholesterol) was oxidized substantially more rapidly than ent-cholesterol by cholesterol oxidase, a protein that contains a specific binding site for the sterol. By contrast, the ability of nat- and ent-cholesterol to interact with sphingomyelins and phosphatidylcholine and to induce lipid condensation in a monolayer system was the same. These data suggest that, whereas cholesterol-protein interactions may be sensitive to the absolute configuration of the sterol, sterol-lipid interactions are not. nat- and ent-cholesterol were tested for their ability to physically reconstitute lipid rafts following depletion of cholesterol. nat- and ent-cholesterol reversed to the same extent the enhanced phosphorylation of the EGF receptor that occurred following removal of cholesterol. Furthermore, the enantiomers showed similar abilities to reconstitute lipid rafts in cyclodextrin-treated cells. These data suggest that cholesterol most likely affects EGF receptor function because of its physical effects on membrane properties, not through direct enantioselective interactions with the receptor.  相似文献   

3.
The flow of information through the epidermal growth factor receptor (EGFR) is shaped by molecular interactions in the plasma membrane. The EGFR is associated with lipid rafts, but their role in modulating receptor mobility and subsequent interactions is unclear. To investigate the role of nanoscale rafts in EGFR dynamics, we used single-molecule fluorescence imaging to track individual receptors and their dimerization partner, human epidermal growth factor receptor 2 (HER2), in the membrane of human mammary epithelial cells. We found that the motion of both receptors was interrupted by dwellings within nanodomains. EGFR was significantly less mobile than HER2. This difference was likely due to F-actin because its depolymerization led to similar diffusion patterns between the EGFR and HER2. Manipulations of membrane cholesterol content dramatically altered the diffusion pattern of both receptors. Cholesterol depletion led to almost complete confinement of the receptors, whereas cholesterol enrichment extended the boundaries of the restricted areas. Interestingly, F-actin depolymerization partially restored receptor mobility in cholesterol-depleted membranes. Our observations suggest that membrane cholesterol provides a dynamic environment that facilitates the free motion of EGFR and HER2, possibly by modulating the dynamic state of F-actin. The association of the receptors with lipid rafts could therefore promote their rapid interactions only upon ligand stimulation.  相似文献   

4.
Choi KS  Aizaki H  Lai MM 《Journal of virology》2005,79(15):9862-9871
Thorp and Gallagher first reported that depletion of cholesterol inhibited virus entry and cell-cell fusion of mouse hepatitis virus (MHV), suggesting the importance of lipid rafts in MHV replication (E. B. Thorp and T. M. Gallagher, J. Virol. 78:2682-2692, 2004). However, the MHV receptor is not present in lipid rafts, and anchoring of the MHV receptor to lipid rafts did not enhance MHV infection; thus, the mechanism of lipid rafts involvement is not clear. In this study, we defined the mechanism and extent of lipid raft involvement in MHV replication. We showed that cholesterol depletion by methyl beta-cyclodextrin or filipin did not affect virus binding but reduced virus entry. Furthermore, MHV spike protein bound to nonraftraft membrane at 4 degrees C but shifted to lipid rafts at 37 degrees C, indicating a redistribution of membrane following virus binding. Thus, the lipid raft involvement in MHV entry occurs at a step following virus binding. We also found that the viral spike protein in the plasma membrane of the infected cells was associated with lipid rafts, whereas that in the Golgi membrane, where MHV matures, was not. Moreover, the buoyant density of the virion was not changed when MHV was produced from the cholesterol-depleted cells, suggesting that MHV does not incorporate lipid rafts into the virion. These results indicate that MHV release does not involve lipid rafts. However, MHV spike protein has an inherent ability to associate with lipid rafts. Correspondingly, cell-cell fusion induced by MHV was retarded by cholesterol depletion, consistent with the association of the spike protein with lipid rafts in the plasma membrane. These findings suggest that MHV entry requires specific interactions between the spike protein and lipid rafts, probably during the virus internalization step.  相似文献   

5.
Recent evidence suggests that the EGF receptor oligomerizes or clusters in cells even in the absence of agonist ligand. To assess the status of EGF receptors in live cells, an EGF receptor fused to eGFP was stably expressed in CHO cells and studied using fluorescence correlation spectroscopy and fluorescent brightness analysis. By modifying FIDA for use in a two-dimensional system with quantal brightnesses, a method was developed to quantify the degree of clustering of the receptors on the cell surface. The analysis demonstrates that under physiological conditions, the EGF receptor exists in a complex equilibrium involving single molecules and clusters of two or more receptors. Acute depletion of cellular cholesterol enhanced EGF receptor clustering whereas cholesterol loading decreased receptor clustering, indicating that receptor aggregation is sensitive to the lipid composition of the membrane.  相似文献   

6.
Membrane carboxypeptidase E (CPE) is a sorting receptor for targeting prohormones, such as pro-opiomelanocortin, to the regulated secretory pathway in endocrine cells. Its membrane association is necessary for it to bind a prohormone sorting signal at the trans-Golgi network (TGN) to facilitate targeting. In this study, we examined the lipid interaction of CPE in bovine pituitary secretory granule membranes, which are derived from the TGN. We show that CPE is associated with detergent-resistant lipid domains, or rafts, within secretory granule membranes. Lipid analysis revealed that these rafts are enriched in glycosphingolipids and cholesterol. Pulse-chase and subcellular fractionation experiments in AtT-20 cells show that the association of CPE with membrane rafts occurred only after it reached the Golgi. Cholesterol depletion resulted in dissociation of CPE from secretory granule membranes and decreased the binding of prohormones to membranes. In vivo cholesterol depletion using lovastatin resulted in the lack of sorting of CPE and its cargo to the regulated secretory pathway. We propose that the sorting receptor function of CPE necessitates its interaction with glycosphingolipid-cholesterol rafts at the TGN, thereby anchoring it in position to bind to its prohormone cargo.  相似文献   

7.
Insulin stimulates the fusion of intracellular vesicles containing the glucose transporter Glut4 with the plasma membrane in adipocytes and muscle cells. Glut4 vesicle fusion is thought to be catalyzed by the interaction of the vesicle soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptor VAMP2 with the target soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptors SNAP-23 and syntaxin 4. Here, we use combined membrane fractionation, detergent solubility, and sucrose gradient flotation to demonstrate that the large majority (>70%) of SNAP-23 and a significant proportion of syntaxin 4 ( approximately 35%) are associated with plasma membrane lipid rafts in 3T3-L1 adipocytes. Furthermore, VAMP2 is shown to be concentrated in lipid rafts isolated from intracellular membranes. Insulin stimulation had no effect on the plasma membrane raft association of SNAP-23 or syntaxin 4 but promoted VAMP2 insertion into plasma membrane rafts. Immunofluorescence analysis revealed that SNAP-23 was clustered at the plasma membrane and almost completely segregated from the transferrin receptor. SNAP-23 distribution seemed to be distinct from caveolin-1, and clusters of SNAP-23 were dispersed after cholesterol extraction with methyl-beta-cyclodextrin, suggesting that the majority of SNAP-23 is associated with non-caveolar, cholesterol-rich lipid rafts. The results described implicate lipid rafts as important platforms for Glut4 vesicle fusion and suggest the hypothesis that such rafts may represent a spatial integration point of insulin signaling and membrane traffic.  相似文献   

8.
Cholesterol-rich lipid rafts act as signaling microdomains and can regulate receptor function. We have shown in HEK293 cells recombinant P2X1-4 receptors (ATP-gated ion channels) are expressed in lipid rafts. Localization to flotillin-rich lipid rafts was reduced by the detergent Triton X-100. This sensitivity to Triton X-100 was concentration- and subunit-dependent, demonstrating differential association of P2X1-4 receptors with lipid rafts. The importance of raft association to ATP-evoked P2X receptor responses was determined in patch clamp studies. The cholesterol-depleting agents methyl-β-cyclodextrin or filipin disrupt lipid rafts and reduced P2X1 receptor currents by >90%. In contrast, ATP-evoked P2X2-4 receptor currents were unaffected by lipid raft disruption. To determine the molecular basis of cholesterol sensitivity, we generated chimeric receptors replacing portions of the cholesterol-sensitive P2X1 receptor with the corresponding region from the insensitive P2X2 receptor. These chimeras identified the importance of the intracellular amino-terminal region between the conserved protein kinase C site and the first transmembrane segment for the sensitivity to cholesterol depletion. Mutation of any of the variant residues between P2X1 and P2X2 receptors in this region in the P2X1 receptor (residues 20–23 and 27–29) to cysteine removed cholesterol sensitivity. Cholesterol depletion did not change the ATP sensitivity or cell surface expression of P2X1 receptors. This suggests that cholesterol is normally needed to facilitate the opening/gating of ATP-bound P2X1 receptor channels, and mutations in the pre-first transmembrane segment region remove this requirement.  相似文献   

9.
The EGF receptor is a transmembrane receptor tyrosine kinase that is enriched in lipid rafts. Subdomains I, II and III of the extracellular domain of the EGF receptor participate in ligand binding and dimer formation. However, the function of the cysteine-rich subdomain IV has not been elucidated. In this study, we analyzed the role of the membrane-proximal portion of subdomain IV in EGF binding and signal transduction. A double Cys-->Ala mutation that breaks the most membrane-proximal disulfide bond (Cys600 to Cys612), ablated high affinity ligand binding and substantially reduced signal transduction. A similar mutation that breaks the overlapping Cys596 to Cys604 disulfide had little effect on receptor function. Mutation of residues within the Cys600 to Cys612 disulfide loop did not alter the ligand binding or signal transducing activities of the receptor. Despite the fact that the C600,612A EGF receptor was significantly impaired functionally, this receptor as well as all of the other receptors with mutations in the region of residues 596 to 612 localized normally to lipid rafts. These data suggest that the disulfide-bonded structure of the membrane-proximal portion of the EGF receptor, rather than its primary sequence, is important for EGF binding and signaling but is not involved in localizing the receptor to lipid rafts.  相似文献   

10.
Many immunoreceptors have been reported to associate with lipid rafts upon ligand binding. The way in which this association is regulated is still obscure. We investigated the roles for various domains of the human immunoreceptor FcgammaRIIA in regulating its association with lipid rafts by determining the resistance of unligated, or ligated and cross-linked, receptors to solubilization by the nonionic detergent Triton X-100, when expressed in RBL-2H3 cells. Deletion of the cytoplasmic domain, or destruction of the cytoplasmic palmitoylation site, had no effect on the association of the receptor with lipid rafts. A transmembrane mutant, A224S, lost the ability to associate with lipid rafts upon receptor cross-linking, whereas transmembrane mutants VA231-2MM and VVAL234-7GISF showed constitutive lipid raft association. Wild-type (WT) FcgammaRIIA and all transmembrane mutants activated Syk, regardless of their association with lipid rafts. WT FcgammaRIIA and mutants that associated with lipid rafts efficiently activated NF-kappaB, in an ERK-dependent manner. In contrast, WT FcgammaRIIA and the A224S mutant both presented efficient phagocytosis, while VA231-2MM and VVAL234-7GISF mutants presented lower phagocytosis, suggesting that phagocytosis may proceed independently of lipid raft association. These data identify the transmembrane domain of FcgammaRIIA as responsible for regulating its inducible association with lipid rafts and suggest that FcgammaRIIA-mediated responses, like NF-kappaB activation or phagocytosis, can be modulated by lipid raft association of the ligated receptor.  相似文献   

11.
Processes of cell survival, division, differentiation, and death are guided by the binding of signal molecules to receptors, which activates intracellular signaling networks and ultimately elicits genetic, biochemical, or biomechanical responses within the cell. While intracellular mechanisms for these processes have been well studied, little attention has been given to the role extracellular ligand transport and binding may play in signal initiation. Recent studies have found that the localization of receptors in lipid rafts is critical for the functions of many signaling pathways. By concentrating membrane components, rafts may promote essential interactions for signaling. Lipid rafts can also have negative effects on signaling, but mechanisms remain elusive. We propose that raft-mediated receptor clustering can reduce signaling by prolonging the diffusion of ligands to their receptors. We quantify this effect using a simple diffusion-limited binding model that accounts for the spatial distribution of lipid rafts and receptors on the cell surface. We find that receptor clustering can reduce the apparent rate of receptor binding by up to 80%, consistent with observed increases in epidermal growth factor (EGF) binding by up to 100% following disruption of lipid rafts (Pike and Casey 2002 Biochemistry 41:10315-10322; Roepstorff et al. 2002 J Biol Chem 277:18954-18960). Failure to account for the effects of receptor clustering on rates of ligand binding can skew the interpretation of current methods of cancer diagnosis and treatment. Finally, we discuss how the activation of particular signaling pathways can change over time, depending, in part, on the overall level and spatial distribution of the receptors.  相似文献   

12.
An adequate immune response is the result of the fine balance between activation and inhibitory signals. The exact means by which inhibitory signals obviate activation signals in immune cells are not totally elucidated. Human CD94/NKG2A is an ITIM-containing inhibitory receptor expressed by NK cells and some CD8+ T cells that recognize HLA-E. We show that the engagement of this receptor prevents NK cell activation by disruption of the actin network and exclusion of lipid rafts at the point of contact with its ligand (inhibitory NK cell immunological synapse, iNKIS). CD94/NKG2A engagement leads to recruitment and activation of src homology 2 domain-bearing tyrosine phosphatase 1. This likely explains the observed dephosphorylation of guanine nucleotide exchange factor and regulator of actin, Vav1, as well as ezrin-radixin-moesin proteins that connect actin filaments to membrane structures. In contrast, NK cell activation by NKG2D induced Vav1 and ezrin-radixin-moesin phosphorylation. Thus, CD94/NKG2A prevents actin-dependent recruitment of raft-associated activation receptors complexes to the activating synapse. This was further substantiated by showing that inhibition of actin polymerization abolished lipid rafts exclusion at the iNKIS, whereas cholesterol depletion had no effect on actin disruption at the iNKIS. These data indicate that the lipid rafts exclusion at the iNKIS is an active process which requires an intact cytoskeleton to maintain lipid rafts outside the inhibitory synapse. The net effect is to maintain an inhibitory state in the proximity of the iNKIS, while allowing the formation of activation synapse at distal points within the same NK cell.  相似文献   

13.
Group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, play critical functions in forms of activity-dependent synaptic plasticity and synapse remodeling in physiological and pathological states. Importantly, in animal models of fragile X syndrome, group I mGluR activity is abnormally enhanced, a dysfunction that may partly underlie cognitive deficits in the condition. Lipid rafts are cholesterol- and sphingolipid-enriched membrane domains that are thought to form transient signaling platforms for ligand-activated receptors. Many G protein-coupled receptors, including group I mGluRs, are present in lipid rafts, but the mechanisms underlying recruitment to these membrane domains remain incompletely understood. Here, we show that mGluR1 recruitment to lipid rafts is enhanced by agonist binding and is supported at least in part by an intact cholesterol recognition/interaction amino acid consensus (CRAC) motif in the receptor. Substitutions of critical residues in the motif reduce mGluR1 association with lipid rafts and agonist-induced, mGluR1-dependent activation of extracellular-signal-activated kinase1/2 MAP kinase (ERK-MAPK). We find that alteration of membrane cholesterol content or perturbation of lipid rafts regulates agonist-dependent activation of ERK-MAPK by group I mGluRs, suggesting a potential function for cholesterol as a positive allosteric modulator of receptor function(s). Together, these findings suggest that drugs that alter membrane cholesterol levels or directed to the receptor-cholesterol interface could be employed to modulate abnormal group I mGluR activity in neuropsychiatric conditions, including fragile X syndrome.  相似文献   

14.
Specialized membrane microdomains known as lipid rafts are thought to contribute to G-protein coupled receptor (GPCR) signaling by organizing receptors and their cognate signaling molecules into discrete membrane domains. To determine if the GnRHR, an unusual member of the GPCR superfamily, partitions into lipid rafts, homogenates of alpha T3-1 cells expressing endogenous GnRHR or Chinese hamster ovary cells expressing an epitope-tagged GnRHR were fractionated through a sucrose gradient. We found the GnRHR and c-raf kinase constitutively localized to low density fractions independent of hormone treatment. Partitioning of c-raf kinase into lipid rafts was also observed in whole mouse pituitary glands. Consistent with GnRH induced phosphorylation and activation of c-raf kinase, GnRH treatment led to a decrease in the apparent electrophoretic mobility of c-raf kinase that partitioned into lipid rafts compared with unstimulated cells. Cholesterol depletion of alpha T3-1 cells using methyl-beta-cyclodextrin disrupted GnRHR but not c-raf kinase association with rafts and shifted the receptor into higher density fractions. Cholesterol depletion also significantly attenuated GnRH but not phorbol ester-mediated activation of extracellular signal-related kinase (ERK) and c-fos gene induction. Raft localization and GnRHR signaling to ERK and c-Fos were rescued upon repletion of membrane cholesterol. Thus, the organization of the GnRHR into low density membrane microdomains appears critical in mediating GnRH induced intracellular signaling.  相似文献   

15.
Apoptosis in mammalian cells is modulated by extrinsic and intrinsic signaling pathways through the formation of death receptor-mediated death-inducing signaling complex (DISC) and mitochondrial-derived apoptosome, respectively. We found by ultrastructural approaches that the antitumor drug edelfosine induced aggregates of lipid rafts containing Fas/CD95 receptor and Fas-associated death domain-containing protein in leukemic cells. Death receptors together with DISC and apoptosome constituents were recruited in rafts during edelfosine treatment in multiple myeloma cells. This apoptotic response involved caspases-8/-9/-10 that were translocated to rafts. Lipid raft disruption by cholesterol depletion inhibited loss of mitochondrial transmembrane potential, caspase activation and apoptosis, whereas cholesterol replenishment restored these responses. Our data indicate that rafts act as scaffolds where extrinsic and intrinsic apoptotic signaling pathways concentrate, forming clusters of apoptotic signaling molecule-enriched rafts (CASMER), which function as novel supramolecular entities in the triggering of apoptosis, and play an important role in edelfosine-induced apoptosis in blood cancer cells.  相似文献   

16.
17.
Factor XI binds to activated platelets where it is efficiently activated by thrombin. The factor XI receptor is the platelet membrane glycoprotein (GP) Ib-IX-V complex (Baglia, F. A., Badellino, K. O., Li, C. Q., Lopez, J. A., and Walsh, P. N. (2002) J. Biol. Chem. 277, 1662-1668), a significant fraction of which exists within lipid rafts on stimulated platelets (Shrimpton, C. N., Borthakur, G., Larrucea, S., Cruz, M. A., Dong, J. F., and Lopez, J. A. (2002) J. Exp. Med. 196, 1057-1066). Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids implicated in localizing membrane ligands and in cellular signaling. We now show that factor XI was localized to lipid rafts in activated platelets ( approximately 8% of total bound) but not in resting platelets. Optimal binding of factor XI to membrane rafts required prothrombin (and Ca2+) or high molecular weight kininogen (and Zn2+), which are required for factor XI binding to platelets. An antibody to GPIb (SZ-2) that disrupts factor XI binding to the GPIb-IX-V complex also disrupted factor XI-raft association. The isolated recombinant Apple 3 domain of factor XI, which mediates factor XI binding to platelets, also completely displaces factor XI from membrane rafts. To investigate the physiological relevance of the factor XI-raft association, the structural integrity of lipid rafts was disrupted by cholesterol depletion utilizing methyl-beta-cyclodextrin. Cholesterol depletion completely prevented FXI binding to lipid rafts, and initial rates of factor XI activation by thrombin on activated platelets were inhibited >85%. We conclude that factor XI is localized to GPIb in membrane rafts and that this association is important for promoting the activation of factor XI by thrombin on the platelet surface.  相似文献   

18.
CXCR4 function requires membrane cholesterol: implications for HIV infection   总被引:15,自引:0,他引:15  
HIV requires cholesterol and lipid rafts on target cell membranes for infection. To elucidate a possible mechanism, we determined that cholesterol extraction by hydroxypropyl-beta-cyclodextrin (BCD) inhibits stromal cell-derived factor 1alpha (SDF-1alpha) binding to CXCR4 on T cell lines and PBMCs. Intracellular calcium responses to SDF-1alpha, as well as receptor internalization, were impaired in treated T cells. Loss in ligand binding is likely due to conformational changes in CXCR4 and not increased sensitivity to internalization. SDF-1alpha binding and calcium responses were effectively restored by reloading cholesterol. Immunofluorescence microscopy revealed that SDF-1alpha binding occurred in lipid raft microdomains that contained GM1. CXCR4 surface expression, on the other hand, only partially colocalized with GM1. HIV-1(IIIB) infection assays confirmed the functional loss of CXCR4 in the cell lines tested, Sup-T1 and CEM-NKR-CCR5. These data suggest that cholesterol is essential for CXCR4 conformation and function and that lipid rafts may play a regulatory role in SDF-1alpha signaling.  相似文献   

19.
Several G protein-associated receptors and synaptic proteins function within lipid rafts, which are subdomains of the plasma membranes that contain high concentrations of cholesterol. In this study we addressed the possible role of lipid rafts in the control of endocannabinoid system in striatal slices. Disruption of lipid rafts following cholesterol depletion with methyl-β-cyclodestrin (MCD) failed to affect synthesis and degradation of anandamide, while it caused a marked increase in the synthesis and concentration of 2-arachidonoylglycerol (2-AG), as well as in the binding activity of cannabinoid CB1 receptors. Surprisingly, endogenous 2-AG-mediated control of GABA transmission was not potentiated by MCD treatment and, in contrast, neither basal nor 3,5-Dihydroxyphenylglycine-stimulated 2-AG altered GABA synapses in cholesterol-depleted slices. Synaptic response to the cannabinoid CB1 receptor agonist HU210 was however intact in MCD-treated slices, indicating that reduced sensitivity of cannabinoid CB1 receptors does not explain why endogenous 2-AG is ineffective in inhibiting striatal GABA transmission after cholesterol depletion. Confocal microscopy analysis suggested that disruption of raft integrity by MCD might uncouple metabotropic glutamate 5-CB1 receptor interaction by altering the correct localization of both receptors in striatal neuron elements. In conclusion, our data indicate that disruption of raft integrity causes a complex alteration of the endocannabinoid signalling in the striatum.  相似文献   

20.
Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles. The significance of these domains in polarized postendocytic sorting is currently not understood. We show that dimeric IgA stimulates the incorporation of its receptor into cholesterol-sensitive detergent-resistant membranes confined to the basolateral surface/basolateral endosomes. A fraction of human transferrin receptor was also found in basolateral detergent-resistant membranes. Disrupting these membrane domains by cholesterol depletion (using methyl-beta-cyclodextrin) before ligand-receptor internalization caused depolarization of traffic from endosomes, suggesting that cholesterol in basolateral lipid rafts plays a role in polarized sorting after endocytosis. In contrast, cholesterol depletion performed after ligand internalization stimulated cargo transcytosis. It also stimulated caveolin-1 phosphorylation on tyrosine 14 and the appearance of the activated protein in dimeric IgA-containing apical organelles. We propose that cholesterol depletion stimulates the coupling of transcytotic and caveolin-1 signaling pathways, consequently prompting the membranes to shuttle from endosomes to the plasma membrane. This process may represent a unique compensatory mechanism required to maintain cholesterol balance on the cell surface of polarized epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号