首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A shortened, recombinant protein comprising residues 109-666 of the tailspike endorhamnosidase of Salmonella phage P22 was purified from Escherichia coli and crystallized. Like the full-length tailspike, the protein lacking the amino-terminal head-binding domain is an SDS-resistant, thermostable trimer. Its fluorescence and circular dichroism spectra indicate native structure. Oligosaccharide binding and endoglycosidase activities of both proteins are identical. A number of tailspike folding mutants have been obtained previously in a genetic approach to protein folding. Two temperature-sensitive-folding (tsf) mutations and the four known global second-site suppressor (su) mutations were introduced into the shortened protein and found to reduce or increase folding yields at high temperature. The mutational effects on folding yields and subunit folding kinetics parallel those observed with the full-length protein. They mirror the in vivo phenotypes and are consistent with the substitutions altering the stability of thermolabile folding intermediates. Because full-length and shortened tailspikes aggregate upon thermal denaturation, and their denaturant-induced unfolding displays hysteresis, kinetics of thermal unfolding were measured to assess the stability of the native proteins. Unfolding of the shortened wild-type protein in the presence of 2% SDS at 71 degrees C occurs at a rate of 9.2 x 10(-4) s(-1). It reflects the second kinetic phase of unfolding of the full-length protein. All six mutations were found to affect the thermal stability of the native protein. Both tsf mutations accelerate thermal unfolding about 10-fold. Two of the su mutations retard thermal unfolding up to 5-fold, while the remaining two mutations accelerate unfolding up to 5-fold. The mutational effects can be rationalized on the background of the recently determined crystal structure of the protein.  相似文献   

2.
Conformational diseases often show defective protein folding efficiency in vivo upon mutation, affecting protein properties such as thermodynamic stability and folding/unfolding/misfolding kinetics as well as the interactions of the protein with the protein homeostasis network. Human phosphoglycerate kinase 1 (hPGK1) deficiency is a rare inherited disease caused by mutations in hPGK1 that lead to loss-of-function. This disease offers an excellent opportunity to explore the complex relationships between protein stability and dynamics because of the different unfolding mechanisms displayed towards chemical and thermal denaturation. This work explores these relationships using two thermostable mutants (p.E252A and p.T378P) causing hPGK1 deficiency and WT hPGK1 using proteolysis and chemical denaturation. p.T378P is degraded ~ 30-fold faster at low protease concentrations (here, the proteolysis step is rate-limiting) and ~ 3-fold faster at high protease concentrations (where unfolding kinetics is rate-limiting) than WT and p.E252A, indicating that p.T378P is thermodynamically and kinetically destabilized. Urea denaturation studies support the decrease in thermodynamic stability and folding cooperativity for p.T378P, as well as changes in folding/unfolding kinetics. The present study reveals changes in the folding landscape of hPGK1 upon mutation that may affect protein folding efficiency and stability in vivo, also suggesting that native state stabilizers and protein homeostasis modulators may help to correct folding defects in hPGK1 deficiency. Moreover, detailed kinetic proteolysis studies are shown to be powerful and simple tools to provide deep insight into mutational effects on protein folding and stability in conformational diseases.  相似文献   

3.
Protein evolution proceeds by a complex response of organismal fitness to mutations that can simultaneously affect protein stability, structure, and enzymatic activity. To probe the relationship between genotype and phenotype, we chose a fundamental paradigm for protein evolution, folding, and design, the (βα)8 TIM barrel fold. Here, we demonstrate the role of long‐range allosteric interactions in the adaptation of an essential hyperthermophilic TIM barrel enzyme to mesophilic conditions in a yeast host. Beneficial fitness effects observed with single and double mutations of the canonical βα‐hairpin clamps and the α‐helical shell distal to the active site revealed an underlying energy network between opposite faces of the cylindrical β‐barrel. We experimentally determined the fitness of multiple mutants in the energetic phase plane, contrasting the energy barrier of the chemical reaction and the folding free energy of the protein. For the system studied, the reaction energy barrier was the primary determinant of organism fitness. Our observations of long‐range epistatic interactions uncovered an allosteric pathway in an ancient and ubiquitous enzyme that may provide a novel way of designing proteins with a desired activity and stability profile.  相似文献   

4.
Backbone hydrogen bonds are important for the structure and stability of proteins. However, since conventional site-directed mutagenesis cannot be applied to perturb the backbone, the contribution of these hydrogen bonds in protein folding and stability has been assessed only for a very limited set of small proteins. We have here investigated effects of five amide-to-ester mutations in the backbone of a PDZ domain, a 90-residue globular protein domain, to probe the influence of hydrogen bonds in a β-sheet for folding and stability. The amide-to-ester mutation removes NH-mediated hydrogen bonds and destabilizes hydrogen bonds formed by the carbonyl oxygen. The overall stability of the PDZ domain generally decreased for all amide-to-ester mutants due to an increase in the unfolding rate constant. For this particular region of the PDZ domain, it is therefore clear that native hydrogen bonds are formed after crossing of the rate-limiting barrier for folding. Moreover, three of the five amide-to-ester mutants displayed an increase in the folding rate constant suggesting that the hydrogen bonds are involved in non-native interactions in the transition state for folding.  相似文献   

5.
Ji Guo Su  Wei Zu Chen  Cun Xin Wang 《Proteins》2010,78(9):2157-2169
The impacts of three charged‐residue‐involved mutations, E46A, R3E, and R3E/L66E, on the thermostability and folding behavior of the cold shock protein from the themophile Bacillus caldolyticus (Bc‐Csp) were investigated by using a modified Gō‐like model, in which the nonspecific electrostatic interactions of charged residues were taken into account. Our simulation results show that the wild‐type Bc‐Csp and its three mutants are all two‐sate folders, which is consistent with the experimental observations. It is found that these three mutations all lead to a decrease of protein thermodynamical stability, and the effect of R3E mutation is the strongest. The lower stability of these three mutants is due to the increase of the enthalpy of the folded state and the entropy of the unfolded state. Using this model, we also studied the folding kinetics and the folding/unfolding pathway of the wild‐type Bc‐Csp as well as its three mutants and then discussed the effects of electrostatic interactions on the folding kinetics. The results indicate that the substitutions at positions 3 and 46 largely decrease the folding kinetics, whereas the mutation of residue 66 only slightly decreases the folding rate. This result agrees well with the experimental observations. It is also found that these mutations have little effects on the folding transition state and the folding pathway, in which the N‐terminal β sheet folds earlier than the C‐terminal region. We also investigated the detailed unfolding pathway and found that it is really the reverse of the folding pathway, providing the validity of our simulation results. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Azurin is a cupredoxin, which functions as an electron carrier. Its fold is dominated by a beta-sheet structure. In the present study, azurin serves as a model system to investigate the importance of a conserved disulphide bond for protein stability and folding/unfolding. For this purpose, we have examined two azurin mutants, the single mutant Cys3Ser, which disrupts azurin's conserved disulphide bond, and the double mutant Cys3Ser/Ser100Pro, which contains an additional mutation at a site distant from the conserved disulphide. The crystal structure of the azurin double mutant has been determined to 1.8 A resolution(2), with a crystallographic R-factor of 17.5% (R(free)=20.8%). A comparison with the wild-type structure reveals that structural differences are limited to the sites of the mutations. Also, the rates of folding and unfolding as determined by CD and fluorescence spectroscopy are almost unchanged. The main difference to wild-type azurin is a destabilisation by approximately 20 kJ x mol(-1), constituting half the total folding energy of the wild-type protein. Thus, the disulphide bond constitutes a vital component in giving azurin its stable fold.  相似文献   

7.
Characterizing the effects of mutations on stability is critical for understanding the function and evolution of proteins and improving their biophysical properties. High throughput folding and abundance assays have been successfully used to characterize missense mutations associated with reduced stability. However, screening for increased thermodynamic stability is more challenging since such mutations are rarer and their impact on assay readout is more subtle. Here, a multiplex assay for high throughput screening of protein folding was developed by combining deep mutational scanning, fluorescence-activated cell sorting, and deep sequencing. By analyzing a library of 2000 variants of Adenylate kinase we demonstrate that the readout of the method correlates with stability and that mutants with up to 13 °C increase in thermal melting temperature could be identified with low false positive rate. The discovery of many stabilizing mutations also enabled the analysis of general substitution patterns associated with increased stability in Adenylate kinase. This high throughput method to identify stabilizing mutations can be combined with functional screens to identify mutations that improve both stability and activity.  相似文献   

8.
Mechanism of phage P22 tailspike protein folding mutations.   总被引:5,自引:4,他引:1       下载免费PDF全文
Temperature-sensitive folding (tsf) and global-tsf-suppressor (su) point mutations affect the folding yields of the trimeric, thermostable phage P22 tailspike endorhamnosidase at elevated temperature, both in vivo and in vitro, but they have little effect on function and stability of the native folded protein. To delineate the mechanism by which these mutations modify the partitioning between productive folding and off-pathway aggregation, the kinetics of refolding after dilution from acid-urea solutions and the thermal stability of folding intermediates were analyzed. The study included five tsf mutations of varying severity, the two known su mutations, and four tsf/su double mutants. At low temperature (10 degrees C), subunit-folding rates, measured as an increase in fluorescence, were similar for wild-type and mutants. At 25 degrees C, however, tsf mutations reduced the rate of subunit folding. The su mutations increased this rate, when present in the tsf-mutant background, but had no effect in the wild-type background. Conversely, tsf mutations accelerated, and su mutations retarded the irreversible off-pathway reaction, as revealed by temperature down-shifts after varied times during refolding at high temperature (40 degrees C). The kinetic results are consistent with tsf mutations destabilizing and su mutations stabilizing an essential subunit folding intermediate. In accordance with this interpretation, tsf mutations decreased, and su mutations increased the temperature resistance of folding intermediates, as disclosed by temperature up-shifts during refolding at 25 degrees C. The stabilizing and destabilizing effects were most pronounced early during refolding. However, they were not limited to subunit-folding intermediates and were also observable during thermal unfolding of the native protein.  相似文献   

9.
The armory of GFP mutants available to biochemists and molecular biologists is huge. Design and selection of mutants are usually driven by tailored spectroscopic properties, but some key aspects of stability, folding and dynamics of selected GFP variants still need to be elucidated. We have prepared, expressed and characterized three H148 mutants of the highly fluorescent variant GFPmut2. H148 is known to be involved in the H-bonding network surrounding the chromophore, and all the three mutants, H148G, H148R and H148K, show increased pKa values of the chromophore. Only H148G GFPmut2 (Mut2G) gave good expression and purification yields, indicating that position 148 is critical for efficient folding in vivo. The chemical denaturation of Mut2G was monitored by fluorescence emission, absorbance and far-UV circular dichroism spectroscopy. The mutation has little effect on the spectroscopic properties of the protein and on its stability in solution. However, the unfolding kinetics of the protein encapsulated in wet nanoporous silica gels, a system that allows to stabilize conformations that are poorly or only transiently populated in solution, indicate that the unfolding pathway of Mut2G is markedly different from the parent molecule. In particular, encapsulation allowed to identify an unfolding intermediate that retains a native-like secondary structure despite a destructured chromophore environment. Thus, H148 is a critical residue not only for the chromophoric and photodynamic properties, but also for the correct folding of GFP, and its substitution has great impact on expression yields and stability of the mature protein.  相似文献   

10.
Recent advances in experimental and computational methods have made it possible to determine with considerable accuracy the structures whose formation is rate limiting for the folding of some small proteins-the transition state ensemble, or TSE. We present a method to analyze and validate all-atom models of such structures. The method is based on the comparison of experimental data with the computation of the change in free energy of the TSE resulting from specific mutations. Each mutation is modeled individually in all members of an ensemble of transition state structures using a method originally developed to predict mutational changes in the stability of native proteins. We first apply this method to six proteins for which we have determined the TSEs with a technique that uses experimental mutational data (Phi-values) as restraints in the structure determination and find a highly significant correlation between the calculated free energy changes and those derived from experimental kinetic data. We then use the procedure to analyze transition state structures determined by molecular dynamics simulations of unfolding, again finding a high correlation. Finally, we use the method to estimate changes in folding rates of several hydrophobic core mutants of Fyn SH3. Taken together, these results show that the procedure developed here is a tool of general validity for analyzing, assessing, and improving the quality of the structures of transition states for protein folding.  相似文献   

11.
Deregulation of allosteric inhibition of enzymes is a challenge for strain engineering and has been achieved so far primarily by random mutation and trial-and-error. In this work, we used aspartokinase, an important allosteric enzyme for industrial amino acids production, to demonstrate a predictive approach that combines protein dynamics and evolution for a rational reengineering of enzyme allostery. Molecular dynamic simulation of aspartokinase III (AK3) from Escherichia coli and statistical coupling analysis of protein sequences of the aspartokinase family allowed to identify a cluster of residues which are correlated during protein motion and coupled during the evolution. This cluster of residues forms an interconnected network mediating the allosteric regulation, including most of the previously reported positions mutated in feedback insensitive AK3 mutants. Beyond these mutation positions, we have successfully constructed another twelve targeted mutations of AK3 desensitized toward lysine inhibition. Six threonine-insensitive mutants of aspartokinase I-homoserine dehydrogenase I (AK1-HD1) were also created based on the predictions. The proposed approach can be widely applied for the deregulation of other allosteric enzymes.  相似文献   

12.
Increasing the conformational stability of proteins is an important goal for both basic research and industrial applications. In vitro selection has been used successfully to increase protein stability, but more often site‐directed mutagenesis is used to optimize the various forces that contribute to protein stability. In previous studies, we showed that improving electrostatic interactions on the protein surface and improving the β‐turn sequences were good general strategies for increasing protein stability, and used them to increase the stability of RNase Sa. By incorporating seven of these mutations in RNase Sa, we increased the stability by 5.3 kcal/mol. Adding one more mutation, D79F, gave a total increase in stability of 7.7 kcal/mol, and a melting temperature 28°C higher than the wild‐type enzyme. Surprisingly, the D79F mutation lowers the change in heat capacity for folding, ΔCp, by 0.6 kcal/mol/K. This suggests that this mutation stabilizes structure in the denatured state ensemble. We made other mutants that give some insight into the structure present in the denatured state. Finally, the thermodynamics of folding of these stabilized variants of RNase Sa are compared with those observed for proteins from thermophiles.  相似文献   

13.
The assembly of single-chain Fv (scFv) antibody fragments, consisting of an interconnected variable heavy chain (VH) and variable light chain (VL), is a cooperative process that requires coupled folding and domain association. We report here an initial investigation of VH/VL domain-domain assembly with a site-directed mutagenesis study that probes a highly conserved VH/VL hydrogen bonding interaction. Gln168 of the S5 scFv (Kabat VH 39) is absolutely conserved in 95% of all VH, and Gln44 (Kabat VL 38) is found in 94% of all kappa VL (Glx in 95% of all lambda VL). These side chains form two hydrogen bonds in head-to-tail alignment across the VH/VL interface. Double mutant cycles at Gln168 and Gln44 were constructed to first investigate their contribution to thermodynamic folding stability, second to investigate whether stability can be improved, and third to determine whether refolding efficiencies are affected by mutations at these positions. The results demonstrate that the Gln168-Gln44 interaction is not a key determinant of S5 scFv folding stability, as sequential modification to alanine has no significant effect on the free energy of folding. Several mutations that alter the glutamines to methionine or charged amino acids significantly increase the thermodynamic stability by increasing the m(g) associated with the unfolding isotherm. These effects are hypothesized to arise largely from an increase in the VH/VL association free energy that leads to tighter coupling between domain-domain association and folding. All of the mutants also display a reduced antigen binding affinity. Single and double methionine mutants also displayed significant increases in refolding efficiency of 2.4- to 3-fold over the native scFv, whereas the double alanine/methionine mutants displayed moderate 1.9- to 2.4-fold enhancement. The results suggest that reengineering the VH/VL interface could be useful in improving the stability of single-chain antibodies, as Ala/Met mutations at these conserved positions increase the free energy of folding by 46% while minimally perturbing binding affinity. They also could be useful in improving scFv recovery from inclusion bodies as the mutations increase the refolding efficiency by more than twofold.  相似文献   

14.
Inter-residue interactions play an important role to the folding and stability of protein molecules. In this work, we analyze the role of medium- and long-range interactions to the stability of T4 lysozyme mutants. We found that, in buried mutations, the increase in long-range contacts upon mutations destabilizes the protein, whereas, in surface mutations, the increase in long-range contacts increases the stability, indicating the importance of surrounding polar residues to the stability of surface mutations. Further, the increase in medium-range contacts decreases the stability of buried and surface mutations and a direct relationship is observed between the increase of medium-range contacts and increase in stability for partially buried/exposed mutations. Moreover, the relationship between amino acid properties and stability of T4 lysozyme mutants at positions Ile3, Phe53, and Leu99 showed that the effect of medium- and long-range contacts is less for buried mutations and the inter-residue contacts have significant correlation with the stability of partially buried mutations.  相似文献   

15.
Ribonuclease HII from hyperthermophile Thermococcus kodakaraensis (Tk-RNase HII) is a robust monomeric protein under kinetic control, which possesses some proline residues at the N-terminal of alpha-helices. Proline residue at the N-terminal of an alpha-helix is thought to stabilize a protein. In this work, the thermostability and folding kinetics of Tk-RNase HII were measured for mutant proteins in which a proline residue is introduced (Xaa to Pro) or removed (Pro to Ala) at the N-terminal of alpha-helices. In the folding experiments, the mutant proteins examined exhibit little influence on the remarkably slow unfolding of Tk-RNase HII. In contrast, E111P and K199P exhibit some thermostabilization, whereas P46A, P70A and P174A have some thermodestabilization. E111P/K199P and P46A/P70A double mutations cause cumulative changes in stability. We conclude that the proline effect on protein thermostability is observed in a hyperthermophilic protein, but each proline residue at the N-terminal of an alpha-helix slightly contributes to the thermostability. The present results also mean that even a natural hyperthermophilic protein can acquire improved thermostability.  相似文献   

16.
Dürr E  Jelesarov I 《Biochemistry》2000,39(15):4472-4482
Protein stability in vitro can be influenced either by introduction of mutations or by changes in the chemical composition of the solvent. Recently, we have characterized the thermodynamic stability and the rate of folding of the engineered dimeric leucine zipper A(2), which has a strengthened hydrophobic core [Dürr, E., Jelesarov, I., and Bosshard, H. R. (1999) Biochemistry 38, 870-880]. Here we report on the energetic consequences of a cavity introduced by Leu/Ala substitution at the tightly packed dimeric interface and how addition of 30% glycerol affects the folding thermodynamics of A(2) and the cavity mutants. Folding could be described by a two-state transition from two unfolded monomers to a coiled coil dimer. Removal of six methylene groups by Leu/Ala substitutions destabilized the dimeric coiled coil by 25 kJ mol(-1) at pH 3.5 and 25 degrees C in aqueous buffer. Destabilization was purely entropic at around room temperature and became increasingly enthalpic at elevated temperatures. Mutations were accompanied by a decrease of the unfolding heat capacity by 0.5 kJ K(-1) mol(-1). Addition of 30% glycerol increased the free energy of folding of A(2) and the cavity mutants by 5-10 kJ mol(-1) and lowered the unfolding heat capacity by 25% for A(2) and by 50% for the Leu/Ala mutants. The origin of the stabilizing effect of glycerol varied with temperature. Stabilization of the parent leucine zipper A(2) was enthalpic with an unfavorable entropic component between 0 and 100 degrees C. In the case of cavity mutants, glycerol induced enthalpic stabilization below 50 degrees C and entropic stabilization above 50 degrees C. The effect of glycerol could not be accounted for solely by the enthalpy and entropy of transfer or protein surface from water to glycerol/water mixture. We propose that in the presence of glycerol the folded coiled coil dimer is better packed and displays less intramolecular fluctuations, leading to enhanced enthalpic interactions and to an increase of the entropy of folding. This work demonstrates that mutational and solvent effects on protein stability can be thermodynamically complex and that it may not be sufficient to only analyze changes of enthalpy and entropy at the unfolding temperature (T(m)) to understand the mechanisms of protein stabilization.  相似文献   

17.
Proteins are regarded as being robust to the deleterious effects of mutations. Here, the neutral emergence of mutational robustness in a population of single domain proteins is explored using computer simulations. A pairwise contact model was used to calculate the ΔG of folding (ΔG folding) using the three dimensional protein structure of leech eglin C. A random amino acid sequence with low mutational robustness, defined as the average ΔΔG resulting from a point mutation (ΔΔG average), was threaded onto the structure. A population of 1,000 threaded sequences was evolved under selection for stability, using an upper and lower energy threshold. Under these conditions, mutational robustness increased over time in the most common sequence in the population. In contrast, when the wild type sequence was used it did not show an increase in robustness. This implies that the emergence of mutational robustness is sequence specific and that wild type sequences may be close to maximal robustness. In addition, an inverse relationship between ??G average and protein stability is shown, resulting partly from a larger average effect of point mutations in more stable proteins. The emergence of mutational robustness was also observed in the Escherichia coli colE1 Rop and human CD59 proteins, implying that the property may be common in single domain proteins under certain simulation conditions. The results indicate that at least a portion of mutational robustness in small globular proteins might have arisen by a process of neutral emergence, and could be an example of a beneficial trait that has not been directly selected for, termed a “pseudaptation.”  相似文献   

18.
Mateo R  Mateu MG 《Journal of virology》2007,81(4):1879-1887
The evolution of foot-and-mouth disease virus (FMDV) (biological clone C-S8c1) in persistently infected cells led to the emergence of a variant (R100) that displayed increased virulence, reduced stability, and other modified phenotypic traits. Some mutations fixed in the R100 genome involved a cluster of highly conserved residues around the capsid pores that participate in interactions with each other and/or between capsid protomers. We have investigated phenotypic and genotypic changes that occurred when these replacements were introduced into the C-S8c1 capsid. The C3007V and M3014L mutations exerted no effect on plaque size or viral yield during lytic infections, or on virion stability, but led to a reduction in biological fitness; the D3009A mutation caused drastic reductions in plaque size and viability. Remarkably, competition of the C3007V mutant with the nonmutated virus invariably resulted in the fixation of the D3009A mutation in the C3007V capsid. In turn, the presence of the D3009A mutation invariably led to the fixation of the M3014L mutation. In both cases, two individually disadvantageous mutations led, together, to an increase in fitness, as the double mutants outcompeted the nonmutated genotype. The higher fitness of C3007V/D3009A was related to a faster multiplication rate. These observations provide evidence for a chain of linked, compensatory mutational events in a defined region of the FMDV capsid. Furthermore, they indicate that the clustering of unique amino acid replacements in viruses from persistent infections may also occur in cytolytic infections in response to changes caused by previous mutations without an involvement of the new mutations in the adaptation to a different environment.  相似文献   

19.
Maintaining stability is a major constraint in protein evolution because most mutations are destabilizing. Buffering and/or compensatory mechanisms that counteract this progressive destabilization during functional adaptation are pivotal for protein evolution as well as protein engineering. However, the interplay of these two mechanisms during a full evolutionary trajectory has never been explored. Here, we unravel such dynamics during the laboratory evolution of a phosphotriesterase into an arylesterase. A controllable GroEL/ES chaperone co-expression system enabled us to vary the selection environment between buffering and compensatory, which smoothened the trajectory along the fitness landscape to achieve a > 104 increase in arylesterase activity. Biophysical characterization revealed that, in contrast to prevalent models of protein stability and evolution, the variants' soluble cellular expression did not correlate with in vitro stability, and compensatory mutations were linked to a stabilization of folding intermediates. Thus, folding kinetics in the cell are a key feature of protein evolvability.  相似文献   

20.
This paper describes attempts to increase the kinetic stability of chitinase B from Serratia marcescens (ChiB) by the introduction of semi-automatically designed rigidifying mutations of the Gly-->Ala and Xxx-->Pro type. Of 15 single mutants, several displayed significant increases in thermal stability, whereas most mutants showed minor effects. All mutations with non-marginal effects on stability clustered in a limited, surface-exposed region of the enzyme, indicating that this region is involved in a partial unfolding process that triggers irreversible thermal inactivation (aggregation). A double mutant containing two stabilizing mutations in this region (G188A, A234P) displayed a 10-fold increase in half-life at 57 degrees C and a 4.2 degrees C increase in apparent T(m). These results show that entropic stabilization works well for ChiB and they pinpoint a region whose unfolding may be crucial for the kinetic stability of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号