首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The serum protein fetuin-A is a potent systemic inhibitor of soft tissue calcification. Fetuin-A is highly effective in the formation and stabilization of protein-mineral colloids, referred to as calciprotein particles (CPPs). These particles ripen in vitro in a two-step process, indicated by a morphological conversion from spheres to larger prolate ellipsoids. Using a combined light scattering and electron microscopic imaging approach we determined that the second-stage particles resulted from a highly anisotropic outgrowth of the first-stage particles. Electron microscopy of ascites fluid from a patient with calcifying peritonitis revealed particles reminiscent of secondary CPPs. Thus, CPPs form in the body and undergo the two-step ripening at least in pathological conditions. Unlike in vitro generated CPPs, ascites-derived CPPs contained little fetuin-A but large amounts of albumin. This prompted us to study the role of fetuin-A combined with other serum proteins in CPP formation. Fetuin-A was indispensable for primary CPP formation. Albumin and acidic proteins in general greatly enhanced the fetuin-A triggered formation of secondary CPPs and, thus, substituted substantial amounts of fetuin-A without loss of inhibition of calcium phosphate precipitation. Thus, direct mineral deposition from solute in the body is unlikely even at low fetuin-A serum levels as long as sufficient bulk acidic protein is available. Collectively fetuin-A and other acidic bulk plasma proteins may be considered as mineral chaperones mediating the stabilization, safe transport, and clearance in the body of calcium and phosphate as colloidal complexes, thus, preventing ectopic calcification.  相似文献   

2.
Pathological calcification of the cardiovascular system is one of the major causes of high mortality and morbidity in dialysis patients. The inhibition of ectopic calcification relies (I) on the formation of calciprotein particles (CPPs), nanospherical complexes of calcium phosphate mineral, fetuin-A and other acidic serum proteins, and (II) on the stabilization of calcium phosphate prenucleation clusters by fetuin-A monomers. In supersaturated serum, mineral ion aggregation leads to a change in the electrical impedance. In this work, we present a method based on electrochemical impedance spectroscopy (EIS) to establish an impedance trace of mineral ion clustering in vitro. In the presence of 20 μM of serum protein fetuin-A, a prototypic calcification inhibitor, we measured a change in impedance (Δ(R)) of 195.52 ± 27.78%Ω compared to 430.41 ± 11.36%Ω in inhibitor-free samples. We also identified a CPP-formation dependency on the actual content of ions and protein in the samples under investigation. Two-step ripening of CPP was also observed. The presented method may form the basis of a simple label-free bedside or online test to be used in routine clinical practice for estimating the calcification risk in serum.  相似文献   

3.
The identity of the cell adhesive factors in fetal bovine serum, commonly used to supplement growth media, remains a mystery due to the plethora of serum proteins. In the present analyses, we showed that fetuin-A, whose function in cellular attachment in tissue culture has been debated for many years, is indeed a major serum cell attachment factor particularly for tumor cells. We are able to report this because of a new purification strategy that has for the first time given us a homogeneous protein band in colloidal Coomassie-stained gels that retains biological activity. The tumor cells adhered to immobilized fetuin-A and not α(2)-macroglobulin, its major contaminant. The interaction of cells with fetuin-A was driven mainly by Ca(2+) ions, and cells growing in regular medium supplemented with fetal bovine serum were just as sensitive to loss of extracellular Ca(2+) ions as cells growing in fetuin-A. Fractionation of human serum revealed that cell attachment was confined to the fractions that had fetuin-A. Interestingly, the tumor cells also took up fetuin-A and secreted it back to the medium using an unknown mechanism that can be observed in live cells. The attachment of tumor cells to fetuin-A was accompanied by phosphatidylinositol 3-kinase/Akt activation that was down-regulated in cells that lack annexin-A6, one of the cell surface receptors for fetuin-A. Taken together, our data show the significance of fetuin-A in tumor cell growth mechanisms in vitro and open new research vistas for this protein.  相似文献   

4.
The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.  相似文献   

5.
The distribution of divalent ions in semidilute solutions of high-molecular-mass DNA containing both sodium chloride and strontium chloride in near-physiological conditions is studied by small-angle x-ray scattering and by small-angle neutron scattering. Both small-angle neutron scattering and small-angle x-ray scattering reveal a continuous increase in the scattering intensity at low q with increasing divalent ion concentration, while at high q the scattering curves converge. The best fit to the data is found for a configuration in which DNA strands of cross-sectional radius 10 angstroms are surrounded by a counterion sheath of outer radius approximately 13.8 angstroms, independent of the strontium chloride concentration. When the strontium chloride is replaced by calcium chloride, similar results are obtained, but the thickness of the sheath increases when the divalent salt concentration decreases. These results correspond in both cases to partial localization of the counterions within a layer that is thinner than the effective Debye screening length.  相似文献   

6.
Hydrodynamic studies of the solution properties of proteins and other biological macromolecules are often hard to interpret when the sample is present at a reasonably concentrated solution. The reason for this is that solutions exhibit deviations from ideal behaviour which is manifested as thermodynamic non-ideality. The range of concentrations at which this behaviour typically is exhibited is as low as 1–2 mg/ml, well within the range of concentrations used for their analysis by techniques such as small-angle scattering. Here we discuss thermodynamic non-ideality used previously used in the context of light scattering and sedimentation equilibrium analytical ultracentrifugation and apply it to the Guinier region of small-angle scattering data. The results show that there is a complementarity between the radially averaged structure factor derived from small-angle X-ray scattering/small-angle neutron scattering studies and the second virial coefficient derived from sedimentation equilibrium analytical ultracentrifugation experiments.  相似文献   

7.
Rullo A  Qian J  Nitz M 《Biopolymers》2011,95(10):722-731
Glycosaminoglycans (GAGs) affect the efficiency of cellular uptake of a wide range of cell penetrating peptides (CPPs). GAGs have been proposed to cluster with CPPs at the cell surface before uptake but little is known about the formation or stability of CPP-GAG clusters. Here we apply a combination of heparin affinity chromatography, dynamic light scattering, and fluorescence spectroscopy to characterize the formation, stability, and size of the clusters formed between CPPs and heparin. Under conditions similar to those used in cell uptake experiments the CPP, penetratin (Antp), was observed to form significantly more stable clusters with heparin than the CPP TAT, despite TAT showing a comparable affinity for heparin. This difference in cluster stability may explain the origins of the preferred cell uptake pathways followed by Antp and TAT, and may be an important parameter for optimizing the efficiency of designed CPP delivery vectors.  相似文献   

8.
The helix-to-coil denaturation transition in DNA has been investigated in mixed solvents at high concentration using ultraviolet light absorption spectroscopy and small-angle neutron scattering. Two solvents have been used: water and ethylene glycol. The "melting" transition temperature was found to be 94 degrees C for 4% mass fraction DNA/d-water and 38 degrees C for 4% mass fraction DNA/d-ethylene glycol. The DNA melting transition temperature was found to vary linearly with the solvent fraction in the mixed solvents case. Deuterated solvents (d-water and d-ethylene glycol) were used to enhance the small-angle neutron scattering signal and 0.1M NaCl (or 0.0058 g/g mass fraction) salt concentration was added to screen charge interactions in all cases. DNA structural information was obtained by small-angle neutron scattering, including a correlation length characteristic of the inter-distance between the hydrogen-containing (desoxyribose sugar-amine base) groups. This correlation length was found to increase from 8.5 to 12.3 A across the melting transition. Ethylene glycol and water mixed solvents were found to mix randomly in the solvation region in the helix phase, but nonideal solvent mixing was found in the melted coil phase. In the coil phase, solvent mixtures are more effective solvating agents than either of the individual solvents. Once melted, DNA coils behave like swollen water-soluble synthetic polymer chains.  相似文献   

9.
Herbig ME  Assi F  Textor M  Merkle HP 《Biochemistry》2006,45(11):3598-3609
The cell penetrating peptide (CPP) pVEC has been shown to translocate efficiently the plasma membrane of different mammalian cell lines by a receptor-independent mechanism without exhibiting cellular toxicity. This ability renders CPPs of broad interest in cell biology, biotechnology, and drug delivery. To gain insight into the interaction of CPPs with biomembranes, we studied the interaction of pVEC and W2-pVEC, an Ile --> Trp modification of the former, with phase-separated supported phospholipid bilayers (SPB) by atomic force microscopy (AFM). W2-pVEC induced a transformation of dipalmitoyl phosphatidylcholine (DPPC) domains from a gel phase state via an intermediate state with branched structures into essentially flat bilayers. With pVEC the transformation followed a similar pathway but was slower. Employing fluorescence polarization, we revealed the capability of the investigated peptides to increase the fluidity of DPPC domains as the underlying mechanism of transformation. Due to their tighter packing, sphingomyelin (SM) domains were not transformed. By combination, AFM observations, dynamic light scattering studies, and liposome leakage experiments indicated that bilayer integrity was not compromised by the peptides. Transformation of gel phase domains in SPB by CPPs represents a novel aspect in the discussion on uptake mechanisms of CPPs.  相似文献   

10.
Serum-derived granulations and purported nanobacteria (NB) are pleomorphic apatite structures shown to resemble calcium granules widely distributed in nature. They appear to be assembled through a dual inhibitory-seeding mechanism involving proteinaceous factors, as determined by protease (trypsin and chymotrypsin) and heat inactivation studies. When inoculated into cell culture medium, the purified proteins fetuin-A and albumin fail to induce mineralization, but they will readily combine with exogenously added calcium and phosphate, even in submillimolar amounts, to form complexes that will undergo morphological transitions from nanoparticles to spindles, films, and aggregates. As a mineralization inhibitor, fetuin-A is much more potent than albumin, and it will only seed particles at higher mineral-to-protein concentrations. Both proteins display a bell-shaped, dose-dependent relationship, indicative of the same dual inhibitory-seeding mechanism seen with whole serum. As ascertained by both seeding experiments and gel electrophoresis, fetuin-A is not only more dominant but it appears to compete avidly for nanoparticle binding at the expense of albumin. The nanoparticles formed in the presence of fetuin-A are smaller than their albumin counterparts, and they have a greater tendency to display a multi-layered ring morphology. In comparison, the particles seeded by albumin appear mostly incomplete, with single walls. Chemically, spectroscopically, and morphologically, the protein-mineral particles resemble closely serum granules and NB. These particles are thus seen to undergo an amorphous to crystalline transformation, the kinetics and completeness of which depend on the protein-to-mineral ratios, with low ratios favoring faster conversion to crystals. Our results point to a dual inhibitory-seeding, de-repression model for the assembly of particles in supersaturated solutions like serum. The presence of proteins and other inhibitory factors tend to block apatite nuclei formation or to stabilize the nascent nuclei as amorphous or semi-crystalline spherical nanoparticles, until the same inhibitory influences are overwhelmed or de-repressed, whereby the apatite nuclei grow in size to coalesce into crystalline spindles and films—a mechanism that may explain not only the formation of calcium granules in nature but also normal or ectopic calcification in the body.  相似文献   

11.
《Journal of molecular biology》2019,431(17):3229-3245
α-Synuclein (αSyn) is an intrinsically disordered protein that can form amyloid fibrils. Fibrils of αSyn are implicated with the pathogenesis of Parkinson's disease and other synucleinopathies. Elucidating the mechanism of fibril formation of αSyn is therefore important for understanding the mechanism of the pathogenesis of these diseases. Fibril formation of αSyn is sensitive to solution conditions, suggesting that fibril formation of αSyn arises from the changes in its inherent physico-chemical properties, particularly its dynamic properties because intrinsically disordered proteins such as αSyn utilize their inherent flexibility to function. Characterizing these properties under various conditions should provide insights into the mechanism of fibril formation. Here, using the quasielastic neutron scattering and small-angle x-ray scattering techniques, we investigated the dynamic and structural properties of αSyn under the conditions, where mature fibrils are formed (pH 7.4 with a high salt concentration), where clumping of short fibrils occurs (pH 4.0), and where fibril formation is not completed (pH 7.4). The small-angle x-ray scattering measurements showed that the extended structures at pH 7.4 with a high salt concentration become compact at pH 4.0 and 7.4. The quasielastic neutron scattering measurements showed that both intra-molecular segmental motions and local motions such as side-chain motions are enhanced at pH 7.4 with a high salt concentration, compared to those at pH 7.4 without salt, whereas only the local motions are enhanced at pH 4.0. These results imply that fibril formation of αSyn requires not only the enhanced local motions but also the segmental motions such that proper inter-molecular interactions are possible.  相似文献   

12.
Sec14, the major yeast phosphatidylcholine (PC)/phosphatidylinositol (PI) transfer protein (PITP), coordinates PC and PI metabolism to facilitate an appropriate and essential lipid signaling environment for membrane trafficking from trans-Golgi membranes. The Sec14 PI/PC exchange cycle is essential for its essential biological activity, but fundamental aspects of how this PITP executes its lipid transfer cycle remain unknown. To address some of these outstanding issues, we applied time-resolved small-angle neutron scattering for the determination of protein-mediated intervesicular movement of deuterated and hydrogenated phospholipids in vitro. Quantitative analysis by small-angle neutron scattering revealed that Sec14 PI- and PC-exchange activities were sensitive to both the lipid composition and curvature of membranes. Moreover, we report that these two parameters regulate lipid exchange activity via distinct mechanisms. Increased membrane curvature promoted both membrane binding and lipid exchange properties of Sec14, indicating that this PITP preferentially acts on the membrane site with a convexly curved face. This biophysical property likely constitutes part of a mechanism by which spatial specificity of Sec14 function is determined in cells. Finally, wild-type Sec14, but not a mixture of Sec14 proteins specifically deficient in either PC- or PI-binding activity, was able to effect a net transfer of PI or PC down opposing concentration gradients in vitro.  相似文献   

13.

Background

The secreted liver protein fetuin-A (AHSG) is up-regulated in hepatic steatosis and the metabolic syndrome. These states are strongly associated with low-grade inflammation and hypoadiponectinemia. We, therefore, hypothesized that fetuin-A may play a role in the regulation of cytokine expression, the modulation of adipose tissue expression and plasma concentration of the insulin-sensitizing and atheroprotective adipokine adiponectin.

Methodology and Principal Findings

Human monocytic THP1 cells and human in vitro differenttiated adipocytes as well as C57BL/6 mice were treated with fetuin-A. mRNA expression of the genes encoding inflammatory cytokines and the adipokine adiponectin (ADIPOQ) was assessed by real-time RT-PCR. In 122 subjects, plasma levels of fetuin-A, adiponectin and, in a subgroup, the multimeric forms of adiponectin were determined. Fetuin-A treatment induced TNF and IL1B mRNA expression in THP1 cells (p<0.05). Treatment of mice with fetuin-A, analogously, resulted in a marked increase in adipose tissue Tnf mRNA as well as Il6 expression (27- and 174-fold, respectively). These effects were accompanied by a decrease in adipose tissue Adipoq mRNA expression and lower circulating adiponectin levels (p<0.05, both). Furthermore, fetuin-A repressed ADIPOQ mRNA expression of human in vitro differentiated adipocytes (p<0.02) and induced inflammatory cytokine expression. In humans in plasma, fetuin-A correlated positively with high-sensitivity C-reactive protein, a marker of subclinical inflammation (r = 0.26, p = 0.01), and negatively with total- (r = −0.28, p = 0.02) and, particularly, high molecular weight adiponectin (r = −0.36, p = 0.01).

Conclusions and Significance

We provide novel evidence that the secreted liver protein fetuin-A induces low-grade inflammation and represses adiponectin production in animals and in humans. These data suggest an important role of fatty liver in the pathophysiology of insulin resistance and atherosclerosis.  相似文献   

14.
Edmund R.S. Kunji  Paul G. Crichton 《BBA》2010,1797(6-7):817-831
Mitochondrial carriers link biochemical pathways in the mitochondrial matrix and cytosol by transporting metabolites, inorganic ions, nucleotides and cofactors across the mitochondrial inner membrane. Uncoupling proteins that dissipate the proton electrochemical gradient also belong to this protein family. For almost 35 years the general consensus has been that mitochondrial carriers are dimeric in structure and function. This view was based on data from inhibitor binding studies, small-angle neutron scattering, electron microscopy, differential tagging/affinity chromatography, size-exclusion chromatography, analytical ultracentrifugation, native gel electrophoresis, cross-linking experiments, tandem-fusions, negative dominance studies and mutagenesis. However, the structural folds of the ADP/ATP carriers were found to be monomeric, lacking obvious dimerisation interfaces. Subsequently, the yeast ADP/ATP carrier was demonstrated to function as a monomer. Here, we revisit the data that have been published in support of a dimeric state of mitochondrial carriers. Our analysis shows that when critical factors are taken into account, the monomer is the only plausible functional form of mitochondrial carriers. We propose a transport model based on the monomer, in which access to a single substrate binding site is controlled by two flanking salt bridge networks, explaining uniport and strict exchange of substrates.  相似文献   

15.
The tumor suppressor protein Merlin inhibits cell proliferation upon establishing cell–cell contacts. Because Merlin has high level of sequence similarity to the Ezrin-Radixin-Moesin family of proteins, the structural model of Ezrin-Radixin-Moesin protein autoinhibition and cycling between closed/resting and open/active conformational states is often employed to explain Merlin function. However, recent biochemical studies suggest alternative molecular models of Merlin function. Here, we have determined the low-resolution molecular structure and binding activity of Merlin and a Merlin(S518D) mutant that mimics the inactivating phosphorylation at S518 using small-angle neutron scattering and binding experiments. Small-angle neutron scattering shows that, in solution, both Merlin and Merlin(S518D) adopt a closed conformation, but binding experiments indicate that a significant fraction of either Merlin or Merlin(S518D) is capable of binding to the target protein NHERF1. Upon binding to the phosphatidylinositol 4,5-bisphosphate lipid, the wild-type Merlin adopts a more open conformation than in solution, but Merlin(S518D) remains in a closed conformation. This study supports a rheostat model of Merlin in NHERF1 binding and contributes to resolving a controversy about the molecular conformation and binding activity of Merlin.  相似文献   

16.
Polarization analysis was used to separate experimentally the coherent and spin-incoherent nuclear static scattering functions, from a representative set of samples of interest for protein studies. This method had so far limited application in the study of amorphous materials, despite the relevance of the information that it provides. It allows, for instance, the experimental determination of the structure factor of materials containing a significant amount of hydrogen atoms, avoiding the contamination of measurements by a non-negligible incoherent background. Knowledge of the relative importance of the coherent and incoherent terms at different Q-values is also a pre-requisite for the interpretation of quasielastic neutron scattering experiments, performed at instruments in which the total dynamic scattering function is measured, such as conventional time-of-flight and backscattering spectrometers. Combining data from different instruments, it was possible to cover a wide Q-range, from the small-angle region (0.006 < Q < 0.04 Å− 1) to the wide-angle region (up to ≈ 2.35 Å− 1). Quantitative information was obtained on the fraction of coherent to spin-incoherent scattering from different protein samples: deuterated and protonated protein powders at different hydration levels and solutions of protonated proteins in D2O at different concentrations. The results obtained are discussed in the context of the validity of the assumptions generally made when interpreting quasielastic neutron scattering experiments performed without polarization analysis.  相似文献   

17.
Our goal in this study was to define the mechanisms by which fetuin-A mediates the adhesion of tumor cells. The data show that in the absence of fetuin-A, detached tumor cells secrete exosomes that contain most of the known exosomal associated proteins but lack the capacity to mediate cellular adhesion. In the presence of fetuin-A, the cells secrete exosomes, which contain, in addition to the other exosomal proteins, fetuin-A, plasminogen and histones. These exosomes mediate adhesion and cell spreading. Plasminogen is a participant in this novel adhesion mechanism. The data suggest that these exosomes play a role in tumor progression.  相似文献   

18.
The enzyme mercuric ion reductase MerA is the central component of bacterial mercury resistance encoded by the mer operon. Many MerA proteins possess metallochaperone-like N-terminal domains (NmerA) that can transfer Hg2+ to the catalytic core domain (Core) for reduction to Hg0. These domains are tethered to the homodimeric Core by ∼ 30-residue linkers that are susceptible to proteolysis, the latter of which has prevented characterization of the interactions of NmerA and the Core in the full-length protein. Here, we report purification of homogeneous full-length MerA from the Tn21 mer operon using a fusion protein construct and combine small-angle X-ray scattering and small-angle neutron scattering with molecular dynamics simulation to characterize the structures of full-length wild-type and mutant MerA proteins that mimic the system before and during handoff of Hg2+ from NmerA to the Core. The radii of gyration, distance distribution functions, and Kratky plots derived from the small-angle X-ray scattering data are consistent with full-length MerA adopting elongated conformations as a result of flexibility in the linkers to the NmerA domains. The scattering profiles are best reproduced using an ensemble of linker conformations. This flexible attachment of NmerA may facilitate fast and efficient removal of Hg2+ from diverse protein substrates. Using a specific mutant of MerA allowed the formation of a metal-mediated interaction between NmerA and the Core and the determination of the position and relative orientation of NmerA to the Core during Hg2+ handoff.  相似文献   

19.
Calcification is a detrimental process in vascular ageing and in diseases such as atherosclerosis and arthritis. In particular, small calcium phosphate (CaP) crystal deposits are associated with inflammation and atherosclerotic plaque de-stabilisation. We previously reported that CaP particles caused human vascular smooth muscle cell (VSMC) death and that serum reduced the toxic effects of the particles. Here, we found that the serum proteins fetuin-A and albumin (≥1 µM) reduced intracellular Ca2+ elevations and cell death in VSMCs in response to CaP particles. In addition, CaP particles functionalised with fetuin-A, but not albumin, were less toxic than naked CaP particles. Electron microscopic studies revealed that CaP particles were internalised in different ways; via macropinocytosis, membrane invagination or plasma membrane damage, which occurred within 10 minutes of exposure to particles. However, cell death did not occur until approximately 30 minutes, suggesting that plasma membrane repair and survival mechanisms were activated. In the presence of fetuin-A, CaP particle-induced damage was inhibited and CaP/plasma membrane interactions and particle uptake were delayed. Fetuin-A also reduced dissolution of CaP particles under acidic conditions, which may contribute to its cytoprotective effects after CaP particle exposure to VSMCs. These studies are particularly relevant to the calcification observed in blood vessels in patients with kidney disease, where circulating levels of fetuin-A and albumin are low, and in pathological situations where CaP crystal formation outweighs calcification-inhibitory mechanisms.  相似文献   

20.
Interactions governing protein folding, stability, recognition, and activity are mediated by hydration. Here, we use small-angle neutron scattering coupled with osmotic stress to investigate the hydration of two proteins, lysozyme and guanylate kinase (GK), in the presence of solutes. By taking advantage of the neutron contrast variation that occurs upon addition of these solutes, the number of protein-associated (solute-excluded) water molecules can be estimated from changes in both the zero-angle scattering intensity and the radius of gyration. Poly(ethylene glycol) exclusion varies with molecular weight. This sensitivity can be exploited to probe structural features such as the large internal GK cavity. For GK, small-angle neutron scattering is complemented by isothermal titration calorimetry with osmotic stress to also measure hydration changes accompanying ligand binding. These results provide a framework for studying other biomolecular systems and assemblies using neutron scattering together with osmotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号