首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Understanding evolutionary processes that drive genome reduction requires determining the tempo (rate) and the mode (size and types of deletions) of gene losses. In this study, we analysed five endosymbiotic genome sequences of the gamma-proteobacteria (three different Buchnera aphidicola strains, Wigglesworthia glossinidia, Blochmannia floridanus) to test if gene loss could be driven by the selective importance of genes. We used a parsimony method to reconstruct a minimal ancestral genome of insect endosymbionts and quantified gene loss along the branches of the phylogenetic tree. To evaluate the selective or functional importance of genes, we used a parameter that measures the level of adaptive codon bias in E. coli (i.e. codon adaptive index, or CAI), and also estimates of evolutionary rates (Ka) between pairs of orthologs either in free-living bacteria or in pairs of symbionts.  相似文献   

2.

Background  

Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB) transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern.  相似文献   

3.

Background  

While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets across 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase.  相似文献   

4.
5.

Background  

Phylogenetic studies of wild Canis species have relied heavily on the mitochondrial DNA control region (mtDNA CR) to infer species relationships and evolutionary lineages. Previous analyses of the CR provided evidence for a North American evolved eastern wolf (C. lycaon), that is more closely related to red wolves (C. rufus) and coyotes (C. latrans) than grey wolves (C. lupus). Eastern wolf origins, however, continue to be questioned. Therefore, we analyzed mtDNA from 89 wolves and coyotes across North America and Eurasia at 347 base pairs (bp) of the CR and 1067 bp that included the ATPase6 and ATPase8 genes. Phylogenies and divergence estimates were used to clarify the evolutionary history of eastern wolves, and regional comparisons of nonsynonomous to synonomous substitutions (dN/dS) at the ATPase6 and ATPase8 genes were used to elucidate the potential role of selection in shaping mtDNA geographic distribution.  相似文献   

6.
7.

Background  

The molecular organization of very few genetically defined CACTA transposon systems have been characterized thoroughly as those of Spm/En in maize, Tam1 of Antirrhinum majus Candystripe1 (Cs1) from Sorghum bicolor and CAC1 from Arabidopsis thaliana, for example. To date, only defective deletion derivatives of CACTA elements have been described for soybean, an economically important plant species whose genome sequence will be completed in 2008.  相似文献   

8.

Background  

The mechanism by which duplicate genes originate – whether by duplication of a whole genome or of a genomic segment – influences their genetic fates. To study events that trigger duplicate gene persistence after whole genome duplication in vertebrates, we have analyzed molecular evolution and expression of hundreds of persistent duplicate gene pairs in allopolyploid clawed frogs (Xenopus and Silurana). We collected comparative data that allowed us to tease apart the molecular events that occurred soon after duplication from those that occurred later on. We also quantified expression profile divergence of hundreds of paralogs during development and in different tissues.  相似文献   

9.

Background  

DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting to evaluate their advantages and disadvantages for use in gene therapy and gene discovery.  相似文献   

10.

Background

An enhanced understanding of the hookworm genome and its resident mobile genetic elements should facilitate understanding of the genome evolution, genome organization, possibly host-parasite co-evolution and horizontal gene transfer, and from a practical perspective, development of transposon-based transgenesis for hookworms and other parasitic nematodes.

Methodology/Principal Findings

A novel mariner-like element (MLE) was characterized from the genome of the dog hookworm, Ancylostoma caninum, and termed bandit. The consensus sequence of the bandit transposon was 1,285 base pairs (bp) in length. The new transposon was flanked by perfect terminal inverted repeats of 32 nucleotides in length with a common target site duplication TA, and it encoded an open reading frame (ORF) of 342 deduced amino acid residues. Phylogenetic comparisons confirmed that the ORF encoded a mariner-like transposase, which included conserved catalytic domains, and that the bandit transposon belonged to the cecropia subfamily of MLEs. The phylogenetic analysis also indicated that the Hsmar1 transposon from humans was the closest known relative of bandit, and that bandit and Hsmar1 constituted a clade discrete from the Tc1 subfamily of MLEs from the nematode Caenorhabditis elegans. Moreover, homology models based on the crystal structure of Mos1 from Drosophila mauritiana revealed closer identity in active site residues of the catalytic domain including Ser281, Lys289 and Asp293 between bandit and Hsmar1 than between Mos1 and either bandit or Hsmar1. The entire bandit ORF was amplified from genomic DNA and a fragment of the bandit ORF was amplified from RNA, indicating that this transposon is actively transcribed in hookworms.

Conclusions/Significance

A mariner-like transposon termed bandit has colonized the genome of the hookworm A. caninum. Although MLEs exhibit a broad host range, and are identified in other nematodes, the closest phylogenetic relative of bandit is the Hsmar1 element of humans. This surprising finding suggests that bandit was transferred horizontally between hookworm parasites and their mammalian hosts.  相似文献   

11.
12.

Background  

Much of thePlasmodium falciparumgenome encodes hypothetical proteins with limited homology to other organisms. A lack of robust tools for genetic manipulation of the parasite limits functional analysis of these hypothetical proteins and other aspects of thePlasmodiumgenome. Transposon mutagenesis has been used widely to identify gene functions in many organisms and would be extremely valuable for functional analysis of thePlasmodiumgenome.  相似文献   

13.

Background

Despite having predominately deleterious fitness effects, transposable elements (TEs) are major constituents of eukaryote genomes in general and of plant genomes in particular. Although the proportion of the genome made up of TEs varies at least four-fold across plants, the relative importance of the evolutionary forces shaping variation in TE abundance and distributions across taxa remains unclear. Under several theoretical models, mating system plays an important role in governing the evolutionary dynamics of TEs. Here, we use the recently sequenced Capsella rubella reference genome and short-read whole genome sequencing of multiple individuals to quantify abundance, genome distributions, and population frequencies of TEs in three recently diverged species of differing mating system, two self-compatible species (C. rubella and C. orientalis) and their self-incompatible outcrossing relative, C. grandiflora.

Results

We detect different dynamics of TE evolution in our two self-compatible species; C. rubella shows a small increase in transposon copy number, while C. orientalis shows a substantial decrease relative to C. grandiflora. The direction of this change in copy number is genome wide and consistent across transposon classes. For insertions near genes, however, we detect the highest abundances in C. grandiflora. Finally, we also find differences in the population frequency distributions across the three species.

Conclusion

Overall, our results suggest that the evolution of selfing may have different effects on TE evolution on a short and on a long timescale. Moreover, cross-species comparisons of transposon abundance are sensitive to reference genome bias, and efforts to control for this bias are key when making comparisons across species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-602) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background  

Transgenic strains of Caenorhabditis elegans are typically generated by injecting DNA into the germline to form multi-copy extrachromosomal arrays. These transgenes are semi-stable and their expression is silenced in the germline. Mos1 transposon or microparticle bombardment methods have been developed to create single- or low-copy chromosomal integrated lines. Here we report an alternative method using ultraviolet trimethylpsoralen (UV/TMP) to generate single/low-copy gene integrations.  相似文献   

15.

Background

Transposons are useful tools for creating transgenic organisms, insertional mutagenesis, and genome engineering. TcBuster, a novel hAT-family transposon system derived from the red flour beetle Tribolium castaneum, was shown to be highly active in previous studies in insect embryoes.

Methodology/Principal Findings

We tested TcBuster for its activity in human embryonic kidney 293 (HEK-293) cells. Excision footprints obtained from HEK-293 cells contained small insertions and deletions consistent with a hAT-type repair mechanism of hairpin formation and non-homologous end-joining. Genome-wide analysis of 23,417 piggyBac, 30,303 Sleeping Beauty, and 27,985 TcBuster integrations in HEK-293 cells revealed a uniquely different integration pattern when compared to other transposon systems with regards to genomic elements. TcBuster experimental conditions were optimized to assay TcBuster activity in HEK-293 cells by colony assay selection for a neomycin-containing transposon. Increasing transposon plasmid increased the number of colonies, whereas gene transfer activity dependent on codon-optimized transposase plasmid peaked at 100 ng with decreased colonies at the highest doses of transposase DNA. Expression of the related human proteins Buster1, Buster3, and SCAND3 in HEK-293 cells did not result in genomic integration of the TcBuster transposon. TcBuster, Tol2, and piggyBac were compared directly at different ratios of transposon to transposase and found to be approximately comparable while having their own ratio preferences.

Conclusions/Significance

TcBuster was found to be highly active in mammalian HEK-293 cells and represents a promising tool for mammalian genome engineering.  相似文献   

16.
Summary The chloroplast gene for the epsilon subunit (atpE) of the CF1/CF0 ATPase in the green alga Chlamydomonas reinhardtii has been localized and sequenced. In contrast to higher plants, the atpE gene does not lie at the 3 end of the beta subunit (atpB) gene in the chloroplast genome of C. reinhardtii, but is located at a position 92 kb away in the other single copy region. The uninterrupted open reading frame for the atpE gene is 423 bp, and the epsilon subunit exhibits 43% derived amino acid homology to that from spinach. Codon usage for the atpE gene follows the restricted pattern seen in other C. reinhardtii chloroplast genes.The genes for the CF0 subunits I (atpF) and IV (atpI) of the ATPase complex have also been mapped on the chloroplast genome of C. reinhardtii. The six chloroplast ATPase genes in C. reinhardtii are dispersed individually between the two single copy regions of the chloroplast genome, an organization strikingly different from the highly conserved arrangement in two operon-like units seen in chloroplast genomes of higher plants.Abbreviations bp base pairs - CF1 chloroplast coupling factor 1 - CF0 chloroplast coupling factor 0 - F1 coupling factor 1 - F0 coupling factor 0 - kb kilobase pairs  相似文献   

17.

Background  

Ortholog assignment is a critical and fundamental problem in comparative genomics, since orthologs are considered to be functional counterparts in different species and can be used to infer molecular functions of one species from those of other species. MSOAR is a recently developed high-throughput system for assigning one-to-one orthologs between closely related species on a genome scale. It attempts to reconstruct the evolutionary history of input genomes in terms of genome rearrangement and gene duplication events. It assumes that a gene duplication event inserts a duplicated gene into the genome of interest at a random location (i.e., the random duplication model). However, in practice, biologists believe that genes are often duplicated by tandem duplications, where a duplicated gene is located next to the original copy (i.e., the tandem duplication model).  相似文献   

18.

Background  

The chicken genome contains a BBP-A gene showing similar characteristics to avidin family genes. In a previous study we reported that the BBP-A gene may encode a biotin-binding protein due to the high sequence similarity with chicken avidin, especially at regions encoding residues known to be located at the ligand-binding site of avidin.  相似文献   

19.

Background  

Several studies have demonstrated that synthetic lethal genetic interactions between gene mutations provide an indication of functional redundancy between molecular complexes and pathways. These observations help explain the finding that organisms are able to tolerate single gene deletions for a large majority of genes. For example, system-wide gene knockout/knockdown studies in S. cerevisiae and C. elegans revealed non-viable phenotypes for a mere 18% and 10% of the genome, respectively. It has been postulated that the low percentage of essential genes reflects the extensive amount of genetic buffering that occurs within genomes. Consistent with this hypothesis, systematic double-knockout screens in S. cerevisiae and C. elegans show that, on average, 0.5% of tested gene pairs are synthetic sick or synthetic lethal. While knowledge of synthetic lethal interactions provides valuable insight into molecular functionality, testing all combinations of gene pairs represents a daunting task for molecular biologists, as the combinatorial nature of these relationships imposes a large experimental burden. Still, the task of mapping pairwise interactions between genes is essential to discovering functional relationships between molecular complexes and pathways, as they form the basis of genetic robustness. Towards the goal of alleviating the experimental workload, computational techniques that accurately predict genetic interactions can potentially aid in targeting the most likely candidate interactions. Building on previous studies that analyzed properties of network topology to predict genetic interactions, we apply random walks on biological networks to accurately predict pairwise genetic interactions. Furthermore, we incorporate all published non-interactions into our algorithm for measuring the topological relatedness between two genes. We apply our method to S. cerevisiae and C. elegans datasets and, using a decision tree classifier, integrate diverse biological networks and show that our method outperforms established methods.  相似文献   

20.
Summary The composite transposon Tn2672 is a derivative of the Tn3-related transposon Tn902 whose bla gene providing ampicillin resistance had been inactivated by the insertion of the IS1-flanked multiple drug resistance transposon Tn2671. Most ampicillin resistant revertants of Tn2672 are due to precise excision of Tn2671. However, a rare Bla+ revertant which still retains all the previously acquired drug resistance markers was isolated. On this revertant, the 5 part of the split bla gene on Tn2672 has converted to an intact, active bla gene, and the entire Tn902 is structurally restored. In contrast, the adjacent IS1b element belonging to Tn2671 has its terminal 142 base pairs deleted. Despite of this rearragement, the split 3 part of bla and its adjacent sequences have remained unchanged. Models are presented to explain the observed DNA rearrangements, and their similarity with gene conversion events is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号