共查询到20条相似文献,搜索用时 1 毫秒
1.
Combinations of fluorescently labeled pulmonary surfactant proteins SP-B and SP-C in phospholipid films 总被引:1,自引:1,他引:1 下载免费PDF全文
Hydrophobic pulmonary surfactant (PS) proteins B (SP-B) and C (SP-C) modulate the surface properties of PS lipids. Epifluorescence microscopy was performed on solvent-spread monolayers of fluorescently labeled porcine SP-B (R-SP-B, labeled with Texas Red) and SP-C (F-SP-C, labeled with fluorescein) in dipalmitoylphosphatidylcholine (DPPC) (at protein concentrations of 10 and 20 wt%, and 10 wt% of both) under conditions of cyclic compression and expansion. Matrix-assisted laser desorption/ionization (MALDI) spectroscopy of R-SP-B and F-SP-C indicated that the proteins were intact and labeled with the appropriate fluorescent probe. The monolayers were compressed and expanded for four cycles at an initial rate of 0.64 A2 x mol(-1) x s(-1) (333 mm2 x s x [-1]) up to a surface pressure pi approximately 65 mN/m, and pi-area per residue (pi-A) isotherms at 22 +/- 1 degrees C were obtained. The monolayers were microscopically observed for the fluorescence emission of the individual proteins present in the film lipid matrix, and their visual features were video recorded for image analysis. The pi-A isotherms of the DPPC/protein monolayers showed characteristic "squeeze out" effects at pi approximately 43 mN/m for R-SP-B and 55 mN/m for F-SP-C, as had previously been observed for monolayers of the native proteins in DPPC. Both proteins associated with the expanded (fluid) phase of DPPC monolayers remained in or associated with the monolayers at high pi (approximately 65 mN/m) and redispersed in the monolayer upon its reexpansion. At comparable pi and area/molecule of the lipid, the proteins reduced the amounts of condensed (gel-like) phase of DPPC monolayers, with F-SP-C having a greater effect on a weight basis than did R-SP-B. In any one of the lipid/protein monolayers the amounts of the DPPC in condensed phase were the same at equivalent pi during compression and expansion and from cycle to cycle. This indicated that only minor loss of components from these systems occurred between compression-expansion cycles. This study indicates that hydrophobic PS proteins associate with the fluid phase of DPPC in films, some proteins remain at high surface pressures in the films, and such lipid-protein films can still attain high pi during compression. 相似文献
2.
The hydrophobic proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface by an unknown mechanism. We tested the hypothesis that these proteins accelerate adsorption by disrupting the structure of the lipid bilayer, either by a generalized increase in fluidity or by a focal induction of interfacial boundaries within the bilayer. We used fluorescence recovery after photobleaching to measure diffusion of nitrobenzoxadiazolyl-dimyristoyl-phosphatidylethanolamine between 11 and 54 degrees C in multilayers containing the complete set of lipids and proteins in calf lung surfactant extract (CLSE), or the complete set of neutral and phospholipids without the proteins. Above 35 degrees C, Arrhenius plots of diffusion were parallel for CLSE and neutral and phospholipids, but shifted to lower values for CLSE, suggesting that the proteins rigidify the lipid bilayer rather than producing the proposed increase in membrane fluidity. The slopes of the Arrhenius plots for CLSE were steeper below 35 degrees C, suggesting that the proteins induce phase separation at that temperature. The mobile fraction fell below 27 degrees C, consistent with a percolation threshold of coexisting gel and liquid-crystal phases. The induction of lateral phase separation in CLSE, however, does not correlate with apparent changes in adsorption kinetics at this temperature. Our results suggest that SP-B and SP-C accelerate adsorption through a mechanism other than the disruption of surfactant bilayers, possibly by stabilizing a high-energy, highly curved adsorption intermediate. 相似文献
3.
Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: II. Monolayers of pulmonary surfactant protein SP-C and phospholipids. 下载免费PDF全文
The interaction of the hydrophobic pulmonary surfactant protein SP-C with dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and DPPC:DPPG (7:3, mol:mol) in spread monolayers at the air-water interface has been studied. At low concentrations of SP-C (about 0.5 mol% or 3 weight%protein) the protein-lipid films collapsed at surface pressures of about 70 mN.m-1, comparable to those of the lipids alone. At initial protein concentrations higher than 0.8 mol%, or 4 weight%, the isotherms displayed kinks at surface pressures of about 50 mN.m-1 in addition to the collapse plateaux at the higher pressures. The presence of less than 6 mol%, or 27 weight%, of SP-C in the protein-lipid monolayers gave a positive deviation from ideal behavior of the mean areas in the films. Analyses of the mean areas in the protein-lipid films as functions of the monolayer composition and surface pressure showed that SP-C, associated with some phospholipid (about 8-10 lipid molecules per molecule of SP-C), was squeezed out from the monolayers at surface pressures of about 55 mN.m-1. The results suggest a potential role for SP-C to modify the composition of the monolayer at the air-water interface in the alveoli. 相似文献
4.
Reactive oxygen species inactivation of surfactant involves structural and functional alterations to surfactant proteins SP-B and SP-C 总被引:1,自引:0,他引:1 下载免费PDF全文
Exposing bovine lipid extract surfactant (BLES), a clinical surfactant, to reactive oxygen species arising from hypochlorous acid or the Fenton reaction resulted in an increase in lipid (conjugated dienes, lipid aldehydes) and protein (carbonyls) oxidation products and a reduction in surface activity. Experiments where oxidized phospholipids (PL) were mixed with BLES demonstrated that this addition hampered BLES biophysical activity. However the effects were only moderately greater than with control PL. These results imply a critical role for protein oxidation. BLES oxidation by either method resulted in alterations in surfactant proteins SP-B and SP-C, as evidenced by altered Coomassie blue and silver staining. Western blot analyses showed depressed reactivity with specific antibodies. Oxidized SP-C showed decreased palmitoylation. Reconstitution experiments employing PL, SP-B, and SP-C isolated from control or oxidized BLES demonstrated that protein oxidation was more deleterious than lipid oxidation. Furthermore, addition of control SP-B can improve samples containing oxidized SP-C, but not vice versa. We conclude that surfactant oxidation arising from reactive oxygen species generated by air pollution or leukocytes interferes with surfactant function through oxidation of surfactant PL and proteins, but that protein oxidation, in particular SP-B modification, produces the major deleterious effects. 相似文献
5.
Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: I. Monolayers of pulmonary surfactant protein SP-B and phospholipids. 总被引:5,自引:2,他引:5 下载免费PDF全文
The effects of pulmonary surfactant protein SP-B on the properties of monolayers of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), and a mixture of DPPC:DPPG (7:3, mol:mol) were studied using spread films at the air-water interface. The addition of SP-B to the phospholipid monolayers gave positive deviations from additivity of the mean areas in the films. At low protein concentrations (less than 45% amino acid residues which corresponds to 0.5 mol% or 10 weight% SP-B) monolayers of SP-B/DPPC, SP-B/DPPG and SP-B/(DPPC:DPPG) collapsed at surface pressures of about 70 mN.m-1, comparable to those of the lipids alone. At higher concentrations of SP-B in the protein-lipid monolayers, kink points appeared in the isotherms at about 40-45 mN.m-1, implying possible exclusion of material from the films, hence, changes in the original monolayer compositions. Calculated analyses of the monolayer compositions as a function of surface pressure indicated that nearly pure SP-B, associated with small amounts of phospholipid (2-3 lipid molecules per SP-B dimer), was lost from SP-B/DPPC, SP-B/DPPG, and SP-B/(DPPC:DPPG) films at surface pressures higher than 40-45 mN.m-1. The results are consistent with a low effectiveness of SP-B in removing saturated phospholipids, DPPC or DPPG, from the spread SP-B/phospholipid films. 相似文献
6.
7.
Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP-C is inserted and is therefore a candidate motif to participate in interactions with other bilayers or monolayers. In the present work, we have detected intrinsic ability of a peptide based on the sequence of the N-terminal segment of SP-C to interact and insert spontaneously into preformed zwitterionic or anionic phospholipid monolayers. The peptide expands the pi-A compression isotherms of interfacial phospholipid/peptide films, and perturbs the lipid packing of phospholipid films during compression-driven liquid-expanded to liquid-condensed lateral transitions, as observed by epifluorescence microscopy. These results demonstrate that the sequence of the SP-C N-terminal region has intrinsic ability to interact with, insert into, and perturb the structure of zwitterionic and anionic phospholipid films, even in the absence of the palmitic chains attached to this segment in the native protein. This effect has been related with the ability of SP-C to facilitate reinsertion of surface active lipid molecules into the lung interface during respiratory compression-expansion cycling. 相似文献
8.
Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP-C is inserted and is therefore a candidate motif to participate in interactions with other bilayers or monolayers. In the present work, we have detected intrinsic ability of a peptide based on the sequence of the N-terminal segment of SP-C to interact and insert spontaneously into preformed zwitterionic or anionic phospholipid monolayers. The peptide expands the π-A compression isotherms of interfacial phospholipid/peptide films, and perturbs the lipid packing of phospholipid films during compression-driven liquid-expanded to liquid-condensed lateral transitions, as observed by epifluorescence microscopy. These results demonstrate that the sequence of the SP-C N-terminal region has intrinsic ability to interact with, insert into, and perturb the structure of zwitterionic and anionic phospholipid films, even in the absence of the palmitic chains attached to this segment in the native protein. This effect has been related with the ability of SP-C to facilitate reinsertion of surface active lipid molecules into the lung interface during respiratory compression-expansion cycling. 相似文献
9.
The hydrophobic proteins SP-B and SP-C are essential for pulmonary surfactant function, even though they are a relatively minor component (<2% of surfactant dry mass). Despite countless studies, their specific differential action and their possible concerted role to optimize the surface properties of surfactant films have not been completely elucidated. Under conditions kept as physiologically relevant as possible, we tested the surface activity and mechanical stability of several surfactant films of varying protein composition in vitro using a captive bubble surfactometer and a novel (to our knowledge) stability test. We found that in the naturally derived surfactant lipid mixtures, surfactant protein SP-B promoted film formation and reextension to lower surface tensions than SP-C, and in particular played a vital role in sustaining film stability at the most compressed states, whereas SP-C produced no stabilization. Preparations containing both proteins together revealed a slight combined effect in enhancing film formation. These results provide a qualitative and quantitative framework for the development of future synthetic therapeutic surfactants, and illustrate the crucial need to include SP-B or an efficient SP-B analog for optimal function. 相似文献
10.
Pulmonary surfactant protein SP-C has been isolated from porcine lungs and treated with dansyl isothiocyanate in chloroform:methanol 2:1 (v/v) solutions,under conditions optimized to introduce a single dansyl group covalently attached to the N-terminalamine group of the protein without loss of its native thioesther-linked palmitic chains. The resulting derivative Dans-SP-C conserves the secondary structure of native SP-C as well as the ability to promote interfacial adsorption of DPPC suspensions and to affect the thermotropic behavior of DPPC bilayers. This derivative can be used to characterize lipid-protein and protein-protein interactions of a native-like SP-C in lipid/protein complexes. 相似文献
11.
Surface balance techniques were used to study the interactions of surfactant protein SP-A with monolayers of surfactant components preformed at the air-water interface. SP-A adsorption into the monolayers was followed by monitoring the increase in the surface pressure Deltapi after injection of SP-A beneath the films. Monolayers of dipalmitoylphosphatidylcholine (DPPC):egg phosphatidylglycerol (PG) (8:2, mol/mol) spread at initial surface pressure pi(i) = 5 mN/m did not promote the adsorption of SP-A at a subphase concentration of 0.68 microg/mL as compared to its adsorption to the monolayer-free surface. Surfactant proteins, SP-B or SP-C, when present in the films of DPPC:PG spread at pi(i) = 5 mN/m, enhanced the incorporation of SP-A in the monolayers to a similar extent; the Deltapi values being dependent on the levels of SP-B or SP-C, 3-17 wt %, in the lipid films. Calcium in the subphase did not affect the intrinsic surface activity of SP-A but reduced the Deltapi values produced by the adsorption of the protein to all the preformed films independently of their compositions and charges. The divalent ions likely modified the interaction of SP-A with the monolayers through their effects on the conformation, self-association, and charge state of SP-A. Values of Deltapi produced by adsorption of SP-A to the films of DPPC:PG with or without SP-B or SP-C were a function of the initial surface pressure of the films, pi(i). In the range of pressures 5 = pi(i) = 35 mN/m, where the monolayers existed in the liquid expanded (LE)/liquid condensed (LC) coexistence region, both the composition and the proportion of the LC phase in the films controlled the magnitude of Deltapi. Monolayers of DPPC:PG plus 17 wt % SP-B or SP-C, which had similar phase properties with LC phase occupying a maximum 25% of the total monolayer area, displayed different abilities to enhance the adsorption of SP-A to the surface. Results revealed that SP-B and SP-C in their pure monolayers had similar abilities in promoting the adsorption of SP-A, whereas SP-B, when present into the lipid films in the LE/LC coexistence state, displayed a higher capacity than SP-C to attract SP-A from the subphase. Lipid-induced changes in the conformations of the proteins might have modulated the interactions of SP-A with SP-B and SP-C incorporated into the phospholipid monolayers. 相似文献
12.
Pulmonary surfactant protein SP-B is absolutely required for proper function of surfactant in the alveoli, and is an important component of therapeutical surfactant preparations used to treat respiratory pathologies. To explore inherent structural and functional determinants within the amino acid sequence of mature SP-B, porcine SP-B has been subjected to extensive disulfide reduction under highly denaturing conditions and to cysteine carboxyamidomethylation, and the structure, lipid-protein interactions, and surface activity of this modified form have been characterized. Refolding of the reduced protein yielded a form (SP-Br) with secondary structure practically identical to that of the native disulfide-linked SP-B dimer. Reduced SP-Br exhibited higher structural flexibility than native SP-B, as indicated by a higher susceptibility of fluorescence emission to quenching by acrylamide and biphasic behavior during interaction of the protein with lipid bilayers and monolayers. SP-Br had, however, effects similar to those of native SP-B on the thermotropic properties of dipalmitoylphosphatidylcholine (DPPC) bilayers. SP-Br was more effective than native SP-B in promoting interfacial adsorption of phospholipid bilayers into interfacial films, presumably because of its higher structural flexibility, and retained the ability of native SP-B to stabilize DPPC interfacial films compressed to pressures near collapse against spontaneous relaxation. SP-Br also mimicked the behavior of native SP-B in lipid-protein films subjected to dynamic compression-expansion cycling in a captive bubble surfactometer, but only in the presence of phosphatidylglycerol (PG), the main anionic phospholipid in surfactant. The presence of PG appears to be required for SP-Br to acquire the appropriate tertiary folding to produce progressively more efficient lipid-protein films capable of reaching very high pressures upon limited compression with almost no hysteresis. 相似文献
13.
Cholesterol is the major neutral lipid in lung surfactant, accounting for up to 8-10% of surfactant mass, while surfactant protein SP-C (∼ 4.2 kDa) accounts for no more than 1-1.5% of total surfactant weight but plays critical roles in formation and stabilization of pulmonary surfactant films. It has been reported that surfactant protein SP-C interacts with cholesterol in lipid/protein interfacial films and this interaction could have a potential role on modulating surfactant function. In the present study, we have analyzed the effect of cholesterol on the structure, orientation and dynamic properties of SP-C embedded in physiologically relevant model membranes. The presence of cholesterol does not induce substantial changes in the secondary structure of SP-C, as analyzed by Attenuated Reflection Fourier Transformed Infrared spectroscopy (ATR-FTIR). However, the presence of cholesterol modifies the orientation of the transmembrane helix and the dynamic properties of the protein, as demonstrated by hydrogen/deuterium exchange kinetics. The effect of cholesterol on SP-C reconstituted in zwitterionic, entirely fluid, membranes made of POPC (palmitoyloleoylphospatidylcholine) or in anionic membranes with coexistence of ordered and disordered phases, such as those made of dipalmitoylphosphatidylcholine (DPPC):POPC:Palmitoyloleoylphosphatidylglycerol (POPG) (50:25:15) is dual. Cholesterol decreases the exposure of the protein to the aqueous environment and the tilt of its transmembrane helical segment up to a ratio Cholesterol:SP-C of 4.8 and 2.4 (mol/mol) in the two lipid systems tested, respectively, and it increases the exposure and tilt at higher cholesterol proportions. The results presented here suggest the existence of an interaction between SP-C and cholesterol-enriched phases, with consequences on the behavior of the protein, which could be of relevance for cholesterol-dependent structure-function relationships in pulmonary surfactant membranes and films. 相似文献
14.
The temperature dependence of dipalmitoylphosphatidylcholine (DPPC)/phosphatidylglycerol (PG) multilayers, reconstituted with various synthetic peptides for modeling human lung surfactant, was monitored by vibrational Raman spectroscopy. The synthetic peptides consisted, respectively, of residues 59-81 of the human surfactant protein SP-B and 21 amino acid residue peptides containing repeating units of arginine separated by either four or eight leucines (RL4 or RL8). Each peptide demonstrated the ability to reduce significantly the surface tension of analogues of the phospholipid mixture used in the Raman studies. Raman spectroscopic integrated band intensities and relative peak height intensity ratios, two spectral parameters used to determine bilayer disorder, provided sensitive probes for characterizing multilayer perturbations in the reconstituted liposomes. Temperature profiles derived from the various Raman intensity parameters for the 3100-2800-cm-1 carbon-hydrogen (C-H) stretching mode region, a spectral interval representative of acyl chain vibrations, reflected lipid reorganizations due to the bilayer interactions of these peptides. For the three reconstituted multilamellar surfactant systems, the gel-to-liquid-crystalline phase-transition temperatures Tm, defined by acyl chain C-H stretching mode order/disorder parameters, increased from 35 degrees C in the peptide free system to 37-38 degrees C, indicating increased lipid headgroup constraints for the model liposomes. Although the values of Tm were similar for the three recombinant lipid/peptide assemblies, individual phase-transition cooperativities varied significantly between systems and between spectroscopically derived order/disorder parameters. 相似文献
15.
Cruz A Worthman LA Serrano AG Casals C Keough KM Pérez-Gil J 《European biophysics journal : EBJ》2000,29(3):204-213
Suspensions of dipalmitoylphosphatidylcholine (DPPC) bilayers containing 5, 10 or 20% (w/w) surfactant protein SP-B have
been reconstituted and spread at air-liquid interfaces. Compression isotherms of DPPC/SP-B monolayers spread from these preparations
were qualitatively comparable to the isotherms of the corresponding DPPC/SP-B monolayers spread from solvents. SP-B was squeezed-out
at higher pressures from vesicle-spread films than from solvent-spread monolayers. SP-B caused a marked decrease on the rate
of relaxation of DPPC collapse phases to equilibrium pressures in all the lipid/protein films assayed. This stabilizing effect
was higher in vesicle-spread than in solvent-spread monolayers. Inclusion in the films of traces of the fluorescent probe
NBD-PC (1 mol%) and use of a fluorescent derivative of SP-B labeled with a rhodamine derivative, Texas Red, allowed for direct
observation of protein and lipid domains at the interface by epifluorescence microscopy. Upon compression, SP-B altered the
packing of phospholipids in the bilayer-spread films, observed as a SP-B-induced reduction of the area of liquid-condensed
domains, in a way similar to its effect in solvent-spread monolayers. SP-B was not associated with condensed regions of the
films. Fluorescence images from vesicle-spread films showed discrete fluorescent aggregates that could be consistent with
the existence of lipid-protein vesicles in close association with the monolayer. Both the retention of SP-B at higher surface
pressures and the greater stability of collapse phases of DPPC/SP-B films prepared by spreading from liposomes in comparison
to those spread from solvents can be interpreted as a consequence of formation of complex bilayer-monolayer interacting systems.
Received: 1 December 1999 / Revised version: 2 March 2000 / Accepted: 2 March 2000 相似文献
16.
Plasencia I Rivas L Casals C Keough KM Pérez-Gil J 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2001,129(1):129-139
Predictive studies suggest that the known sequences of the N-terminal segment of surfactant protein SP-C from animal species have an intrinsic tendency to form beta-turns, but there are important differences on the probable location of these motifs in different SP-C species. Our hypothesis is that intrinsic structural determinants of the sequence of the N-terminal region of SP-C could define conformation, acylation and perhaps surface properties of the mature protein. To test this hypothesis we have synthesized peptides corresponding to the 13-residue N-terminal sequence of porcine and canine SP-C, and studied their structural behaviour in solution and in phospholipid bilayers and monolayers. In these peptides, leucine at position 1 of both sequences has been replaced by tryptophan in order to allow their study by fluorescence spectroscopy. Far-u.v. circular dichroism spectra of the peptides in aqueous and organic solutions and in phospholipid micelles or vesicles are consistent with predicted conformational differences between the porcine and the canine sequences. Both families of peptides showed changes in their fluorescence emission spectra in the presence of phospholipids that were consistent with spontaneous lipid/peptide interactions. Both canine and porcine peptides were able to form monolayers at air-liquid interfaces, the canine peptides occupying lower area/molecule and being compressible to higher pressures than the porcine sequences. The peptides also shifted the isotherms and perturbed the packing of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) monolayers, the effects being always higher in anionic than in zwitterionic lipids, and also substantially higher in films containing canine peptide in comparison to porcine peptide. Acylation of cysteines at the N-terminal end of SP-C may modulate these intrinsic conformational features and the changes induced could be important for the development of its surface activity. 相似文献
17.
Cabré EJ Loura LM Fedorov A Perez-Gil J Prieto M 《Biochimica et biophysica acta》2012,1818(7):1717-1725
Contradictory results have been reported with respect to the depth of penetration and the orientation of pulmonary surfactant protein SP-B in phospholipid membranes and its relative selectivity to interact with anionic over zwitterionic phospholipid species. In the present study we have re-evaluated lipid-protein interactions of SP-B by analysing F?rster resonance energy transfer (FRET) efficiencies, obtained from time-resolved measurements, from the single tryptophan in SP-B to different fluorescently labelled phospholipids in matrix bilayers made of either pure phosphatidylcholine (POPC) or the full lipid extract obtained from purified surfactant. In the background of POPC membranes SP-B exhibits a certain level of selectivity for anionic fluorescent phospholipids over the corresponding zwitterionic analogues, but apparently no preference for phosphatidylglycerol over other anionic species such as phosphatidylserine. No selectivity was detected in membranes made of full surfactant lipids, indicating that specific lipid-protein binding sites could already be occupied by endogenous anionic phospholipids. Furthermore, we have analysed the fit of two different models of how SP-B could be orientated with respect to phospholipid membrane surfaces to the FRET data. The FRET results are consistent with topology models in which the protein has a superficial orientation, with no regions of exclusion by the protein to the access of phospholipids, both in POPC membranes and in membranes made of the whole surfactant lipid fraction. This discards a deep penetration of the protein into the core of bilayers and suggests that most hydrophobic segments of SP-B could participate in protein-protein instead of lipid-protein interactions. 相似文献
18.
SP-C, the smallest pulmonary surfactant protein, is required for the formation and stability of surface-active films at the air-liquid interface in the lung. The protein consists of a hydrophobic transmembrane α-helix and a cationic N-terminal segment containing palmitoylated cysteines. Recent evidence suggests that the N-terminal segment is of critical importance for SP-C function. In the present work, the role of palmitoylation in modulating the lipid-protein interactions of the N-terminal segment of SP-C has been studied by analyzing the effect of palmitoylated and non-palmitoylated synthetic peptides designed to mimic the N-terminal segment on the dynamic properties of phospholipid bilayers, recorded by spin-label electron spin resonance (ESR) spectroscopy. Both palmitoylated and non-palmitoylated peptides decrease the mobility of phosphatidylcholine (5-PCSL) and phosphatidylglycerol (5-PGSL) spin probes in dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylglycerol (DPPG) bilayers. In zwitterionic DPPC membranes, both peptides have a greater effect at temperatures below than above the main gel-to-liquid-crystalline phase transition, the palmitoylated peptide inducing greater immobilisation of the lipid than does the non-palmitoylated form. In anionic DPPG membranes, both palmitoylated and non-palmitoylated peptides have similar immobilizing effects, probably dominated by electrostatic interactions. Both palmitoylated and non-palmitoylated peptides have effects comparable to whole native SP-C, as regards improving the gel phase solubility of phospholipid spin probes and increasing the polarity of the bilayer surface monitored by pK shifts of fatty acid spin probes. This indicates that a significant part of the perturbing properties of SP-C in phospholipid bilayers is mediated by interactions of the N-terminal segment. The effect of SP-C N-terminal peptides on the chain flexibility gradient of DPPC and DPPG bilayers is consistent with the existence of a peptide-promoted interdigitated phase at temperatures below the main gel-to-liquid-crystalline phase transition. The palmitoylated peptide, but not the non-palmitoylated version, is able to stably segregate interdigitated and non-interdigitated populations of phospholipids in DPPC bilayers. This feature suggests that the palmitoylated N-terminal segment stabilizes ordered domains such as those containing interdigitated lipids. We propose that palmitoylation may be important to promote and facilitate association of SP-C and SP-C-containing membranes with ordered lipid structures such as those potentially existing in highly compressed states of the interfacial surfactant film. 相似文献
19.
It has been proposed that palmitoylation of the N-terminal segment of surfactant protein SP-C is important for maintaining association of pulmonary surfactant complexes with interfacial films compressed to high pressures at the end of expiration. In this study, we examined surfactant membrane models containing palmitoylated and nonpalmitoylated synthetic peptides, based on the N-terminal SP-C sequence, in dipalmitoylphosphatidylcholine (DPPC)/egg phosphatidylglycerol (7:3, w/w) by 2H-NMR. Perturbations of lipid properties by the peptide versions were compared in samples containing chain- and headgroup-deuterated lipid (DPPC-d62 and DPPC-d4 respectively). Also, deuterated peptide palmitate chains were compared with those of DPPC in otherwise identical lipid-protein mixtures. Palmitoylated peptide increased average DPPC-d62 chain orientational order slightly, particularly for temperatures spanning gel and liquid crystalline coexistence, implying penetration of palmitoylated peptide into ordered membrane. In contrast, the nonpalmitoylated peptide had a small disordering effect in this temperature range. Both peptide versions perturbed DPPC-d4 headgroup orientation similarly, suggesting little effect of palmitoylation on the largely electrostatic peptide-headgroup interaction. Deuterated acyl chains attached to the SP-C N-terminal segment displayed a qualitatively different distribution of chain order, and lower average order, than DPPC-d62 in the same membranes. This likely reflects local perturbation of lipid headgroup spacing by the peptide portion interacting with the bilayer near the peptide palmitate chains. This study suggests that SP-C-attached acyl chains could be important for coupling of lipid and protein motions in surfactant bilayers and monolayers, especially in the context of ordered phospholipid structures such as those potentially formed during exhalation, when stabilization of the respiratory surface by surfactant is the most crucial. 相似文献
20.
Plasencia I Baumgart F Andreu D Marsh D Pérez-Gil J 《Biochimica et biophysica acta》2008,1778(5):1274-1282
SP-C, the smallest pulmonary surfactant protein, is required for the formation and stability of surface-active films at the air-liquid interface in the lung. The protein consists of a hydrophobic transmembrane alpha-helix and a cationic N-terminal segment containing palmitoylated cysteines. Recent evidence suggests that the N-terminal segment is of critical importance for SP-C function. In the present work, the role of palmitoylation in modulating the lipid-protein interactions of the N-terminal segment of SP-C has been studied by analyzing the effect of palmitoylated and non-palmitoylated synthetic peptides designed to mimic the N-terminal segment on the dynamic properties of phospholipid bilayers, recorded by spin-label electron spin resonance (ESR) spectroscopy. Both palmitoylated and non-palmitoylated peptides decrease the mobility of phosphatidylcholine (5-PCSL) and phosphatidylglycerol (5-PGSL) spin probes in dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylglycerol (DPPG) bilayers. In zwitterionic DPPC membranes, both peptides have a greater effect at temperatures below than above the main gel-to-liquid-crystalline phase transition, the palmitoylated peptide inducing greater immobilisation of the lipid than does the non-palmitoylated form. In anionic DPPG membranes, both palmitoylated and non-palmitoylated peptides have similar immobilizing effects, probably dominated by electrostatic interactions. Both palmitoylated and non-palmitoylated peptides have effects comparable to whole native SP-C, as regards improving the gel phase solubility of phospholipid spin probes and increasing the polarity of the bilayer surface monitored by pK shifts of fatty acid spin probes. This indicates that a significant part of the perturbing properties of SP-C in phospholipid bilayers is mediated by interactions of the N-terminal segment. The effect of SP-C N-terminal peptides on the chain flexibility gradient of DPPC and DPPG bilayers is consistent with the existence of a peptide-promoted interdigitated phase at temperatures below the main gel-to-liquid-crystalline phase transition. The palmitoylated peptide, but not the non-palmitoylated version, is able to stably segregate interdigitated and non-interdigitated populations of phospholipids in DPPC bilayers. This feature suggests that the palmitoylated N-terminal segment stabilizes ordered domains such as those containing interdigitated lipids. We propose that palmitoylation may be important to promote and facilitate association of SP-C and SP-C-containing membranes with ordered lipid structures such as those potentially existing in highly compressed states of the interfacial surfactant film. 相似文献