首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-integral membrane proteins frequently act as transduction hubs in vital signaling pathways initiated at the plasma membrane (PM). Their biological activity depends on dynamic interactions with the PM, which are governed by their lateral and cytoplasmic diffusion and membrane binding/unbinding kinetics. Accurate quantification of the multiple kinetic parameters characterizing their membrane interaction dynamics has been challenging. Despite a fair number of approximate fitting functions for analyzing fluorescence recovery after photobleaching (FRAP) data, no approach was able to cope with the full diffusion-exchange problem. Here, we present an exact solution and matlab fitting programs for FRAP with a stationary Gaussian laser beam, allowing simultaneous determination of the membrane (un)binding rates and the diffusion coefficients. To reduce the number of fitting parameters, the cytoplasmic diffusion coefficient is determined separately. Notably, our equations include the dependence of the exchange kinetics on the distribution of the measured protein between the PM and the cytoplasm, enabling the derivation of both k(on) and k(off) without prior assumptions. After validating the fitting function by computer simulations, we confirm the applicability of our approach to live-cell data by monitoring the dynamics of GFP-N-Ras mutants under conditions with different contributions of lateral diffusion and exchange to the FRAP kinetics.  相似文献   

2.
Fluorescence Recovery After Photobleaching experiments were simulated using a computer approach in which a membrane lipid leaflet was mimicked using a triangular lattice obstructed with randomly distributed immobile and non-overlapping circular obstacles. Influence of the radius r and area fraction c of these obstacles and of the radius R of the observation area on the relative diffusion coefficient D * (Eq. (1)) and mobile fraction M was analyzed. A phenomenological equation relating D * to r and c was established. Fitting this equation to the FRAP data we obtained with the probe NBD-PC embedded in bacteriorhodopsin/egg-PC multilayers suggests that this transmembrane protein rigidifies the surrounding lipid phase over a distance of about 18 Å (two lipid layers) from the protein surface. In contrast, analysis of published diffusion constants obtained for lipids in the presence of gramicidin suggests that in terms of lateral diffusion, this relatively small polypeptide does not significantly affect the surrounding lipid phase. With respect to the mobile fraction M, and for point obstacles above the percolation threshold, an increase in R led to a decrease in M which can be associated with the existence of closed domains whose average size and diffusion properties can be determined. Adaptation of this model to the re-interpretation of the FRAP data obtained by Yechiel and Edidin (J Cell Biol (1987) 115:755–760) for the plasma membrane of human fibroblasts consistently leads to the suggestion that the lateral organization of this membrane would be of the confined type, with closed lipid domains of 0.5 µm2 in area.Abbreviations and notations used BR bacteriorhodopsin - DMPC dimyristoylphosphatidylcholine - diOC18 dioctadecyloxatricarbocyanine - egf-PC egg-yolk phosphatidylcholine - NBD-PC 1-acyl2-[t2-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine - MOPS 3-[N-morpholino]propane sulfonic acid - FRAP Fluoresence Recovery After photobleaching - D observed diffusion coefficient - D0 diffusion coefficient in the absence of obstacles - D * relative diffusion constant (Eq. 1) - M mobile fraction - c obstacle area fraction - r obstacle radius - R observation area radius - r d diffusion area radius Correspondence to: A. Lopez  相似文献   

3.
Rotational and lateral diffusion of membrane proteins.   总被引:38,自引:0,他引:38  
  相似文献   

4.
A simple method for isolation and fluorescence labelling of Leydig cells (L-cells) from rat testes was developed. Lateral diffusion coefficients of both lipid and protein membrane fluorescent probes were measured by the method of fluorescence recovery after photobleaching (FRAP). Age-dependent changes in diffusibility of membrane lipids and proteins were discovered.  相似文献   

5.
Malte Wachsmuth 《Protoplasma》2014,251(2):373-382
Intracellular molecular transport and localization are crucial for cells (plant cells as much as mammalian cells) to proliferate and to adapt to diverse environmental conditions. Here, some aspects of the microscopy-based method of fluorescence recovery after photobleaching (FRAP) are introduced. In the course of the last years, this has become a very powerful tool to study dynamic processes in living cells and tissue, and it is expected to experience further increasing demand because quantitative information on biological systems becomes more and more important. This review introduces the FRAP methodology, including some theoretical background, describes challenges and pitfalls, and presents some recent advanced applications.  相似文献   

6.
Fluorescence recovery after photobleaching (FRAP) is a widely used imaging technique for measuring the mobility of fluorescently tagged proteins in living cells. Although FRAP presumes that high-intensity illumination causes only irreversible photobleaching, reversible photoswitching of many fluorescent molecules, including GFP, can also occur. Here, we show that this photoswitching is likely to contaminate many FRAPs of GFP, and worse, the size of its contribution can be up to 60% under different experimental conditions, making it difficult to compare FRAPs from different studies. We develop a procedure to correct FRAPs for photoswitching and apply it to FRAPs of the GFP-tagged histone H2B, which, depending on the precise photobleaching conditions exhibits apparent fast components ranging from 9-36% before correction and ~1% after correction. We demonstrate how this ~1% fast component of H2B-GFP can be used as a benchmark both to estimate the role of photoswitching in previous FRAP studies of TATA binding proteins (TBP) and also as a tool to minimize the contribution of photoswitching to tolerable levels in future FRAP experiments. In sum, we show how the impact of photoswitching on FRAP can be identified, minimized, and corrected.  相似文献   

7.
Proteins associated with membranes from purified rat liver autophagosomes were separated by two-dimensional (2D) gel electrophoresis (zoom gels, pl 4-7 and 6-9), silver-stained and identified by MALDI-TOF mass spectrometry. Among >1,500 detectable protein spots, 58 (derived from 39 different known proteins) were at least twofold (and significantly) enriched in autophagosomal membranes relative to cytoplasmic membranes. All of these membrane-associated proteins were also present in the cytosol, many of them being truncated enzyme variants that would be expected to serve a binding rather than an enzymatic function. Eleven proteins were highly enriched (consistent with the theoretical maximum of 25x), corresponding to an exclusive membrane localization in the delimiting membrane of the autophagosome. Three of these were methyltransferases: betaine:homocysteine methyltransferase (five variants); catechol O-methyltransferase (one phosphorylated and one unphosphorylated variant) and methionine adenosyltransferase, perhaps indicating that methylation/demethylation of membrane components could play a role in autophagy. A fourth highly enriched autophagosomal protein, phosphatidylethanolamine binding protein, is particularly interesting considering that the autophagic marker protein, LC3/ Atg8, is linked to autophagosomal membranes through its covalent conjugation with phosphatidylethanolamine (as the form LC3-II). LC3-II was not detectable on silver-stained 2D-gels, but could be shown by immunoblotting to be highly enriched in autophagosomal membranes. Other highly enriched proteins were heat shock cognate protein Hsc70 (one short and one long variant), peroxiredoxin 2, peroxiredoxin 6 (two variants), fructose 1,6-bisphosphatase (one phosphorylated and one unphosphorylated variant), adenosine kinase, inorganic pyrophosphatase and selenium-binding protein 2. Hsc70, a chaperonin that plays an important role in the recognition and proteasomal degradation of aggregated proteins as well as in the lysosomal membrane uptake and degradation of certain cytosolic proteins (chaperone-mediated autophagy), could conceivably also serve a recognition function in the autophagic scavenging of denatured or aggregated proteins (aggrephagy). The moderately enriched (2-14x) autophagosomal membrane-associated proteins included a remarkably high proportion of drug-metabolizing enzymes, such as several glutathione S-transferases, sulfotransferases and aromatic hydrocarbon/steroid oxidoreductases. If the autophagic function of these proteins is to recognize protein-drug adducts, they may, along with the peroxiredoxins, chaperonins and methyl metabolic enzymes, make the phagophores (the sequestering precursors of the autophagosomal delimiting membrane) well equipped for the detection and scavenging of proteins denatured by oxidation, hypermethylation, drug adduction or other mechanisms.  相似文献   

8.
The immunological synapse is a stable intercellular structure that specializes in substance and signal transfer from one immune cell to another. Its formation is regulated in part by the diffusion of adhesion and signaling molecules into, and their binding of countermolecules in the contact area. The stability of immunological synapses allows receptor-ligand interactions to approximate chemical equilibrium despite other dynamic aspects. We have developed a mathematical model that describes the coupled reaction-diffusion process in an established immunological synapse. In this study, we extend a previously described contact area fluorescence recovery after photobleaching (FRAP) experiment to test the validity of the model. The receptor binding activity and lateral mobility of fluorescently labeled, lipid-anchored ligands in the bilayer resulted in their accumulation, as revealed by a much higher fluorescence intensity inside the contact area than outside. After complete photobleaching of the synapse, fluorescence recovery requires ligands to dissociate and rebind, and to diffuse in and out of the contact area. Such a FRAP time course consequently provides information on reaction and diffusion, which can be extracted by fitting the model solution to the data. Surprisingly, reverse rates in the two-dimensional contact area were at least 100-fold slower than in three-dimensional solution. As previously reported in immunological synapses, a significant nonrecoverable fraction of fluorescence was observed with one of two systems studied, suggesting some ligands either dissociated or diffused much more slowly compared with other ligands in the same synapse. The combined theory and experiment thus provides a new method for in situ measurements of kinetic rates, diffusion coefficients, and nonrecoverable fractions of interacting molecules in immunological synapses and other stable cell-bilayer junctions.  相似文献   

9.
10.
In this chapter, we discuss methods to measure lateral mobility of membrane lipids and proteins using techniques based on the light microscope. These methods typically sample lateral mobility in very small, micron-sized regions of the membrane so that they can be used to measure diffusion in regions of single cells. The methods are based on fluorescence from the molecules of interest or from light scattered from particles attached to single or small groups of membrane lipids or proteins. Fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and Single particle tracking (SPT) are presented in that order. FRAP and FCS methodologies are described for a dedicated wide field microscope although many confocal microscopes now have software permitting these measurement to be made; nevertheless, the principles of the measurement are the same for a wide field or confocal microscope. SPT can be applied to trace the movements of single fluorescent molecules in membranes but this aspect will not be treated in detail.  相似文献   

11.
Autophagy is essential for the maintenance of cellular homeostasis and its dysfunction has been linked to various diseases.Autophagy is a membrane driven process and tightly regulated by membrane-associated proteins.Here,we summarized membrane lipid compo-sition,and membrane-associated proteins relevant to autophagy from a spatiotemporal perspective.In par-ticular,we focused on three important membrane remodeling processes in autophagy,lipid transfer for phagophore elongation,membrane scission for phago-phore closure,and autophagosome-lysosome mem-brane fusion.We discussed the significance of the discoveries in this field and possible avenues to follow for future studies.Finally,we summarized the mem-brane-associated biochemical techniques and assays used to study membrane properties,with a discussion of their applications in autophagy.  相似文献   

12.
Fluorescence Recovery after Photobleaching (FRAP) is a technique widely used in cell biology to observe the dynamics of biological systems, including the diffusion of membrane components. More information is needed on the dynamics of photosynthetic membranes in order to help to understand processes such as photosynthetic electron transport, regulation of light-harvesting, and biogenesis and turnover of the photosynthetic apparatus. FRAP has the potential to provide this information, although applying the technique to photosynthetic membranes is not always straightforward. This review explains the potential and the problems, and gives a brief guide to performing FRAP measurements and analysing the data.  相似文献   

13.
In the plasma membrane of animal cells, many membrane-spanning proteins exhibit lower lateral mobilities than glycosylphosphatidylinositol (GPI)-linked proteins. To determine if the GPI linkage was a major determinant of the high lateral mobility of these proteins, we measured the lateral diffusion of chimeric membrane proteins composed of normally transmembrane proteins that were converted to GPI-linked proteins, or GPI-linked proteins that were converted to membrane-spanning proteins. These studies indicate that GPI linkage contributes only marginally (approximately twofold) to the higher mobility of several GPI-linked proteins. The major determinant of the high mobility of these proteins resides instead in the extracellular domain. We propose that lack of interaction of the extracellular domain of this protein class with other cell surface components allows diffusion that is constrained only by the diffusion of the membrane anchor. In contrast, cell surface interactions of the ectodomain of membrane-spanning proteins exemplified by the vesicular stomatitis virus G glycoprotein reduces their lateral diffusion coefficients by nearly 10-fold with respect to many GPI-linked proteins.  相似文献   

14.
Motions of membrane-associated proteins within and between membranes are essential for many cellular functions. We describe the application of fluorescence recovery after photobleaching (FRAP) beam-size analysis to investigate the role of palmitoylation in the membrane targeting and membrane association dynamics of H-Ras. The method described distinguishes between FRAP by lateral diffusion and by cytoplasmic exchange, and enables to obtain an estimate of the membrane affinity in live cells. These studies show distinct roles for the two palmitoylation sites (Cys181 and Cys184) on H-Ras, with different effects on membrane affinity and microlocalization.  相似文献   

15.
The study of multidrug resistance (MDR) in tumor cell lines has led to the discovery of the plasma membrane P-glycoprotein (Pgp) molecule. This protein functions as an energy-dependent pump for the efflux of diverse anticancer drugs from MDR cells. It now appears that Pgp-mediated MDR tumor cells do occur in human cancers, and that they are likely to play a role in the ultimate response of patients to chemotherapy. Chemosensitizers, compounds able to reverse the MDR phenotype, have been identified and offer the exciting possibility of improving efficacy for some nonresponsive malignancies. Surprisingly, Pgp-like molecules can be found in evolutionarily distant species among both eukaryotes and prokaryotes. As a group, these proteins form a superfamily of ATP-dependent transport proteins. This finding has broad implications and provides new insights into how living organisms use this fundamental transport system to regulate the trafficking of diverse molecules across biological membranes.  相似文献   

16.
《The Journal of cell biology》1983,96(6):1786-1790
The unfertilized mouse egg has a round and highly villated main body and a "nipple" that is unvillated and buds off on fertilization to form the second polar body. Fluorescent markers stain the body more intensely than the nipple, which has been assumed to result from surface amplification due to microvilli. Using fluorescence recovery after photobleaching and microfluorescence photometry, we have measured the membrane protein diffusion and concentration on the main body and nipple region of unfertilized and on fertilized CD-1 mouse eggs. Two general membrane protein labels were used: rhodamine-labeled succinylated concanavalin A and trinitrobenzene sulfonate visualized with a rhodamine Fab fragment of a sheep anti-trinitrophenyl. We found that while the diffusion coefficient was the same on the nipple and main body, considerably higher recovery was observed on the nipple for both probes. The ratio of intensity of fluorescence on the nipple to main body was significantly lower for the concanavalin A stain than for the trinitrophenyl stain, indicating that true concentration gradients exist beyond those that result from surface amplification. The effect of fertilization was not general. No effect was observed for the concanavalin A stain for either diffusion coefficient or percent recovery. For the trinitrophenyl stain, percent recovery decreased approximately twofold while diffusion coefficient increased approximately threefold.  相似文献   

17.
Micropatterning enabled semiquantitation of basolateral proteins in lateral and basal membranes of the same cell. Lateral diffusion coefficients of basolateral aquaporin-3 (AQP3-EGFP) and EGFP-AQP4 were extracted from “lateral” and “basal” membranes using identical live-cell imaging and k-space Image Correlation Spectroscopy (kICS).  相似文献   

18.
  • 1.1. Four GTP-binding proteins (23–27 kDa) were identified in membranes from PC12 cells by [α32P]GTP binding to nitrocellulose blots of SDS-polyacrylamide gels.
  • 2.2. The GTP-binding proteins remained associated with membranes during stimulation of intact cells by K+-depolarization or even after addition of C2+to digitonin-permeabilized cells.
  • 3.3. By two-dimensional gel electrophoresis, six GTP-binding proteins were resolved and based on their mobility, their phosphorylation state appeared independent of Ca2+.
  • 4.4. Fractionation of PC12 membranes showed that these GTP-binding proteins were broadly distributed in post-nuclear membranes with the plasma membranes containing the highest specific GTP-binding activity.
  • 5.5. Membrane fractions from bovine adrenal medulla contain similar GTP-binding proteins with GTP-binding intensity also being highest in the plasma membrane.
  • 6.6. The GTP-binding proteins could be concentrated in the detergent-rich fraction upon Triton X-114 phase separation.
  相似文献   

19.
The method of fluorescence redistribution after photobleaching (FRAP) is increasingly receiving interest in biological applications as it is nowadays used not only to determine mobility parameters per se, but to investigate dynamic changes in the concentration or distribution of diffusing molecules. Here, we develop a new simple convolution-based approach to analyze FRAP data using the whole image information. This method does not require information about the timing and localization of the bleaching event but uses the first image acquired directly after photobleaching to calculate the intensity distributions, instead. Changes in pools of molecules with different velocities, which are monitored by applying repetitive FRAP experiments within a single cell, can be analyzed by means of a global model by assuming two global diffusion coefficients with changing portions. We validate the approach by simulation and show that translocation of the YFP-fused PH-domain of phospholipase Cδ1 can be quantitatively monitored by FRAP analysis in a time-resolved manner. The new FRAP data analysis procedure may be applied to investigate signal transduction pathways using biosensors that change their mobility. An altered mobility in response to the activation of signaling cascades may result either from an altered size of the biosensor, e.g. due to multimerization processes or from translocation of the sensor to an environment with different viscosity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Calcium ions act as modulators of many fundamental processes in eukaryotic cells. Although these processes apparently involve initial interactions between calcium ions and cell membranes, the identity of the putative membrane Ca2+-binding proteins has until recently been obscure. This article describes a recently discovered family of mammalian membrane proteins, of perhaps ancient origin, that may fulfil this function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号