首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cell. Mg(2+) ions play key roles in guanine nucleotide binding and in preserving the structural integrity of GTPases. We describe here the kinetics of the interaction of GTP with the Rho family small GTPase Cdc42 in the absence and presence of Mg(2+). In contrast to the cases of Ras and Rab proteins, which require Mg(2+) for the nucleotide binding and intrinsic hydrolysis of GTP, our results show that in the absence of Mg(2+), the binding affinity of GTP to Cdc42 is in the submicromolar concentration, and the Mg(2+) cofactor has only a minor effect on the Cdc42-catalyzed intrinsic hydrolysis rate of GTP. These results suggest that the intrinsic GTPase reaction mechanism of Cdc42 may differ significantly from that of other subfamily members of the Ras superfamily.  相似文献   

2.
Ras functions as a molecular switch by cycling between the active GTP-bound state and the inactive GDP-bound state. It is known experimentally that there is another GTP-bound state called state 1. We investigate the conformational changes and fluctuations arising from the difference in the coordinations between the switch regions and ligands in the GTP- and GDP-bound states using a total of 830 ns of molecular-dynamics simulations. Our results suggest that the large fluctuations among multiple conformations of switch I in state 1 owing to the absence of coordination between Thr-35 and Mg2+ inhibit the binding of Ras to effectors. Furthermore, we elucidate the conformational heterogeneity in Ras by using principal component analysis, and propose a two-step reaction path from the GDP-bound state to the active GTP-bound state via state 1. This study suggests that state 1 plays an important role in signal transduction as an intermediate state of the nucleotide exchange process, although state 1 itself is an inactive state for signal transduction.  相似文献   

3.
The Ras family of small GTPases control diverse signaling pathways through a conserved “switch” mechanism, which is turned on by binding of GTP and turned off by GTP hydrolysis to GDP. Full understanding of GTPase switch functions requires reliable, quantitative assays for nucleotide binding and hydrolysis. Fluorescently labeled guanine nucleotides, such as 2′(3′)-O-(N-methylanthraniloyl) (mant)-substituted GTP and GDP analogs, have been widely used to investigate the molecular properties of small GTPases, including Ras and Rho. Using a recently developed NMR method, we show that the kinetics of nucleotide hydrolysis and exchange by three small GTPases, alone and in the presence of their cognate GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors, are affected by the presence of the fluorescent mant moiety. Intrinsic hydrolysis of mantGTP by Ras homolog enriched in brain (Rheb) is ∼10 times faster than that of GTP, whereas it is 3.4 times slower with RhoA. On the other hand, the mant tag inhibits TSC2GAP-catalyzed GTP hydrolysis by Rheb but promotes p120 RasGAP-catalyzed GTP hydrolysis by H-Ras. Guanine nucleotide exchange factor-catalyzed nucleotide exchange for both H-Ras and RhoA was inhibited by mant-substituted nucleotides, and the degree of inhibition depends highly on the GTPase and whether the assay measures association of mantGTP with, or dissociation of mantGDP from the GTPase. These results indicate that the mant moiety has significant and unpredictable effects on GTPase reaction kinetics and underscore the importance of validating its use in each assay.  相似文献   

4.
Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (>100) and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.  相似文献   

5.
Ras-like small GTPases cycle between GTP-bound active and GDP-bound inactive conformational states to regulate diverse cellular processes. Despite their importance, detailed kinetic or comparative studies of family members are rarely undertaken due to the lack of real-time assays measuring nucleotide binding or exchange. Here we report a bead-based flow cytometric assay that quantitatively measures the nucleotide binding properties of glutathione-S-transferase (GST) chimeras for prototypical Ras family members Rab7 and Rho. Measurements are possible in the presence or absence of Mg2+, with magnesium cations principally increasing affinity and slowing nucleotide dissociation rates 8- to 10-fold. GST-Rab7 exhibited a 3-fold higher affinity for guanosine diphosphate (GDP) relative to guanosine triphosphate (GTP) that is consistent with a 3-fold slower dissociation rate of GDP. Strikingly, GST-Rab7 had a marked preference for GTP with ribose ring-conjugated BODIPY FL. The more commonly used γ-NH-conjugated BODIPY FL GTP analogue failed to bind to GST-Rab7. In contrast, both BODIPY analogues bound equally well to GST-RhoA and GST-RhoC. Comparisons of the GST-Rab7 and GST-RhoA GTP binding pockets provide a structural basis for the observed binding differences. In sum, the flow cytometric assay can be used to measure nucleotide binding properties of GTPases in real time and to quantitatively assess differences between GTPases.  相似文献   

6.
The small G proteins of the Ras family act as bimodal relays in the transfer of intracellular signals. This is a dynamic phenomenon involving a cascade of protein-protein interactions modulated by chemical modifications, structural rearrangements and intracellular relocalisations. Most of the small G proteins could be operationally defined as proteins having two conformational states, each of which interacts with different cellular partners. These two states are determined by the nature of the bound nucleotide, GDP or GTP. This capacity to cycle between a GDP-bound conformation and a GTP-bound conformation enables them to filter, to amplify or to temporise the upstream signals that they receive. Thus the control of this cycle is crucial. Membrane anchoring of the proteins in the Ras family is a prerequisite for their activity. Most of the proteins in the Rho/Rac and Rab subfamilies of Ras proteins cycle between cytosol and membranes. Then the control of membrane association/dissociation is an other important regulation level. This review will describe one family of crucial regulators acting on proteins in the Rho/Rac family-the Rho guanine nucleotide dissociation inhibitors, or RhoGDIs. As yet, only three RhoGDIs have been described: RhoGDI-1, RhoGDI-2 (or D4/Ly-GDI) and RhoGDI-3. RhoGDI 1 and 2 are cytosolic and participate in the regulation of both the GDP/GTP cycle and the membrane association/dissociation cycle of Rho/Rac proteins. The non-cytosolic RhoGDI-3 seems to act in a slightly different way.  相似文献   

7.
The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cells. Here we have investigated the role of Mg(2+) cofactor in the guanine nucleotide binding and hydrolysis processes of the Rho family members, Cdc42, Rac1, and RhoA. Differing from Ras and Rab proteins, which require Mg(2+) for GDP and GTP binding, the Rho GTPases bind the nucleotides in the presence or absence of Mg(2+) similarly, with dissociation constants in the submicromolar concentration. The presence of Mg(2+), however, resulted in a marked decrease in the intrinsic dissociation rates of the nucleotides. The catalytic activity of the guanine nucleotide exchange factors (GEFs) appeared to be negatively regulated by free Mg(2+), and GEF binding to Rho GTPase resulted in a 10-fold decrease in affinity for Mg(2+), suggesting that one role of GEF is to displace bound Mg(2+) from the Rho proteins. The GDP dissociation rates of the GTPases could be further stimulated by GEF upon removal of bound Mg(2+), indicating that the GEF-catalyzed nucleotide exchange involves a Mg(2+)-independent as well as a Mg(2+)-dependent mechanism. Although Mg(2+) is not absolutely required for GTP hydrolysis by the Rho GTPases, the divalent ion apparently participates in the GTPase reaction, since the intrinsic GTP hydrolysis rates were enhanced 4-10-fold upon binding to Mg(2+), and k(cat) values of the Rho GTPase-activating protein (RhoGAP)-catalyzed reactions were significantly increased when Mg(2+) was present. Furthermore, the p50RhoGAP specificity for Cdc42 was lost in the absence of Mg(2+) cofactor. These studies directly demonstrate a role of Mg(2+) in regulating the kinetics of nucleotide binding and hydrolysis and in the GEF- and GAP-catalyzed reactions of Rho family GTPases. The results suggest that GEF facilitates nucleotide exchange by destabilizing both bound nucleotide and Mg(2+), whereas RhoGAP utilizes the Mg(2+) cofactor to achieve high catalytic efficiency and specificity.  相似文献   

8.
9.
Ras proteins function as critical relay switches that regulate diverse signaling pathways between cell surface receptors and the nucleus. Over the past 2-3 years researchers have identified many components of these pathways that mediate Ras activation and effector function. Among these proteins are several guanine nucleotide exchange factors (GEFs), which are responsible for directly interacting with and activating Ras in response to extracellular stimuli. Analogous GEFs regulate Ras-related proteins that serve other diverse cellular functions. In particular, a growing family of proteins (Dbl homology proteins) has recently been identified, which may function as GEFs for the Rho family of Ras-related proteins. This review summarizes our current knowledge of the structure, biochemistry and biology of Ras and Rho family GEFs. Additionally, we describe mechanisms of GEF activation of Ras in signal transduction and address the potential that deregulated GEFs might contribute to malignant transformation through chronic Ras protein activation.  相似文献   

10.
Proteins of the Ras superfamily, Ras, Rac, Rho, and Cdc42, control the remodelling of the cortical actin cytoskeleton following growth factor stimulation. A major regulator of Ras, Ras-GAP, contains several structural motifs, including an SH3 domain and two SH2 domains, and there is evidence that they harbor a signalling function. We have previously described a monoclonal antibody to the SH3 domain of Ras-GAP which blocks Ras signalling in Xenopus oocytes. We now show that microinjection of this antibody into Swiss 3T3 cells prevents the formation of actin stress fibers stimulated by growth factors or activated Ras, but not membrane ruffling. This inhibition is bypassed by coinjection of activated Rho, suggesting that the Ras-GAP SH3 domain is necessary for endogenous Rho activation. In agreement, the antibody blocks lysophosphatidic acid-induced neurite retraction in differentiated PC12 cells. Furthermore, we demonstrate that microinjection of full-length Ras-GAP triggers stress fiber polymerization in fibroblasts in an SH3-dependent manner, strongly suggesting an effector function besides its role as a Ras downregulator. These results support the idea that Ras-GAP connects the Ras and Rho pathways and, therefore, regulates the actin cytoskeleton through a mechanism which probably does not involve p190 Rho-GAP.  相似文献   

11.
12.
The small G protein Ras is a central regulator of cellular signal transduction processes, functioning as a molecular switch. Switch mechanisms utilizing conformational changes in nucleotide-binding motifs have been well studied at the molecular level. Azobenzene is a photochromic molecule that undergoes rapid and reversible isomerization between the cis and trans forms upon exposure to ultraviolet and visible light irradiation, respectively. Here, we introduced the sulfhydryl-reactive azobenzene derivative 4-phenylazophenyl maleimide (PAM) into the nucleotide-binding motif of Ras to regulate the GTPase activity by photoirradiation. We prepared four Ras mutants (G12C, Y32C, I36C, and Y64C) that have a single reactive cysteine residue in the nucleotide-binding motif. PAM was stoichiometrically incorporated into the cysteine residue of the mutants. The PAM-modified mutants exhibited reversible alterations in GTPase activity, nucleotide exchange rate, and interaction between guanine nucleotide exchange factor and Ras, accompanied by photoisomerization upon exposure to ultraviolet and visible light irradiation. The results suggest that incorporation of photochromic molecules into its nucleotide-binding motif enables photoreversible control of the function of the small G protein Ras.  相似文献   

13.
14.
Here we describe a new signaling cross-talk between the Vav/Rac1 and Ras pathways that is established through the stimulation of RasGRP1, an exchange factor for Ras subfamily GTPases. This interaction is crucial for Ras activation in lymphoid cells, since this GTPase cannot become activated in the absence of Vav proteins. The activation of RasGRP1 requires both the generation of diacylglycerol via phospho lipase C-gamma and the induction of actin polymerization, two responses induced by Vav and Rac1 that facilitate the translocation of RasGRP1 to juxtamembrane areas of the cell. Consistent with this, the cross-talk can be activated by tyrosine-phosphorylated wild-type Vav, oncogenic Vav and constitutively active Rac1. Conversely, Ras activation can be blocked in lymphocytes and ectopic systems using inhibitors affecting either phospholipase C-gamma or F-actin polymerization. These results indicate that a relay mechanism exists in lymphoid and other cells helping in the generation of robust signaling responses by the Rac/Rho and Ras pathways upon receptor engagement.  相似文献   

15.
Cell division control protein 42 homolog (Cdc42) protein, a Ras superfamily GTPase, regulates cellular activities, including cancer progression. Using all-atom molecular dynamics (MD) simulations and essential dynamic analysis, we investigated the structure and dynamics of the catalytic domains of GDP-bound (inactive) and GTP-bound (active) Cdc42 in solution. We discovered substantial differences in the dynamics of the inactive and active forms, particularly in the “insert region” (residues 122–135), which plays a role in Cdc42 activation and binding to effectors. The insert region has larger conformational flexibility in the GDP-bound Cdc42 than in the GTP-bound Cdc42. The G2 loop and switch I at the effector lobe of the catalytic domain exhibit large conformational changes in both the GDP- and the GTP-bound systems, but in the GTP-bound Cdc42, the switch I interactions with GTP are retained. Oncogenic mutations were identified in the Ras superfamily. In Cdc42, the G12V and Q61L mutations decrease the GTPase activity. We simulated these mutations in both GDP- and GTP-bound Cdc42. Although the overall structural organization is quite similar between the wild type and the mutants, there are small differences in the conformational dynamics, especially in the two switch regions. Taken together, the G12V and Q61L mutations may play a role similar to their K-Ras counterparts in nucleotide binding and activation. The conformational differences, which are mainly in the insert region and, to a lesser extent, in the switch regions flanking the nucleotide binding site, can shed light on binding and activation. We propose that the differences are due to a network of hydrogen bonds that gets disrupted when Cdc42 is bound to GDP, a disruption that does not exist in other Rho GTPases. The differences in the dynamics between the two Cdc42 states suggest that the inactive conformation has reduced ability to bind to effectors.  相似文献   

16.
PrimPol is the most recently discovered human DNA polymerase/primase and plays an emerging role in nuclear and mitochondrial genomic maintenance. As a member of archaeo-eukaryotic primase superfamily enzymes, PrimPol possesses DNA polymerase and primase activities that are important for replication fork progression in vitro and in cellulo. The enzymatic activities of PrimPol are critically dependent on the nucleotidyl-transfer reaction to incorporate deoxyribonucleotides successively; however, our knowledge concerning the kinetic mechanism of the reaction remains incomplete. Using enzyme kinetic analyses and computer simulations, we dissected the mechanism by which PrimPol transfers a nucleotide to a primer-template DNA, which comprises DNA binding, conformational transition, nucleotide binding, phosphoester bond formation, and dissociation steps. We obtained the rate constants of the steps by steady-state and pre-steady-state kinetic analyses and simulations. Our data demonstrate that the rate-limiting step of PrimPol-catalyzed DNA elongation depends on the metal cofactor involved. In the presence of Mn2+, a conformational transition step from non-productive to productive PrimPol:DNA complexes limits the enzymatic turnover, whereas in the presence of Mg2+, the chemical step becomes rate limiting. As evidenced from our kinetic and simulation data, PrimPol maintains the same kinetic mechanism under either millimolar or physiological micromolar Mn2+ concentration. Our study revealed the underlying mechanism by which PrimPol catalyzes nucleotide incorporation with two common metal cofactors and provides a kinetic basis for further understanding the regulatory mechanism of this functionally diverse primase-polymerase.  相似文献   

17.
Directional sensing, a process in which cells convert an external chemical gradient into internal signaling events, is essential in chemotaxis. We previously showed that a Rho GTPase, RacE, regulates gradient sensing in Dictyostelium cells. Here, using affinity purification and mass spectrometry, we identify a novel RacE-binding protein, GflB, which contains a Ras GEF domain and a Rho GAP domain. Using biochemical and gene knockout approaches, we show that GflB balances the activation of Ras and Rho GTPases, which enables cells to precisely orient signaling events toward higher concentrations of chemoattractants. Furthermore, we find that GflB is located at the leading edge of migrating cells, and this localization is regulated by the actin cytoskeleton and phosphatidylserine. Our findings provide a new molecular mechanism that connects directional sensing and morphological polarization.  相似文献   

18.
Akt plays a key role in the Ras/PI3K/Akt/mTOR signaling pathway. In breast cancer, Akt translocation to the plasma membrane is enabled by the interaction of its pleckstrin homology domain (PHD) with calmodulin (CaM). At the membrane, the conformational change promoted by PIP3 releases CaM and facilitates Thr308 and Ser473 phosphorylation and activation. Here, using modeling and molecular dynamics simulations, we aim to figure out how CaM interacts with Akt’s PHD at the atomic level. Our simulations show that CaM-PHD interaction is thermodynamically stable and involves a β-strand rather than an α-helix, in agreement with NMR data, and that electrostatic and hydrophobic interactions are critical. The PHD interacts with CaM lobes; however, multiple modes are possible. IP4, the polar head of PIP3, weakens the CaM-PHD interaction, implicating the release mechanism at the plasma membrane. Recently, we unraveled the mechanism of PI3Kα activation at the atomistic level and the structural basis for Ras role in the activation. Here, our atomistic structural data clarify the mechanism of how CaM interacts, delivers, and releases Akt—the next node in the Ras/PI3K pathway—at the plasma membrane.  相似文献   

19.
PDZ-GEF1 (RA-GEF/nRapGEP/CNrasGEF) is a guanine nucleotide exchange factor (GEF) characterised by the presence of a PSD-95/DlgA/ZO-1 (PDZ) domain, a Ras-association (RA) domain and a region related to a cyclic nucleotide binding domain (RCBD). These domains are in addition to a Ras exchange motif (REM) and GEF domain characteristic for GEFs for Ras-like small GTPases. PDZ-GEF1 efficiently exchanges nucleotides of both Rap1 and Rap2, but has also been implicated in mediating cAMP-induced Ras activation through binding of cAMP to the RCBD. Here we describe a new family member, PDZ-GEF2, of which we isolated two splice variants (PDZ-GEF2A and 2B). PDZ-GEF2 contains, in addition to the domains characteristic for PDZ-GEF1, a second, less conserved RCBD at the N-terminus. PDZ-GEF2 is also specific for both Rap1 and Rap2. We further investigated the possibility that PDZ-GEF2, like PDZ-GEF1, is a cAMP-responsive GEF for Ras. However, in contrast to previous results, we did not find any effect of either PDZ-GEF1 or PDZ-GEF2 on Ras in the absence or presence of cAMP. Moreover, affinity measurements by isothermic calorimetry showed that the RCBD of PDZ-GEF1 does not bind cAMP with a physiologically relevant affinity. We conclude that both PDZ-GEF1 and 2 are specific for Rap1 and Rap2 and unresponsive to cAMP and various other nucleotides.  相似文献   

20.
Mutation of RAS genes is a critical event in the pathogenesis of different human tumors and in some developmental disorders. Here we present an arabinose-derived bicyclic compound displaying selective cytotoxicity in human colorectal cancer cells expressing K-RasG13D, that shows high intrinsic nucleotide exchange rate. We characterize binding of bicyclic compounds by docking and NMR experiments and their inhibitory activity on GEF-mediated nucleotide exchange on wild-type and mutant Ras proteins. We demonstrate that the in vitro inhibition of Ras nucleotide exchange depends on the molar ratio between Ras and its GEF activator, suggesting that the observed in vivo selective effect may depend on biochemical parameters and actual intracellular concentration of the Ras protein and its regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号