共查询到20条相似文献,搜索用时 15 毫秒
1.
There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or "sequence conservation" as the basis for their understanding. Recently "interaction energy" based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the "interaction conservation" viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design. 相似文献
2.
Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks 总被引:1,自引:0,他引:1
Guimarães PR Rico-Gray V Oliveira PS Izzo TJ dos Reis SF Thompson JN 《Current biology : CB》2007,17(20):1797-1803
The structure of mutualistic networks provides clues to processes shaping biodiversity [1-10]. Among them, interaction intimacy, the degree of biological association between partners, leads to differences in specialization patterns [4, 11] and might affect network organization [12]. Here, we investigated potential consequences of interaction intimacy for the structure and coevolution of mutualistic networks. From observed processes of selection on mutualistic interactions, it is expected that symbiotic interactions (high-interaction intimacy) will form species-poor networks characterized by compartmentalization [12, 13], whereas nonsymbiotic interactions (low intimacy) will lead to species-rich, nested networks in which there is a core of generalists and specialists often interact with generalists [3, 5, 7, 12, 14]. We demonstrated an association between interaction intimacy and structure in 19 ant-plant mutualistic networks. Through numerical simulations, we found that network structure of different forms of mutualism affects evolutionary change in distinct ways. Change in one species affects primarily one mutualistic partner in symbiotic interactions but might affect multiple partners in nonsymbiotic interactions. We hypothesize that coevolution in symbiotic interactions is characterized by frequent reciprocal changes between few partners, but coevolution in nonsymbiotic networks might show rare bursts of changes in which many species respond to evolutionary changes in a single species. 相似文献
3.
神经网络在蛋白质二级结构预测中的应用 总被引:3,自引:0,他引:3
介绍了蛋白质二级结构预测的研究意义,讨论了用在蛋白质二级结构预测方面的神经网络设计问题,并且较详尽地评述了近些年来用神经网络方法在蛋白质二级结构预测中的主要工作进展情况,展望了蛋白质结构预测的前景。 相似文献
4.
Effective energy functions for protein structure prediction 总被引:14,自引:0,他引:14
Protein structure prediction, fold recognition, homology modeling and design rely mainly on statistical effective energy functions. Although the theoretical foundation of such functions is not clear, their usefulness has been demonstrated in many applications. Molecular mechanics force fields, particularly when augmented by implicit solvation models, provide physical effective energy functions that are beginning to play a role in this area. 相似文献
5.
The back-propagation neural network algorithm is a commonly used method for predicting the secondary structure of proteins. Whilst popular, this method can be slow to learn and here we compare it with an alternative: the cascade-correlation architecture. Using a constructive algorithm, cascade-correlation achieves predictive accuracies comparable to those obtained by back-propagation, in shorter time. 相似文献
6.
Allosteric communication in proteins can be induced by the binding of effective ligands, mutations or covalent modifications that regulate a site distant from the perturbed region. To understand allosteric regulation, it is important to identify the remote sites that are affected by the perturbation-induced signals and how these allosteric perturbations are transmitted within the protein structure. In this study, by constructing a protein structure network and modeling signal transmission with a Markov random walk, we developed a method to estimate the signal propagation and the resulting effects. In our model, the global perturbation effects from a particular signal initiation site were estimated by calculating the expected visiting time (EVT), which describes the signal-induced effects caused by signal transmission through all possible routes. We hypothesized that the residues with high EVT values play important roles in allosteric signaling. We applied our model to two protein structures as examples, and verified the validity of our model using various types of experimental data. We also found that the hot spots in protein binding interfaces have significantly high EVT values, which suggests that they play roles in mediating signal communication between protein domains. 相似文献
7.
Wagner A 《Proceedings. Biological sciences / The Royal Society》2003,270(1514):457-466
Two processes can influence the evolution of protein interaction networks: addition and elimination of interactions between proteins, and gene duplications increasing the number of proteins and interactions. The rates of these processes can be estimated from available Saccharomyces cerevisiae genome data and are sufficiently high to affect network structure on short time-scales. For instance, more than 100 interactions may be added to the yeast network every million years, a fraction of which adds previously unconnected proteins to the network. Highly connected proteins show a greater rate of interaction turnover than proteins with few interactions. From these observations one can explain (without natural selection on global network structure) the evolutionary sustenance of the most prominent network feature, the distribution of the frequency P(d) of proteins with d neighbours, which is broad-tailed and consistent with a power law, that is: P(d) proportional, variant d (-gamma). 相似文献
8.
Background
Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues) with special emphasis to protein interfaces. 相似文献9.
Nosocomial infection (i.e. infection in healthcare facilities) raises a serious public health problem, as implied by the existence of pathogens characteristic to healthcare facilities such as methicillin-resistant Staphylococcus aureus and hospital-mediated outbreaks of influenza and severe acute respiratory syndrome. For general communities, epidemic modeling based on social networks is being recognized as a useful tool. However, disease propagation may occur in a healthcare facility in a manner different from that in a urban community setting due to different network architecture. We simulate stochastic susceptible-infected-recovered dynamics on social networks, which are based on observations in a hospital in Tokyo, to explore effective containment strategies against nosocomial infection. The observed social networks in the hospital have hierarchical and modular structure in which dense substructure such as departments, wards, and rooms, are globally but only loosely connected, and do not reveal extremely right-skewed distributions of the number of contacts per individual. We show that healthcare workers, particularly medical doctors, are main vectors (i.e. transmitters) of diseases on these networks. Intervention methods that restrict interaction between medical doctors and their visits to different wards shrink the final epidemic size more than intervention methods that directly protect patients, such as isolating patients in single rooms. By the same token, vaccinating doctors with priority rather than patients or nurses is more effective. Finally, vaccinating individuals with large betweenness centrality (frequency of mediating connection between pairs of individuals along the shortest paths) is superior to vaccinating ones with large connectedness to others or randomly chosen individuals, which was suggested by previous model studies. 相似文献
10.
Interaction networks for systems biology 总被引:2,自引:0,他引:2
Cellular functions are almost always the result of the coordinated action of several proteins, interacting in protein complexes, pathways or networks. Progress made in devising suitable tools for analysis of protein-protein interactions, have recently made it possible to chart interaction networks on a large-scale. The aim of this review is to provide a short overview of the most promising contributions of interaction networks to human biology, structural biology and human genetics. 相似文献
11.
Revealing functional units in protein-protein interaction (PPI) networks are important for understanding cellular functional organization. Current algorithms for identifying functional units mainly focus on cohesive protein complexes which have more internal interactions than external interactions. Most of these approaches do not handle overlaps among complexes since they usually allow a protein to belong to only one complex. Moreover, recent studies have shown that other non-cohesive structural functional units beyond complexes also exist in PPI networks. Thus previous algorithms that just focus on non-overlapping cohesive complexes are not able to present the biological reality fully. Here, we develop a new regularized sparse random graph model (RSRGM) to explore overlapping and various structural functional units in PPI networks. RSRGM is principally dominated by two model parameters. One is used to define the functional units as groups of proteins that have similar patterns of connections to others, which allows RSRGM to detect non-cohesive structural functional units. The other one is used to represent the degree of proteins belonging to the units, which supports a protein belonging to more than one revealed unit. We also propose a regularizer to control the smoothness between the estimators of these two parameters. Experimental results on four S. cerevisiae PPI networks show that the performance of RSRGM on detecting cohesive complexes and overlapping complexes is superior to that of previous competing algorithms. Moreover, RSRGM has the ability to discover biological significant functional units besides complexes. 相似文献
12.
Combining evolutionary information and neural networks to predict protein secondary structure 总被引:1,自引:0,他引:1
Using evolutionary information contained in multiple sequence alignments as input to neural networks, secondary structure can be predicted at significantly increased accuracy. Here, we extend our previous three-level system of neural networks by using additional input information derived from multiple alignments. Using a position-specific conservation weight as part of the input increases performance. Using the number of insertions and deletions reduces the tendency for overprediction and increases overall accuracy. Addition of the global amino acid content yields a further improvement, mainly in predicting structural class. The final network system has a sustained overall accuracy of 71.6% in a multiple cross-validation test on 126 unique protein chains. A test on a new set of 124 recently solved protein structures that have no significant sequence similarity to the learning set confirms the high level of accuracy. The average cross-validated accuracy for all 250 sequence-unique chains is above 72%. Using various data sets, the method is compared to alternative prediction methods, some of which also use multiple alignments: the performance advantage of the network system is at least 6 percentage points in three-state accuracy. In addition, the network estimates secondary structure content from multiple sequence alignments about as well as circular dichroism spectroscopy on a single protein and classifies 75% of the 250 proteins correctly into one of four protein structural classes. Of particular practical importance is the definition of a position-specific reliability index. For 40% of all residues the method has a sustained three-state accuracy of 88%, as high as the overall average for homology modelling. A further strength of the method is greatly increased accuracy in predicting the placement of secondary structure segments. © 1994 Wiley-Liss, Inc. 相似文献
13.
Background
Recently, large data sets of protein-protein interactions (PPI) which can be modeled as PPI networks are generated through high-throughput methods. And locally dense regions in PPI networks are very likely to be protein complexes. Since protein complexes play a key role in many biological processes, detecting protein complexes in PPI networks is one of important tasks in post-genomic era. However, PPI networks are often incomplete and noisy, which builds barriers to mining protein complexes.Results
We propose a new and effective algorithm based on robustness to detect overlapping clusters as protein complexes in PPI networks. And in order to improve the accuracy of resulting clusters, our algorithm tries to reduce bad effects brought by noise in PPI networks. And in our algorithm, each new cluster begins from a seed and is expanded through adding qualified nodes from the cluster's neighbourhood nodes. Besides, in our algorithm, a new distance measurement method between a cluster K and a node in the neighbours of K is proposed as well. The performance of our algorithm is evaluated by applying it on two PPI networks which are Gavin network and Database of Interacting Proteins (DIP). The results show that our algorithm is better than Markov clustering algorithm (MCL), Clique Percolation method (CPM) and core-attachment based method (CoAch) in terms of F-measure, co-localization and Gene Ontology (GO) semantic similarity.Conclusions
Our algorithm detects locally dense regions or clusters as protein complexes. The results show that protein complexes generated by our algorithm have better quality than those generated by some previous classic methods. Therefore, our algorithm is effective and useful.14.
Gutfraind A 《PloS one》2010,5(11):e13448
Complex socioeconomic networks such as information, finance and even terrorist networks need resilience to cascades--to prevent the failure of a single node from causing a far-reaching domino effect. We show that terrorist and guerrilla networks are uniquely cascade-resilient while maintaining high efficiency, but they become more vulnerable beyond a certain threshold. We also introduce an optimization method for constructing networks with high passive cascade resilience. The optimal networks are found to be based on cells, where each cell has a star topology. Counterintuitively, we find that there are conditions where networks should not be modified to stop cascades because doing so would come at a disproportionate loss of efficiency. Implementation of these findings can lead to more cascade-resilient networks in many diverse areas. 相似文献
15.
Wuchty S 《Proteomics》2002,2(12):1715-1723
Data of currently available protein-protein interaction sets and protein domain sets of yeast are used to set up protein and domain interaction and domain sequence networks. All of them are far from being random or regular networks. In fact, they turn out to be sparse and locally well clustered indicating so-called scale-free and partially small-world topology. These subtle topologies display considerable indirect properties which are measured with a newly introduced transitivity coefficient. Fairly small sets of highly connected proteins and domains shape the topologies of the underlying networks, emphasizing a kind of backbone the nets are based on. The biological nature of these particular nodes is further investigated. Since highly connected proteins and domains accumulated a significant higher number of links by their important involvement in certain cellular aspects, their mutational effect on the cell is considered by a perturbation analysis. In comparison to domains of yeast, what factors force domains to accumulate links to other domains in protein sequences of higher eukaryotes are investigated. 相似文献
16.
Does a protein's secondary structure determine its three-dimensional fold? This question is tested directly by analyzing proteins of known structure and constructing a taxonomy based solely on secondary structure. The taxonomy is generated automatically, and it takes the form of a tree in which proteins with similar secondary structure occupy neighboring leaves. Our tree is largely in agreement with results from the structural classification of proteins (SCOP), a multidimensional classification based on homologous sequences, full three-dimensional structure, information about chemistry and evolution, and human judgment. Our findings suggest a simple mechanism of protein evolution. 相似文献
17.
Many of the targets of structural genomics will be proteins with little or no structural similarity to those currently in the database. Therefore, novel function prediction methods that do not rely on sequence or fold similarity to other known proteins are needed. We present an automated approach to predict nucleic-acid-binding (NA-binding) proteins, specifically DNA-binding proteins. The method is based on characterizing the structural and sequence properties of large, positively charged electrostatic patches on DNA-binding protein surfaces, which typically coincide with the DNA-binding-sites. Using an ensemble of features extracted from these electrostatic patches, we predict DNA-binding proteins with high accuracy. We show that our method does not rely on sequence or structure homology and is capable of predicting proteins of novel-binding motifs and protein structures solved in an unbound state. Our method can also distinguish NA-binding proteins from other proteins that have similar, large positive electrostatic patches on their surfaces, but that do not bind nucleic acids. 相似文献
18.
The mechanism of mRNA recognition by proteins interacting with the mRNA cap structure was investigated by photochemical cross-linking of proteins with 32P-labelled reoviral RNAs. Using ribosomal washes as a source of eukaryotic protein synthesis initiation factors, we identified the well-known cap binding proteins eIF-4B and -4E, but eIF-2 and eIF-3 as well. The interplay of purified eIF-4A, -4B, and -4F was studied in relation to ATP dependence and cap analogue sensitivity of cap binding. Next to their well-known roles in the initiation process, eIF-2 and eIF-3 also cross-linked to the 5' cap. eIF-2 stimulated eIF-4B and -4E cross-linking, an observation that has been previously described more extensively. The interaction of eIF-2 with the 5' end of mRNA was extremely sensitive to K(+)-ions and was resistant to a high concentration of Mg(2+)-ions; this influence of mono- and divalent ions was in contrast with the cross-linking of eIF-4B and -4E. Optimal interaction of these factors was obtained at moderate K+ concentration and low Mg(2+)-ion concentrations. eIF-2 cross-linking was sensitive to high protein to mRNA ratios indicating a weak affinity as compared to eIF-4E and -4B. The interaction of eIF-3 with the cap of mRNA is also weak as it was counteracted by all other cap binding proteins, leading to an inability to detect the cross-linking of this protein in crude eIF preparations. Time kinetics of formation of complexes suggested eIF-2 to be one of the first factors to interact with mRNA. Preformed RNA-protein complexes were dissociated after cap analogue addition, suggesting reversible interactions between RNA and proteins. 相似文献
19.