首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have succeeded in controlling tubular membrane formations in binary giant unilamellar vesicles (GUVs) using a simple temperature changing between the homogeneous one-phase region and the two-phase coexistence region. The binary GUV is composed of inverse-cone (bulky hydrocarbon chains and a small headgroup) and cylinder-shaped lipids. When the temperature was set in the two-phase coexistence region, the binary GUV had a spherical shape with solidlike domains. By increasing the temperature to the homogeneous one-phase region, the excess area created by the chain melting of the lipid produced tubes inside the GUV. The tubes had a radius on the micrometer scale and were stable in the one-phase region. When we again decreased the temperature to the two-phase coexisting region, the tubes regressed and the GUVs recovered their phase-separated spherical shape. We infer that the tubular formation was based on the mechanical balance of the vesicle membrane (spontaneous tension) coupled with the asymmetric distribution of the inverse-cone-shaped lipids between the inner and outer leaflets of the vesicle (lipid sorting).  相似文献   

2.
We have succeeded in controlling tubular membrane formations in binary giant unilamellar vesicles (GUVs) using a simple temperature changing between the homogeneous one-phase region and the two-phase coexistence region. The binary GUV is composed of inverse-cone (bulky hydrocarbon chains and a small headgroup) and cylinder-shaped lipids. When the temperature was set in the two-phase coexistence region, the binary GUV had a spherical shape with solidlike domains. By increasing the temperature to the homogeneous one-phase region, the excess area created by the chain melting of the lipid produced tubes inside the GUV. The tubes had a radius on the micrometer scale and were stable in the one-phase region. When we again decreased the temperature to the two-phase coexisting region, the tubes regressed and the GUVs recovered their phase-separated spherical shape. We infer that the tubular formation was based on the mechanical balance of the vesicle membrane (spontaneous tension) coupled with the asymmetric distribution of the inverse-cone-shaped lipids between the inner and outer leaflets of the vesicle (lipid sorting).  相似文献   

3.
The formation of supported lipid bilayers (SLBs) on glass from giant unilamellar vesicles (GUVs) was studied using fluorescence microscopy. We show that GUV rupture occurs by at least four mechanisms, including 1), spontaneous rupture of isolated GUVs yielding almost heart-shaped bilayer patches (asymmetric rupture); 2), spontaneous rupture of isolated GUVs yielding circular bilayer patches (symmetric rupture); 3), induced rupture of an incoming vesicle when it contacts a planar bilayer edge; and 4), induced rupture of an adsorbed GUV when a nearby GUV spontaneously ruptures. In pathway 1, the dominant rupture pathway for isolated GUVs, GUVs deformed upon adsorption to the glass surface, and planar bilayer patch formation was initiated by rupture pore formation near the rim of the glass-bilayer interface. Expanding rupture pores led to planar bilayer formation in approximately 10-20 ms. Rupture probability per unit time depended on the average intrinsic curvature of the component lipids. The membrane leaflet adsorbed to the glass surface in planar bilayer patches originated from the outer leaflet of GUVs. Pathway 2 was rarely observed. We surmise that SLB formation is predominantly initiated by pathway 1 rupture events, and that rupture events occurring by pathways 3 and 4 dominate during later stages of SLB formation.  相似文献   

4.
Using the sectioning effect of the two-photon fluorescence microscope, we studied the behavior of phospholipid giant unilamellar vesicles (GUVs) composed of pure diacylphosphatidylcholine phospholipids during the gel-to-liquid crystalline phase transition. We used the well-characterized excitation generalized polarization function (GP(ex)) of 6-dodecanoyl-2-dimethylamine-naphthalene (LAURDAN), which is sensitive to the changes in water content in the lipid vesicles, to monitor the phase transition in the GUVs. Even though the vesicles do not show temperature hysteresis at the main phase transition, we observed different behaviors of the vesicle shape, depending on how the GUV sample reaches the main phase transition. During the cooling cycles, we observed an increase in the vesicle diameter at the phase transition ( approximately 0.5-1%), followed by a decrease in the diameter when the vesicle reached the gel phase. During the heating cycles and close to the phase transition temperature, a surprising behavior is observed, showing a sequence of different vesicle shapes as follows: spherical-polygonal-ellipsoidal. We attribute these changes to the effect of lipid domain coexistence on the macroscopic structure of the GUVs. The "shape hysteresis" in the GUVs is reversible and largely independent of the temperature scan rate. In the presence of 30 mol% of cholesterol the events observed at the phase transition in the GUVs formed by pure phospholipids were absent.  相似文献   

5.
Giant unilamellar vesicles (GUVs) containing cholesterol often have a wide distribution in lipid composition. In this study, GUVs of 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC)/1,2-distearoyl-sn-glycero-3-phosphocholine(DSPC)/cholesterol and 1,2-diphytanoyl-sn-glycero-3-phosphocholine(diPhyPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine(DPPC)/cholesterol were prepared from dry lipid films using the standard electroformation method as well as a modified method from damp lipid films, which are made from compositional uniform liposomes prepared using the Rapid Solvent Exchange (RSE) method. We quantified the lipid compositional distributions of GUV by measuring the miscibility transition temperature of GUVs using fluorescence microscopy, since a narrower distribution in the transition temperature should correspond to a more uniform distribution in GUV lipid composition. Cholesterol molecules can demix from other lipids in dry state and form cholesterol crystals. Using optical microscopy, micron-sized crystals were observed in some dry lipid films. Thus, a major cause of GUV lipid compositional heterogeneity is the demixing of lipids in the dry film state. By avoiding the dry film state, GUVs prepared from damp lipid films have a better uniformity in lipid composition, and the standard deviations of miscibility transition temperature are about 2.5 times smaller than that of GUVs prepared from dry lipid films. Comparing the two ternary systems, diPhyPC/DPPC/cholesterol GUVs has a larger cholesterol compositional heterogeneity, which directly correlates with the low maximum solubility of cholesterol in diPhyPC lipid bilayers (40.2±0.5mol%) measured by light scattering. Our data indicate that cholesterol interacts far less favorably with diPhyPC than it does with other PCs. The damp lipid film method also has a potential of preparing GUVs from cell membranes containing native proteins without going through a dry state.  相似文献   

6.
We used a combination of imaging and fluctuation techniques to investigate the temporal evolution of gel phase domains at the onset of phase separation, as well as the correlation between domain topology and local lipid ordering in GUVs composed of a binary mixture of DPPC/DLPC 1:1. The data acquired at temperatures immediately above the transition temperature of the two lipids suggest fluctuations in the lipid organization with a lifetime <0.1 s and a characteristic length of 1.2 μm. As the temperature is decreased below the transition temperature of one of the lipids, coupling between the two leaflets of the bilayer is observed to begin within the first five minutes after the onset of phase separation. However, domains confined to only one leaflet can be found during the first 45-50 min after the onset of phase separation. Our analysis using a two-state model (liquid and gel) indicates that for the first 45-50 min from the onset of phase separation the two lipid phases do not strongly influence the phase behavior of each other on the micron-length scale. At longer times, behavior that deviates from the two-state model is observed and appears to be correlated to domain morphology.  相似文献   

7.
We have studied the dynamics of Lissamine Rhodamine B dye sensitization-induced oxidation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) giant unilamellar vesicles (GUVs), where the progression of the underlying chemical processes was followed via vesicle membrane area changes. The surface-area-to-volume ratio of our spherical GUVs increased after as little as ten seconds of irradiation. The membrane area expansion was coupled with high amplitude fluctuations not typical of GUVs in isoosmotic conditions. To accurately measure the area of deformed and fluctuating membranes, we utilized a dual-beam optical trap (DBOT) to stretch GUV membranes into a geometrically regular shape. Further oxidation led to vesicle contraction, and the GUVs became tense, with micron-scale pores forming in the bilayer. We analyzed the GUV morphological behaviors as two consecutive rate-limiting steps. We also considered the effects of altering DOPC and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (RhDPPE) concentrations. The resulting kinetic model allows us to measure how lipid molecular area changes during oxidation, as well as to determine the rate constants controlling how quickly oxidation products are formed. Controlled membrane oxidation leading to permeabilization is also a potential tool for drug delivery based on engineered photosensitizer-containing lipid vesicles.  相似文献   

8.
Lipid bilayers provide a solute-proof barrier that is widely used in living systems. It has long been recognized that the structural changes of lipids during the phase transition from bilayer to non-bilayer have striking similarities with those accompanying membrane fusion processes. In spite of this resemblance, the numerous quantitative studies on pure lipid bilayers are difficult to apply to real membranes. One reason is that in living matter, instead of pure lipids, lipid mixtures are involved and there is currently no model that establishes the connection between pure lipids and lipid mixtures. Here, we make this connection by showing how to obtain (i) the short-range repulsion between bilayers made of lipid mixtures and, (ii) the pressure at which transition from bilayer phase to non-bilayer phases occur. We validated our models by fitting the experimental data of several lipid mixtures to the theoretical data calculated based on our model. These results provide a useful tool to quantitatively predict the behavior of complex membranes at low hydration.  相似文献   

9.
Giant unilamellar vesicles (GUVs) are simple model membrane systems of cell-size, which are instrumental to study the function of more complex biological membranes involving heterogeneities in lipid composition, shape, mechanical properties, and chemical properties. We have devised a method that makes it possible to prepare a uniform sample of ternary GUVs of a prescribed composition and heterogeneity by mixing different populations of small unilamellar vesicles (SUVs). The validity of the protocol has been demonstrated by applying it to ternary lipid mixture of DOPC, DPPC, and cholesterol by mixing small unilamellar vesicles (SUVs) of two different populations and with different lipid compositions. The compositional homogeneity among GUVs resulting from SUV mixing is quantified by measuring the area fraction of the liquid ordered–liquid disordered phases in giant vesicles and is found to be comparable to that in GUVs of the prescribed composition produced from hydration of dried lipids mixed in organic solvent. Our method opens up the possibility to quickly increase and manipulate the complexity of GUV membranes in a controlled manner at physiological buffer and temperature conditions. The new protocol will permit quantitative biophysical studies of a whole new class of well-defined model membrane systems of a complexity that resembles biological membranes with rafts.  相似文献   

10.
《Journal of molecular biology》2019,431(17):3339-3352
All membrane proteins have dynamic and intimate relationships with the lipids of the bilayer that may determine their activity. Mechanosensitive channels sense tension through their interaction with the lipids of the membrane. We have proposed a mechanism for the bacterial channel of small conductance, MscS, that envisages variable occupancy of pockets in the channel by lipid chains. Here, we analyze protein–lipid interactions for MscS by quenching of tryptophan fluorescence with brominated lipids. By this strategy, we define the limits of the bilayer for TM1, which is the most lipid exposed helix of this protein. In addition, we show that residues deep in the pockets, created by the oligomeric assembly, interact with lipid chains. On the cytoplasmic side, lipids penetrate as far as the pore-lining helices and lipid molecules can align along TM3b perpendicular to lipids in the bilayer. Cardiolipin, free fatty acids, and branched lipids can access the pockets where the latter have a distinct effect on function. Cholesterol is excluded from the pockets. We demonstrate that introduction of hydrophilic residues into TM3b severely impairs channel function and that even “conservative” hydrophobic substitutions can modulate the stability of the open pore. The data provide important insights into the interactions between phospholipids and MscS and are discussed in the light of recent developments in the study of Piezo1 and TrpV4.  相似文献   

11.
Tamba Y  Yamazaki M 《Biochemistry》2005,44(48):15823-15833
It is thought that magainin 2, an antimicrobial peptide, acts by binding to lipid membranes. Recent studies using a suspension of large unilamellar vesicles (LUVs) indicate that magainin 2 causes gradual leakage from LUVs containing negatively charged lipids. However, the details of the characteristics of the membrane permeability and the mechanism of pore formation remain unclear. In this report, we investigated the interaction of magainin 2 with single giant unilamellar vesicles (GUVs) composed of a dioleoylphosphatidylcholine and dioleoylphosphatidylglycerol mixture (50% DOPG/50% DOPC GUVs) containing the fluorescent dye, calcein, by phase contrast, fluorescence microscopy using the single GUV method. Low concentrations (3-10 microM) of magainin 2 caused the rapid leakage of calcein from single GUVs but did not disrupt the liposomes or change the membrane structure, showing directly that magainin 2 forms membrane pores through which calcein leaked. The rapid leakage of calcein from a GUV started stochastically, and once it began, the complete leakage occurred rapidly (6-60 s). The fraction of completely leaked GUV, P(L), increased with time and also with an increase in magainin 2 concentration. Shape changes in these GUVs occurred prior to the pore formation and also at lower concentrations of magainin 2, which could not induce the pore formation. Their analysis indicates that binding of magainin 2 to the external monolayer of the GUV increases its membrane area, thereby raising its surface pressure. The addition of lysophosphatidylcholine into the external monolayer of GUVs increased P(L). On the basis of these results, we propose the two-state transition model for the pore formation.  相似文献   

12.
Most studies reported until now on the magnetically alignable system formed by the binary mixtures of long- and short-chain lipids were based on the mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (D14PC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (D6PC) lipids. We have recently shown that a large part of the phase diagrams of this lipid mixture could be understood by taking into account the partial miscibility between the long-chain lipids and the short-chain lipids when the sample was heated above the melting transition temperature (Tm) of the long-chain lipids. In this work, we show by modifying the chain length of either one of the two lipids that it is possible to control their miscibility and thus the intervals of temperature and composition where spontaneous alignment is observed in a magnetic field. By using 31P NMR, we demonstrate that the very special properties of such binary lipid mixtures are correlated with the propensity for short-chain lipids to diffuse into the bilayer regions. We also show that lipid mixtures with comparable properties can be formed with unsaturated lipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC).  相似文献   

13.
Most antimicrobial peptides (AMPs) damage the cell membrane of bacterial cells and induce rapid leakage of the internal cell contents, which is a main cause of their bactericidal activity. One of the AMPs, magainin 2 (Mag), forms nanopores in giant unilamellar vesicles (GUVs) comprising phosphatidylcholine (PC) and phosphatidylglycerol (PG), inducing leakage of fluorescent probes. In this study, to elucidate the Mag-induced pore formation in lipid bilayer region in E. coli cell membrane, we examined the interaction of Mag with single GUVs comprising E. coli polar lipids (E. coli-lipid-GUVs). First, we investigated the Mag-induced leakage of a fluorescent probe AF488 from single E. coli-lipid-GUVs, and found that Mag caused rupture of GUVs, inducing rapid AF488 leakage. The rate constant of Mag-induced GUV rupture increased with the Mag concentration. Using fluorescence microscopy with a time resolution of 5 ms, we revealed the GUV rupture process: first, a small micropore was observed in the GUV membrane, then the pore radius increased within 50 ms without changing the GUV diameter, the thickness of the membrane at the pore rim concomitantly increased, and eventually membrane aggregates were formed. Mag bound to only the outer monolayer of the GUV before GUV rupture, which increased the area of the GUV bilayer. We also examined the physical properties of E. coli-lipid-GUVs themselves. We found that the rate constant of the constant tension-induced rupture of E. coli-lipid-GUVs was higher than that of PG/PC-GUVs. Based on these results, we discussed the Mag-induced rupture of E. coli-lipid-GUVs and its mechanism.  相似文献   

14.
Bax proteins form pores in the mitochondrial outer membrane to initiate apoptosis. This might involve their embedding in the cytosolic leaflet of the lipid bilayer, thus generating tension to induce a lipid pore with radially arranged lipids forming the wall. Alternatively, Bax proteins might comprise part of the pore wall. However, there is no unambiguous structural evidence for either hypothesis. Using NMR, we determined a high‐resolution structure of the Bax core region, revealing a dimer with the nonpolar surface covering the lipid bilayer edge and the polar surface exposed to water. The dimer tilts from the bilayer normal, not only maximizing nonpolar interactions with lipid tails but also creating polar interactions between charged residues and lipid heads. Structure‐guided mutations demonstrate the importance of both types of protein–lipid interactions in Bax pore assembly and core dimer configuration. Therefore, the Bax core dimer forms part of the proteolipid pore wall to permeabilize mitochondria.  相似文献   

15.
16.
The line tension of the edge of the lipid bilayer pore is calculated on the basis of the elastic theory of continuous liquid-crystal medium. Three types of deformations of the membrane were taken into account: bending, lateral stretching/compression, and tilt of the lipidic tails. Various models of structure of the pore edge are considered: models of the cylindrical shape with given radius and optimum radius, “extrapolational” model, “two-coordinate” model, and model with a hydrophobic cavity (“void”). Models can be conventionally divided into two classes. The first class includes models in which membrane monolayers are in contact with each other everywhere. Models of the second class admit appearance of a hydrophobic cavity between monolayers. Models of the first class yield value of the line tension γ, strongly differing from that known from the literature (~10 pN). For example, the value of the line tension γ obtained in the cylindrical model equals to 21 pN; in the two-coordinate model, 19 pN, and in the extrapolational model, 62 pN. At the same time, the model with cavity gives the value of γ eqal ~10 pN, provided that surface tension at the boundary of the lipid tails is close to zero. This value is in a good agreement with the literature data.  相似文献   

17.
Li L  Cheng JX 《Biochemistry》2006,45(39):11819-11826
We report a new type of gel-liquid phase segregation in giant unilamellar vesicles (GUVs) of mixed lipids. Coexisting patch- and stripe-shaped gel domains in GUV bilayers composed of DOPC/DPPC or DLPC/DPPC are observed by confocal fluorescence microscopy. The lipids in stripe domains are shown to be tilted according to the DiIC18 fluorescence intensity dependence on the excitation polarization. The patch domains are found to be mainly composed of DPPC-d62 according to the coherent anti-Stokes Raman scattering (CARS) images of DOPC/DPPC-d62 bilayers. When cooling GUVs from above the miscibility temperature, the patch domains start to appear between the chain melting and the pretransition temperature of DPPC. In GUVs containing a high molar percentage of DPPC, the stripe domains form below the pretransition temperature. Our observations suggest that the patch and stripe domains are in the Pbeta' and Lbeta' gel phases, respectively. According to the thermoelastic properties of GUVs described by Needham and Evans [(1988) Biochemistry 27, 8261-8269], the Pbeta' and Lbeta' phases are formed at relatively low and high membrane tensions, respectively. GUVs with high DPPC percentage have high membrane surface tension and thus mainly exhibit Lbeta' domains, while GUVs with low DPPC percentage have low membrane surface tension and form Pbeta' domains accordingly. Adding negatively charged lipid to the lipid mixtures or applying an osmotic pressure to GUVs using sucrose solutions releases the surface tension and leads to the disappearance of the Lbeta' gel phase. The relationship between the observed domains in free-standing GUV bilayers and those in supported bilayers is discussed.  相似文献   

18.
The mechanisms that mediate biomembrane shape transformations are of considerable interest in cell biology. Recent in vitro experiments show that the chemical transformation of minor membrane lipids can induce dramatic shape changes in biomembranes. Specifically, it was observed that the addition of DOPA to DOPE has no effect on the stability of the bilayer structure of the membrane. In contrast, the addition of LPA to DOPE stabilizes the bilayer phase of DOPE, increasing the temperature of a phase transition from the bilayer to the inverted hexagonal phase. This result suggests that the chemical conversion of DOPA to LPA is sufficient for triggering a dramatic change in the shape of biomembranes. The LPA/DOPA/DOPE mixture of lipids provides a simple model system for understanding the molecular events driving the shape change. In this work, we used coarse-grained molecular dynamics simulations to study the phase transitions of this lipid mixture. We show that despite the simplicity of the coarse-grained model, it reproduces the experimentally observed phase changes of: 1), pure LPA and DOPA with respect to changes in the concentration of cations; and 2), LPA/DOPE and DOPA/DOPE mixtures with respect to temperature. The good agreement between the model and experiments suggests that the computationally inexpensive coarse-grained approach can be used to infer macroscopic membrane properties. Furthermore, analysis of the shape of the lipid molecules demonstrates that the phase behavior of single-lipid systems is consistent with molecular packing theory. However, the phase stability of mixed lipid systems exhibits significant deviations from this theory, which suggests that the elastic energy of the lipids, neglected in the packing theory, plays an important role.  相似文献   

19.
Mechanism of lipid bilayer disruption by the human antimicrobial peptide,LL-37   总被引:10,自引:0,他引:10  
LL-37 is an amphipathic, alpha-helical, antimicrobial peptide. (15)N chemical shift and (15)N dipolar-shift spectroscopy of site-specifically labeled LL-37 in oriented lipid bilayers indicate that the amphipathic helix is oriented parallel to the surface of the bilayer. This surface orientation is maintained in both anionic and zwitterionic bilayers and at different temperatures and peptide concentrations, ruling out a barrel-stave mechanism for bilayer disruption by LL-37. In contrast, electrostatic factors, the type of lipid, and the presence of cholesterol do affect the extent to which LL-37 perturbs the lipids in the bilayer as observed with (31)P NMR. The (31)P spectra also show that micelles or other small, rapidly tumbling membrane fragments are not formed in the presence of LL-37, excluding a detergent-like mechanism. LL-37 does increase the lamellar to inverted hexagonal phase transition temperature of both PE model lipid systems and Escherichia coli lipids, demonstrating that it induces positive curvature strain in these environments. These results support a toroidal pore mechanism of lipid bilayer disruption by LL-37.  相似文献   

20.
Apolipoprotein A-I (apoA-I) interaction with specific cell lipid domains was suggested to trigger cholesterol and phospholipid efflux. We analyzed here apoA-I interaction with dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) bilayers at a temperature showing phase coexistence. Solid and liquid-crystalline domains were visualized by two-photon fluorescence microscopy on giant unilamellar vesicles (GUVs) labeled with 6-dodecanoyl-2-dimethyl-amino-naphthalene (Laurdan). A decrease of vesicle size was detected as long as they were incubated with lipid-free apoA-I, together with a shape deformation and a relative enrichment in DSPC. Selective lipid removal mediated by apoA-I from different domains was followed in real time by changes in the Laurdan generalized polarization. The data show a selective interaction of apoA-I with liquid-crystalline domains, from which it removes lipids, at a molar ratio similar to the domain compositions. Next, apoA-I was incubated with DMPC/DSPC small unilamellar vesicles, and products were isolated and quantified. Protein solubilized both lipids but formed complexes relatively enriched in the liquid component. We also show changes in the GUV morphology when cooling down. Our results suggest that the most efficient reaction between apoA-I and DMPC/DSPC occurs in particular bilayer conditions, probably when small fluid domains are nucleated within a continuous gel phase and interfacial packing defects are maximal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号